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GENERALIZATION OF MEIR-KEELER TYPE FIXED POINT

THEOREMS

R. P. PANT, VYOMESH PANT AND V. P. PANDEY

Abstract. The purpose of this paper is two fold. In the following pages we prove common

fixed point theorems for four mappings A, B, S and T (say) under the Meir-Keeler type (ε, δ)

condition, however, without imposing any additional condition on δ or using a φ-contractive

condition together with. Simultaneously we also show that none of the A, B, S or T is continuous

at their common fixed point. Thus we not only generalize the Meir-Keeler type and Boyd-Wong

type fixed point theorems, but also provide one more answer to the problem (see Rhoades [19])

on the existence of a contractive definition, which is strong enough to generate a fixed point but

does not force the map to be continuous at the fixed point.

1. Introduction

It is known that while dealing with the common fixed point of four mappings, say A,

B, S and T in a metric space (X, d), the Meir-Keeler type (ε, δ) contractive condition of

the type

(1) given ε > 0 there exists a δ > 0 such that

ε ≤ max{d(Sx, T y), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2} < ε + δ

⇒ d(Ax, By) < ε

does not ensure the existence of a fixed point unless some additional condition is imposed

on δ or a φ-contractive condition of the form

(2) d(Ax, By) ≤ φ(max{d(Sx, T y), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2})

where φ : R+ → R+ is such that φ(t) < t for each t > 0, is also used together with. To

illustrate this argument we cite the following example:

Example 1. [13] Let X = [0, 2] and d be the usual metric on X . Define f : X → X

by

fx = (1 + x)/2 if x < 1, fx = 0 if x ≥ 1
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Then f satisfies the contractive condition

ε ≤ max{d(x, y), d(x, fx), d(y, fy)} < ε + δ ⇒ d(fx, fy) < ε

with δ(ε) = 1 for ε ≥ 1 and δ(ε) = 1 − ε for ε < 1 but f does not have a fixed point.
In view of the above example it is inferred that the (ε, δ) contractive condition alone

is not sufficient to ensure the existence of a common fixed point. In the known common
fixed point theorems the existence of common fixed points is ensured by assuming either
of the following conditions in addition to the (ε, δ) contractive condition:

(I) δ is nondecreasing (Pant [10, 11]).
(II) δ is lower semicontinuous (Jungck [6], Jungck et al. [5]).

(III) Besides the (ε, δ) contractive condition the φ-contractive condition is also assumed
with or even without imposing any additional restriction on φ (Pant and Pant [12],
Pant et al. [13]).

Jachymski [3, Proposition 4.2] has shown that the (ε, δ) contractive condition (1)
implies the φ-contractive condition (2) if δ is assumed nondecreasing. Pant et al. [13]
has proved that the (ε, δ) contractive condition (1) implies the φ-contractive condition
(2) if δ is lower semicontinuous. A slightly different version of this result has been proved
by Jachymski [3]. We thus see that if any of the condition (I) of (II) is imposed on δ
then the (ε, δ) contractive condition (1) implies an analogous φ-contractive condition and
both the contractive conditions hold simulaneously alongwith (I) or (II).

In some results the contractive condition (1) has been replaced by a slightly weaker
contractive condition of the form

(3) given ε > 0 there exists a δ > 0 such that
ε < max{d(Sx, T y), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2} < ε + δ
⇒ d(Ax, By) ≤ ε

Jachymski [3] has shown that contractive condition (1) implies (3) but (3) does not
imply (1). The known common fixed theorems can be generalized if we assume the (ε, δ)
contractive condition (3), however, without imposing any additional restriction on δ or
taking the φ-contractive condition together with. We do so in the present paper and
prove a common fixed point theorem (Theorem 1) by assuming the contractive condition
(3) together with the Lipschitz type analogue of a plane contractive condition; i.e., a
condition of the form

d(Ax, By) < max{d(Sx, T y), k[d(Ax, Sx) + d(By, Ty)]/2, [d(Ax, Ty) + d(By, Sx)]/2},

0 < k ≤ 2

however, without assuming any of the additional condition (I), (II) or (III). Theorem 2
slightly extends the result obtained in Theorem 1, whereas Theorem 3 is a special case
of both the previous theorems. Simultaneously we also provide one more answer to the
problem (see Rhoades [19]) on the existence of a contractive definition, which is strong
enough to generate a fixed point but does not force the map to be continuous at the fixed
point. For this we use the notion of Reciprocal Continuity.



GENERALIZATION OF MEIR-KEELER TYPE FIXED POINT THEOREMS 181

Two selfmappings A and S of a metric space (X, d) are called reciprocally continuous

(see Pant [15]) if limn ASxn = At and limn SAxn = St whenever {xn} is a sequence such
that limn Axn = limn Sxn = t for some t in X . If A and S both are continuous they are
obviously reciprocally continuous. But, as shown and illustrated in the following pages,
the converse is not true.

Two selfmaps f and g of a metric space (X, d) are called compatible (see Jungck
[6]) if limn d(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limn fxn =
limn gxn = t for some t in X .

Two selfmaps f and g of a metric space (X, d) are called weakly compatible if they
commute at their coincidence points.

The notion of compatible maps was introduced by Jungck [6] in 1986 by general-
izing the concept of commutativity or say rather by generalizing the concept of weak
commutativity. There are a number of other generalizations also of the concept of com-
mutativity. It is, however, relevant to mention here that both commutativity and weak
commutativity are independent of the notion of reciprocal continuity. We show in the
following examples that if two maps are compatible or weakly compatible they are not
necessarily reciprocally continuous and vice versa.

Example 2. Let X = [2, 20] and d be the usual metric on X . Define f , g : X → X
by

fx = 6 if 2 ≤ x < 5, fx = 2 if x ≥ 5

gx = 2 if 2 ≤ x < 5, gx = x − 3 if x ≥ 5.

In this example f5 = 2 = g5 but gf5 = 2, fg5 = 6. Thus f and g do not commute at their
only coincidence point x = 5. Let us now consider the sequence {xn = 5 + 1/n : n > 1},
then limn fxn = 2, limn gxn → 2, limn fgxn = 6 = f2 and limn gfxn = 2 = g2. Thus f
and g are reciprocally continuous but are neither compatible nor weakly compatible.

Example 3. Let X = [2, 20] and d be the usual metric on X . Define f , g : X → X
by

fx = 6 if 2 ≤ x ≤ 5, fx = 2 if x > 5

gx = 2 if 2 ≤ x ≤ 5, gx = x − 3 if x > 5.

In this example f and g are reciprocally continuous but not compatible. To see this let
us consider the sequence {xn = 5 + 1/n : n > 1}, then limn fxn = 2, limn gxn → 2,
limn fgxn = 6 = f2 and limn gfxn = 2 = g2. Thus f and g are reciprocally continuous
but not compatible. However, f and g are weakly compatible.

Example 4. Let X = [2, 20] and d be the usual metric on X . Define f , g : X → X
by

f2 = 2, fx = 2x + 1 if 2 < x ≤ 5, fx = (x − 1)/2 if x > 5

g2 = 2, gx = (x + 8)/2 if 2 < x < 5, gx = x − 3 if x ≥ 5.
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Then f and g are compatible but not reciprocally continuous. To see this let us

consider the sequence {xn = 5 + 1/n : n > 1}, then limn fxn → 2, limn gxn → 2,

limn fgxn → 5 6= f2 and limn gfxn → 5 6= g2. For the sequence {xn = 2 + 1/n : n > 1},

limn fxn → 5, limn gxn → 5, limn fgxn → 2 6= f5 and limn gfxn → 2 = g5. Thus f and

g are compatible but not reciprocally continuous.

Results

Theorem 1. Let (A, S) and (B, T ) be compatible pairs of self mappings of a complete

metric space (X, d) such that

(i) AX ⊂ TX , BX ⊂ SX

(ii) given ε > 0, there exists δ > 0 such that

ε < M(x, y) < ε + δ ⇒ d(Ax, By) ≤ ε;

where M(x, y) = max{d(Sx, T y), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2}

(iii) d(Ax,By)<max{d(Sx, T y), k[d(Ax,Sx)+d(By, Ty)]/2, [d(Ax, Ty)+d(By, Sx)]/2},

0 < k ≤ 2

Suppose that the mappings in one of the pairs (A, S) or (B, T ) are reciprocally continuous.

Then A, B, S and T have a unique common fixed point.

Proof. Let x0 be any point in X . Define sequences {xn} and {yn} in X given by

the rule

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2.

This can be done by virtue of (i). Then by (ii) we get d(y2n, y2n+1) < d(y2n−1, y2n).

Similarly, d(y2n−1, y2n) < d(y2n−2, y2n−1) and so on. Thus, {d(yn, yn+1)} is a strictly

decreasing sequence of positive numbers and, therefore, tends to a limit r ≥ 0. If possible

suppose r > 0. Then given δ > 0 there exists a positive number N such that for each

n ≥ N we have

r < d(y2n, y2n+1) = M(x, y) < r + δ. (1)

Selecting δ in (1) in accordance with (ii), for each n ≥ N we get d(y2n+2, y2n+1) =

d(A1x2n+2, A2x2n+1) < r. This, in turn, gives d(y2n+3, y2n+2) < d(y2n+1, y2n+2) < r,

contradicting (1). Hence limn→∞ d(yn, yn+1) = 0.

We now show that {yn} is a Cauchy sequence. Suppose it is not. Then there exists

an ε > 0 and a subsequence {yni
} of {yn} such that d(yni

, yni+1
) > 2ε. Select δ in (ii)

so that 0 < δ ≤ ε. Since limn→∞ d(yn, yn+1) = 0, there exists an integer N such that

d(yn, yn+1) < δ/6 whenever n ≥ N .

Let ni ≥ N . Then, there exist integers mi satisfying ni < mi < ni+1 such that

d(yni
, ymi

) ≥ ε + (δ/3). If not, then

d(yni
, yni+1

) ≤ d(yni
, yni+1−1) + d(yni+1−1, yni+1

)

< ε + (δ/3) + (δ/6) < 2ε,
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a contradiction. Without loss of generality, we can assume ni to be odd. Let mi be the
smallest even integer such that d(yni

, ymi
) ≥ ε + (δ/3). Then d(yni

, ymi−2) < ε + (δ/3)
and

ε + (δ/3) ≤ d(yni
, ymi

) ≤ d(yni
, ymi−2) + d(ymi−2, ymi−1) + d(ymi−1, ym)

< ε + (δ/3) + (δ/6) + (δ/6) = ε + 2(δ/3). (2)

Also, d(yni
, ymi

) ≤ M(xni+1, xmi+1) < ε + 2(δ/3) + (δ/6) < ε + δ,
that is, ε+(δ/3) ≤ M(xni+1, xmi+1) < ε+δ. In view of (ii), this yields d(yni+1, ymi+1) <
ε. But then

d(yni
, ymi

) ≤ d(yni
, yni+1) + d(yni+1, ymi+1) + d(ymi+1, ymi

)

< (δ/6) + ε + (δ/6) = ε + (δ/3),

which contradicts (2). Hence {yn} is a Cauchy sequence. Since X is complete, there
exists a point z in X such that yn → z. Also

y2n = Ax2n = Tx2n+1 → z, y2n+1 = Bx2n+1 = Sx2n+2 → z. (3)

Suppose that A and S are reciprocally continuous mappings. Then, reciprocal con-
tinuity of A and S implies that ASx2n → Az and SAx2n → Sz. Since A and S are
compatible and limn Sx2n = limn Ax2n = z, we get limn d(ASx2n, SAx2n) = 0, that is,
d(Az, Sz) = 0. Hence Az = Sz. Since AX ⊂ TX , there exists a point w in X such that
Az = Tw. We claim that Tw = Bw. If Bw 6= Tw, using (iii) we get

d(Az, Bw) < max{d(Sz, Tw), k[d(Az, Sz) + d(Bw, Tw)]/2, [d(Az, Tw) + d(Bw, Sz)]/2}

= max{k[d(Bw, Tw)]/2, d(Bw, Tw)/2}, 0 < k ≤ 2

< d(Bw, Tw) = d(Az, Bw),

a contradiction. Hence Bw = Tw and Sz = Az = Tw = Bw. Since compatible maps
commute at their coincidence points, we get ASz = SAz and BTw = TBw. This
further implies that AAz = ASz = SAz = SSz and BBw = BTw = TBw = TTw. If
Az 6= AAz, using (iii) we get

d(Az, AAz) = d(Bw, AAz) = d(AAz, Bw)

< max{d(SAz, Tw), k[d(AAz, SAz) + d(Bw, Tw)]/2,

[d(AAz, Tw) + d(Bw, SAz)]/2})

= d(SAz, Tw) = d(AAz, Az),

a contradiction. Hence Az = AAz = ASz. Thus Az is a common fixed point of A and S.
Similarly we obtain Bw(= Az) is a common fixed point of B and T . Uniqueness of the
common fixed point follows from (iii). The proof is similar when B and T are assumed
compatible and reciprocally continuous. This completes the proof of the theorem.

Theorem 1 can be stated in different, albeit slightly improved version as follows.

Theorem 2. Let (A, S) and (B, T ) be compatible pairs of self mappings of a complete

metric space (X, d) satisfying conditions (i) and (ii) of Theorem 1 above and



184 R. P. PANT, VYOMESH PANT AND V. P. PANDEY

(iii) d(Ax, By) < max{d(Sx, T y), k[d(Ax, Sx) + d(By, Ty)]/2,
k′[d(Ax, Ty) + d(By, Sx)]/2}, 0 < k ≤ 2, 0 < k′ ≤ 1

Suppose that the mappings in one of pairs (A, S) or (B, T ) is reciprocally continuous.

Then A, B, S and T have a unique common fixed point.

Proof. Let x0 be any point in X . Define a sequence {yn} in X as follows:

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2.

This can be done since AX ⊂ TX and BX ⊂ SX . Following the steps as in Theorem
1 above it follows that {yn} is a Cauchy sequence. Since X is complete, there exists a
point z in X such that yn → z as n → ∞. Also,

y2n = Ax2n = Tx2n+1 → z, y2n+1 = Bx2n+1 = Sx2n+2 → z.

Suppose that A and S are reciprocally continuous mappings. Then, reciprocal con-
tinuity of A and S implies that ASx2n → Az and SAx2n → Sz. Since A and S are
compatible and limn Sx2n = limn Ax2n = z, we get limn d(ASx2n, SAx2n) = 0, that is,
d(Az, Sz) = 0. Hence Az = Sz. Since AX ⊂ TX , there exists a point w in X such that
Az = Tw. We claim that Tw = Bw. If Bw 6= Tw, using (iii) we get

d(Az, Bw) < max{d(Sz, Tw), k[d(Az, Sz)+d(Bw, Tw)]/2, k′[d(Az, Tw)+d(Bw, Sz)]/2}

= max{k[d(Bw, Tw)]/2, k′[d(Bw, Tw)]/2}

< d(Bw, Tw) = d(Az, Bw),

a contradiction. Hence Bw = Tw and Sz = Az = Tw = Bw. Since compatible maps
commute at their coincidence points, we get ASz = SAz and BTw = TBw. This
further implies that AAz = ASz = SAz = SSz and BBw = BTw = TBw = TTw. If
Az 6= AAz, using (iii) we get

d(Az, AAz) = d(Bw, AAz) = d(AAz, Bw)

< max{d(SAz, Tw), k[d(AAz, SAz) + d(Bw, Tw)]/2,

k′[d(AAz, Tw) + d(Bw, SAz)]/2})

= d(SAz, Tw) = d(AAz, Az),

a contradiction. Hence Az = AAz = ASz. Thus Az is a common fixed point of A and S.
Similarly we obtain Bw(= Az) is a common fixed point of B and T . Uniqueness of the
common fixed point follows from (iii). The proof is similar when B and T are assumed
compatible and reciprocally continuous. This completes the proof of the theorem.

Remark. Setting k = k′ = 1 in Theorem 2 above we get the following theorem.

Theorem 3. Let (A, S) and (B, T ) be compatible pairs of self mappings of a complete

metric space (X, d) such that

(i) AX ⊂ TX , BX ⊂ SX
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(ii) given ε > 0, there exists δ > 0 such that

ε < max{d(Sx, T y), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/2}

< ε + δ ⇒ d(Ax, By) ≤ ε
(iii) d(Ax, By)<max{d(Sx, T y), [d(Ax, Sx)+d(By, Ty)]/2, [d(Ax, Ty)+d(By, Sx)]/2},

Suppose that the mappings in one of pairs (A, S) or (B, T ) is reciprocally continuous.

Then A, B, S and T have a unique common fixed point.

We now give an example which illustrates the above theorems:

Example 5. Let X = [2, 20] and d be the usual metric on X . Define A, B, S,

T : X → X by

A2 = 2, Ax = 3, if x > 2,

S2 = 2, Sx = 6, if x > 2,

Bx = 2, if x = 2 or ≥ 5, Bx = 6, if 2 < x < 5,

T 2 = 2, Tx = 7 + x, if 2 < x < 5, Tx = (x + 1)/2, if x ≥ 5.

Then A, B, S and T satisfy all the conditions of above theorems and have a unique
common fixed point x = 2. It can be verified in this example that A, B, S and T

satisfy contractive condition (ii) and (iii) of the above theorems and that δ(ε) = ε if

ε ≥ 3 and δ(ε) = 3 − ε if ε < 3. We thus see that limε→3 inf δ(ε) = 0 6= δ(3) and δ
fails to be nondecreasing or lower semicontinuous. It can be verified that A and S are

reciprocally continuous compatible mappings, however, all the mappings A, B, S and T

are discontinuous at the common fixed point.

Discussion

1. The Meir-Keeler type (ε, δ) contractive condition alone does not guarantee the

existence of a common fixed point unless some additional condition is imposed on δ

(e.g. Jungck [6], Jungck et al. [5], Pant [10, 11]) or a φ-contractive condition has been
used alongwith the (ε, δ) contractive condition (e.g. Pant and Pant [12], Pant et al. [13].

Jachymski [3] has shown that the (ε, δ) contractive condition (1) with nondecreasing δ

implies a φ-contractive condition. It is also true that the (ε, δ) contractive condition (1)
with lower semicontinuous δ implies the φ-contractive condition (e.g. see Pant et al. [13],

also Jachymski [4]). Theorem 1 and 2 above have been proved without imposing any

additional condition on δ and we have assumed a plane contractive condition instead of a

φ-contractive condition. Such plane contractive conditions, in general, do not guarantee
the existence of common fixed points. Our theorems, thus improve the results known

so far. Among the cases which can be obtained as a particular case of our theorems or

which can be improved in the light of present theorems we mention due to Boyd and
Wong [1], Carbone et al. [2], Jungck [6], Jungck et al. [5], Jachymski [3], Matkowski [8],

Pant [14], Pant et al. [Theorem 1, [13]], Pant and Padaliya [Theorem 2, [16]], Park and

Rhoades [18] and Singh and Kasahara [20].
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2. Despite Lemma 2.2 of Jachymski [3], an (ε, δ) contractive condition does not imply
the existence of common fixed point unless some additional condition is imposed on δ.

For example, Jungck [6] and Jungck et al. [5] assume δ to be lower semicontinuous. On
the other hand Pant [10, 11] assume δ to be nondecreasing. In Theorem 1, 2 and 3 above,
we have not imposed any additional condition on δ. Example 2 illustrates our argument.

3. In condition (iii) of Theorem 1 and 2 above k can assume any value in the semiopen
interval (0, 2] whereas k′ can take any value in the interval (0, 1] in Theorem 2. Thus
our theorems generalize a number of similarly placed results by allowing k and k′ to take
values other than 1.

4. It has been known since the paper of Kannan [7] in 1968 that there exist maps that
have a discontinuity in their domain but which have fixed points. In 1988, Rhoades [19]
posed an open problem – “Whether there exists a contractive definition which is strong

enough to generate a fixed point, but which does not force the map to be continuous
at the fixed point.” The problem had remained open for more than one decade. Pant
[14, 17] and Pant et al. [13] have provided some solutions to this problem. In the above
theorems we have provided one more, however, a new type of answer to this problem. It
may be observed that in the Example above none of the mappings is continuous at their
common fixed point.
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