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DIOPHANTINE QUADRUPLES OF NUMBERS WHOSE ELEMENTS

ARE IN PROPORTION

A. M. S. RAMASAMY

Abstract. In this paper certain non-F-type P3,k sequences which contain Diophantine

quadruples of numbers in proportion are presented. It is proved that there exist an in-

finite number of non-F-type P3,k sequences which possess Diophantine quadruples of

numbers in proportion.

1. Introduction

The Greek mathematician Diophantus raised the question as to four numbers such that

the product of any two increased by a given number shall be a square. M. Gardner [6] asked

for a fifth number that can be added to the set {1,3,8,120} without destroying the property

that the product of any two integers is one less than a perfect square. For historical details

of the problem, one may refer to J. Roberts [14] and the author [12]. Various studies have

been conducted on the quadruples with Diophantine property through which several inter-

esting results have been established. Pell’s equation has been applied in [4], [7] and [13] to

bring out the nature of Diophantine triples and quadruples. The purpose of this paper is to

present certain non-F-type P3,k sequences which contain Diophantine quadruples of num-

bers in proportion.

2. Definitions

LetN denote the set of all natural numbers. We recall the definitions furnished in [8].

Definition 2.1. Let k be a given element of N. Two integers α and β are said to have the

property pk (resp. p−k ) if αβ+k (resp. αβ−k) is a perfect square.

Definition 2.2. Let k be a given element ofN. A set S of elements of N is said to be a Pk set or

a Diophantine set with property pk if every pair of distinct elements in S has the property pk .
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Definition 2.3. A Pk set S is called extendable if, for some integer d , d 6∈ S, the set S ∪ {d } is a

Pk set.

Definition 2.4. A sequence of integers is said to be a Pr,k sequence if every r consecutive

terms of the sequence constitute a Pk set.

Example 1. The sequence {1,3,8,21,55,144, . . .}, obtained using Fibonacci numbers, is a P3,1

sequence. The sets {1,3,8}, {3,8,21}, {8,21,55}, . . . have property p1. However, the numbers 1

and 21 do not have property p1.

Example 2. The sequence {1,6,17,45,118,309, . . .} is a P3,19 sequence wherein the first and

fourth elements viz. 1 and 45 also have property p19.

The method of constructing a P3,k sequence was furnished in [8].

Definition 2.5. Let {an} be a P3,k sequence together with the associated sequences {bn} and

{cn}. The sequence {an} is said to be of F -type if the sequence { fn} = {a1,b1, a2,b2, a3,b3, . . .}

obtained by juxtaposing the two sequences {an} and {bn} is of Fibonacci type.

i.e., f1 = a1, f2 = b1, and fn = fn−1 + fn−2, n ≥ 3.

Polynomial expressions for F-type P3,k sequences have been provided in [11].

3. Background of the problem

A. Baker and H. Davenport [1] proved that the triple {1,3,8} can be extended into the

quadruple {1,3,8,120} with property p1 and the quadruple cannot be extended further. From

example 2.5 it is observed that the fourth number of the quadruple, namely 120 is not an el-

ement of the P3,1 sequence. It was proved in [9] that the triple {1,5,12} with property p4 can

be extended into the quadruple {1,5,12,96} and the quadruple cannot be extended further.

Here again it is seen that while the first three numbers of the quadruple form a P3,4 sequence,

the fourth number 96 is not an element of the sequence. In fact, the P3,4 sequence is ob-

tained as {1,12,33,85,224}. A question that naturally arises from these examples is about a

quadruple with property pk such that the fourth number is also an element of the P3,k se-

quence constituted by the first three numbers. As regards this question, it was proved in [8]

that if k ≡ 2 (mod 4), then there is no Pr,k sequence with r ≥ 4. Several interesting results

on Diophantine quadruples and quintuples have been obtained by A.Dujella (see for e.g. [2],

[3]). In [5], A. Dujella and N. Saradha considered m-tuples possessing Diophantine property

p1 with elements in arithmetic progressions. The present paper addresses the problem of

Diophantine quadruples of numbers whose elements are in proportion.
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4. Diophantine Quadruples from a P3,k sequence

4.1. Construction of P3,k sequence

We construct a P3,k sequence as follows:

Suppose a1, a2,b ∈N with a1 < a2, such that a1a2 +k = b2 for some integer k . We extend the

set {a1, a2} into a P3,k sequence {a1, a2, a3, . . .} by employing the method specified in [8].

We construct three sequences {an}, {bn} and {cn} as follows:

Take b1 = b, c1 = a1 +b1, b2 = a2 +b1, a3 = b2 + c1, b3 = a3 +b2, c2 = a2 +b2, a4 = b3 + c2,

etc. We see that the elements of the three sequences {an}, {bn} and {cn} have the following

recurrence relations:

an+1 = 2(an +an−1)−an−2,

bn+1 = 2(bn +bn−1)−bn−2,

cn+1 = 2(cn +cn−1)−cn−2,

One can check that a1a3 +k = c2
1 , a2a4 +k = c2

2 , a3a4 +k = b2
3, etc.

It follows that every triple of three consecutive terms of the sequence {an} constitutes a

Pk set. Therefore {a1, a2, a3, . . .} is a P3,k sequence.

4.2. Quadruples in which the elements are in proportion

Four numbers a,b,c,d are said to be in proportion if they have the property ad = bc .

There have been various studies to identify quadruples {α,β,γ,δ} with Diophantine prop-

erty pk . If α,β,γ and δ are chosen as four consecutive terms of a P3,k sequence, then {α,β,γ}

and {β,γ,δ} are triples with Diophantine property pk . In order that the quadruple {α,β,γ,δ}

has Diophantine property pk , we have to ensure that α and δ have property pk . However, if

we can identify a set of four consecutive terms of a P3,k sequence in which the elements are

in proportion, it has wider implications; indeed, the condition for the Diophantine property

of the quadruple will automatically be satisfied. This arouses the interest to think of quadru-

ples in which the elements are in proportion. We investigate whether there exists one such

quadruple in a P3,k sequence and if so whether there exist infinite number of such quadru-

ples.

4.3. Construction of P3,k sequences with a condition

Henceforth we impose the condition

a3 = 3a2 −a1 −2 (1)
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for the sequence {an} so that we have

k = a2
1 −3a1a2 +a2

2 +2a1 −2a2 +1 (2)

It is ascertained that k ≡ 0 or 1 (mod 4).

We have the recurrence relations

a2m+1 = 3a2m −a2m−1 −2,∀ m ≥ 1 and a2m = 3a2m−1 −a2m−2 +2,∀ m ≥ 2. (3)

We see that

a4 = 8a2 −3a1 −4, a5 = 21a2 −8a1 −12, a6 = 55a2 −21a1 −30, etc.

We observe that

c1 = a2 −1,c2 = a3 +1,c3 = a4 −1,etc. So we have

c2m+1 = a2m+2 −1,∀m ≥ 0 and c2m = a2m+1 +1,∀ m ≥ 1.

Hence the sequence {an} is of non-F-type.

4.4. Condition for the elements of a Diophantine quadruple to be in proportion

Suppose we require a P3,k sequence {an} constructed by the above method which con-

tains the quadruple {a2m , a2m+1, a2m+2, a2m+3} of non-zero numbers such that

a2m : a2m+1 = a2m+2 : a2m+3 (m > 0). (4)

Substituting for a2m+2 and a2m+3 using (3), we are led to the relation

a2m+1(3a2m+1 −a2m +2)−a2m(3a2m+2 −a2m+1 −2) = 0.

This gives the relation

3a2
2m+1 +2a2m+1 −3a2m a2m+2 +2a2m = 0.

Again substituting for a2m+2 from (3), we get

3a2
2m+1 −9a2m a2m+1 +2a2m+1 +3a2

2m −4a2m = 0. (5)

Treating this as a quadratic equation in a2m+1, we obtain

a2m+1 =
9a2m −2±

√

45a2
2m +12a2m +4

6
(6)
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This implies that the expression 45a2
2m +12a2m +4 shall be a square and

6 | 9a2m −2±
√

45a2
2m +12a2m +4. (7)

We search for some λ∈N such that 45a2
2m +12a2m +4 =λ2. This leads to the relation

(15a2m +2)2 −5λ2 =−16. (8)

Thus we obtain the Pell’s equation

U 2 −5V 2 =−16 (9)

where U = 15a2m+2 and V =λ. One may refer to T.Nagell [10] for a theory of the general Pell’s

equation

U 2 −DV 2 = N

where D is a square-free natural number.

Let us consider the Pell’s equation

A2 −5B 2 = 1. (10)

It is well-known that equation (10) has an infinite number of integral solutions. Using the

continued fraction expansion of
p

5, we obtain the fundamental solution of (10) as 9+4
p

5.

Given a positive integer k , it was proved in [8] that the number of distinct classes of so-

lutions of the equation x2 −5y2 = 4k is divisible by 3. The equation (9) possesses three non-

associated classes of solutions. Upon computation, it is found that the solutions Un +Vn

p
5

of the equation (9) in the three classes are provided by the expressions

(−22+10
p

5)(9+4
p

5)n ,

(−8+4
p

5)(9+4
p

5)n

and

(−2+2
p

5)(9+4
p

5)n

respectively, where n = 0,1,2, . . .

In class I, we have U0 = −22, V0 = 10; U1 = 2, V1 = 2; U2 = 58, V2 = 26; U3 = 1042, V3 = 466;

U4 = 18698, V4 = 8362, . . ..

In class II, U0 =−8, V0 = 4; U1 = 8, V1 = 4; U2 = 152, V2 = 68; U3 = 2728, V3 = 1220, U4 = 48952,

V4 = 21892, . . ..

In class III, U0 = −2, V0 = 2; U1 = 22, V1 = 10; U2 = 398, V2 = 178; U3 = 7142, V3 = 3194,

U4 = 128158, V4 = 57314, . . .

Since we require U = 15a2m+2 in (7), we have to consider Un (mod 15) in the concerned class.



246 A. M. S. RAMASAMY

In each class, we observe that Un (mod 15) is periodic with a period of 4. In view of (7), we

have to consider Vn (mod 6). We observe that in each class, Vn (mod 6) is periodic with a

period of 4.

In class I, we have

Un ≡































8 (mod 15) for n ≡ 0 (mod 4),

2 (mod 15) for n ≡ 1 (mod 4),

13 (mod 15) for n ≡ 2 (mod 4),

7 (mod 15) for n ≡ 3 (mod 4).

Vn ≡































4 (mod 6) for n ≡ 0 (mod 4),

2 (mod 6) for n ≡ 1 (mod 4),

2 (mod 6) for n ≡ 2 (mod 4),

4 (mod 6) for n ≡ 3 (mod 4).

In class II,

Un ≡































7 (mod 15) for n ≡ 0 (mod 4),

8 (mod 15) for n ≡ 1 (mod 4),

2 (mod 15) for n ≡ 2 (mod 4),

13 (mod 15) for n ≡ 3 (mod 4).

Vn ≡































4 (mod 6) for n ≡ 0 (mod 4),

4 (mod 6) for n ≡ 1 (mod 4),

2 (mod 6) for n ≡ 2 (mod 4),

2 (mod 6) for n ≡ 3 (mod 4).

In class III,

Un ≡































13 (mod 15) for n ≡ 0 (mod 4),

7 (mod 15) for n ≡ 1 (mod 4),

8 (mod 15) for n ≡ 2 (mod 4),

2 (mod 15) for n ≡ 3 (mod 4).

Vn ≡































2 (mod 6) for n ≡ 0 (mod 4),

4 (mod 6) for n ≡ 1 (mod 4),

4 (mod 6) for n ≡ 2 (mod 4),

2 (mod 6) for n ≡ 3 (mod 4).

On the basis of the values of Un provided by (9), it becomes necessary to restrict to Un

where

n ≡



















1 (mod 4) in class I,

2 (mod 4) in class II,

3 (mod 4) in class III.

Since a2m < a2m+1, the negative sign cannot hold in (6). We have to select those a2m’s in (6)

such that 6 | 3a2m −2+Vn . We have Vn ≡ 2 (mod 6) where

n ≡



















1 (mod 4) in class I,

2 (mod 4) in class II,

3 (mod 4) in class III.
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Since the values assumed by U in (9) are even, it is observed that the condition (7) is fulfilled

for all Vn where

n ≡



















1 (mod 4) in class I,

2 (mod 4) in class II,

3 (mod 4) in class III.

We see that the same conditions on n hold for the values of Un and Vn in the three respective

classes. Thus we have proved the following:

Theorem 4.1. For every given natural number m, each one of the three classes of solutions of

the Pell’s equation U 2−5V 2 =−16 contributes an infinite number of non-F-type P3,k sequences

{an} containing the Diophantine quadruples {a2m , a2m+1, a2m+2, a2m+3} whose elements are in

proportion.

5. Determination in specific cases

Now we determine the elements of a Diophantine quadruple in proportion for certain

specific values of m.

Case 1. m = 1. Let us consider the Diophantine quadruples from the three classes of solutions

of (9) separately.

Class I

Let us consider the solutions Un +Vn

p
5 of the equation (9) in class I where n ≡ 1 (mod 4).

When n = 1, we have U1 = 2. This gives a2 = 0 which is inadmissible. Next, when n = 5,

we have U5 = 335522. From this we get a2 = 22368. By means of (3) we obtain k = 63169,

a1 = 8542, a3 = 58560, a4 = 153314, a5 = 401380, . . .. Thus we obtain Diophantine quadruples

{a2, a3, a4, a5} with a2 : a3 = a4 : a5 from the solutions Un +Vn

p
5 of the equation (9) for all

n ≡ 1 (mod 4), n > 1.

Class II

Next we take up the solutions Un +Vn

p
5 of the equation (9) in class II where n ≡ 2 (mod 4).

When n = 2, we get U2 = 152. From this we have k = 29, a1 = 2, a2 = 10, a3 = 26, a4 = 70,

a5 = 182, . . .. Next, when n = 6, we get U6 = 15762392 implying k = 2967581, a1 = 401378,

a2 = 1050826, a3 = 2751098, a4 = 7202470, a5 = 18856310, . . .. Thus we obtain Diophantine

quadruples {a2, a3, a4, a5} with a2 : a3 = a4 : a5 from the solutions Un +Vn

p
5 of the equation

(9) for all n ≡ 2 (mod 4).

Class III

Now we consider the solutions Un +Vn

p
5 of the equation (9) in class III where n ≡ 3 (mod

4). When n = 3, we have U3 = 7142. This gives k = 1345, a1 = 180, a2 = 476, a3 = 1246,
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a4 = 3264, a5 = 8544, . . .. Next, when n = 7, we obtain U7 = 740496902. This furnishes the

values k = 139413121, a1 = 18856308, a2 = 49366460, a3 = 129243070, a4 = 338362752, a5 =
885845184, . . .. Thus we get Diophantine quadruples {a2, a3, a4, a5} with a2 : a3 = a4 : a5 from

the solutions Un +Vn

p
5 of the equation (9) for all n ≡ 3 (mod 4).

Case 2. m > 1. In this case, we employ (3) in (5) and obtain a relation involving a1 and a2.

Treating this relation as a quadratic in a2, we solve for integral values of a2, following the

same procedure as in the preceding discussion We illustrate the case of m = 2. When m = 2,

the equation (5) is got as

3a2
5 −9a4a5 +2a5 +3a2

4 −4a4 = 0.

Using (3), this equation is transformed as

3a2
2 −9a1a2 −74a2 +3a2

1 +32a1 +40 = 0. (11)

Treating this as a quadratic equation in a2, we get

a2 =
9a1 +74±

√

45a2
1 +948a1 +4996

3
. (12)

This implies that the expression 45a2
1 +948a1 +4996 shall be a square and

6 | 9a1 +74±
√

45a2
1 +948a1 +4996.

Taking 45a2
1 +948a1 +4996 = γ2, we are led to the Pell’s equation

U 2 −5V 2 =−16 (13)

where U = 15a1 +158 and V = γ. We have already considered this Pell’s equation in Section

4. We assert that the negative sign cannot hold in (12). As in the preceding discussion, we

obtain an infinite number of Diophantine quadruples {a4, a5, a6, a7} with a4 : a5 = a6 : a7 from

each class of solutions Un +Vn

p
5 of the equation (13). For example, we have k = 63169,

a4 = 22368, a5 = 58560, a6 = 153314, a7 = 401380 from class I, k = 2967581, a4 = 1050826,

a5 = 2751098, a6 = 7202470, a7 = 18856310 from class II and k = 1345, a4 = 476, a5 = 1246,

a6 = 3264, a7 = 8544 from class III.

When m > 2, we are led to the same Pell’s equation (13) with changes in the expressions for U

and V in terms of a1.
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