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ON SOME INEQUALITIES OF
CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE
AND APPLICATIONS

S.S. DRAGOMIR AND A. SOFO

Abstract. Some discrete inequalities of Cauchy-Bunyakovsky-Schwarz type for complex numbers with applications
for the maximal deviation of a sequence from its weighted mean are given.

1. Introduction

The following result for complex numbers ay, by, k € {1,..., n} is well known in the litera-
ture as the Cauchy-Bunyakovsky-Schwarz (CBS) inequality:
R 2 v 2
=Y 1l Y in (L.1)
k=1 k=1

n
Y apby
k=1

with equality if and only if there is a complex number ¢ € C such that a; = cby. for each k €
{1,...,n}, and b_k is the complex conjugate of by.

A simple proof of this statement can be achieved by utilising the following Lagrange iden-
tity for complex numbers (see [2, p. 3])

n ) n ) n 2 1 A . 2
> lakl* Y |bkl —| Y akbk‘ == |dkbl—ﬂlbk| .
k=1 k=1 k=1 2K
If pr, k€ {1,..., n} are positive weights, then the weighted version of (1.1) can be stated as

:

n n n
Y prakbe| <Y pelacl® Y prlbil*. (1.2)
k=1 k=1 k=1
In [4], the following result connecting the unweighted version of the (CBS) inequality with
the weighted one has been established (see also [2, p. 67-69]):

n n 1 n
(Z A kalz)2 —‘ Y xkyk|
k=1 k=1 k=1
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n n

2 2

= sup {Zpkle > prlyel® -
peS,(1) k=1 k=1

n
Y pkxkyk(}, (1.3)
k=1

where S;,(1) ={p= (p1,..., pn)I0 < pp < 1foreach ke{l,...,n}}.
In the same paper the authors also established the following result concerning the length
of summation in the CBS inequality:

n n 1 n
(Z pk|Xk|2 Z pk|yk|2)2 —| Z pkxkyk‘
k=1 k=1 k=1

1 n
= sup (X Pk|xk|zzpk|J’k|2)2_|Zpkka’k|] (1.4)
IeQl,..,n} L N ker kel k=1
and
n n % n
(ZpklkuZZPli’klz) - Zpkxk.)’k‘
k=1 k=1 k=1
1 1
= max { pk|xk|2+Pl|xl|2]2[Pk|Yk|2+pl|J’l|2 2—kaxkyk+Plxlyl|}, (1.5)
1<k<l<n

forany x, yr €C, kefl,...,n}.

For some historical facts on CBS inequality, see [9] and [2]. Refinements of this inequality
are provided in [1], [6], [8] and in the Chapter 2 of [2]. Other results related to CBS inequality
may be found in [5] and [7].

The aim of the present paper is to establish some inequalities of CBS type under the sup-
plementary assumption that either Y¥.}'_, xxyx = 0 or 7!_, prxiyx = 0, when the weighted
version is considered. Applications that provide upper bounds for the maximal deviation of a
sequence xj from the weighted mean . ;.’:1 pjxj, namely, for the quantity

max
kefl,...,n}

n
xk—ijxj‘, (1.6)
=1

where xx €C, px =20, ke {l,...,n}, ZZ:I pr =1, are also given.

2. The Results
The following result holds:

Theorem 1. Let ay, by € C, k€ {1,...,n}, n =2 with the property that
n
Y agb=0. 2.1)
k=1
Then

L& I, 2\
max ilaibi) = 5( X laif’) (2 1bi) 2.2)

iefl,...,
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The constant % in (2.2) is best possible in the sense that it cannot be replaced by a smaller con-

stant.

Proof. Forany i € {1,...,n}, we have

n
a,‘bi = - Z akbk. (2.3)
k=1
k#i
Taking the modulus in (2.3) we have
1 1
2 2
n n n
laibil = | Y arbi| < | Y lael | | X bl
k=1 k=1 k=1
k#i k#i k#i
= (X 1ak-1ai?)’ (X 1o - 1bi) 2.4)
k=1 k=1

forany i € {1,..., n}, where we used the Cauchy-Bunyakovsky-Schwarz inequality to state the
required inequality in (2.4).
Utilising the elementary inequality for real numbers

(@ - P22 (> - 6%)7 < ay - B,

provided a, B,y,6 >0 and a = 8, y = §, we have
"l | ~|2% " lbel? il
(X 1wl =lauf?) (X 104k - 104F)
1 1 1
(1) -t (£ )] -
n ) n :
s(k;mkﬁ) (k;wkﬁ) ~laibil, 2.5)

foreachie{l,...,n}.
Now, on making use of (2.4) and (2.5) we get the desired inequality (2.2).
To prove the sharpness of the constant, we assume that the inequality (2.2) holds true for

Nl

Nl—
Nl—

aconstant C> 0, i.e.,
1l n 1
2 2
|ak|2) (Z|bk|2) : (2.6)
k=1

provided ay, by, k€ {1,...,n} (n=2) are complex numbers such that ZZ:1 aiby =0.
Now, for n =2, choose a; = a, a» = —b, by = b, bp = —awith a,b> 0. Then a; b1 + a, b, =0,
la1b1| = |azb2| = ab and by (2.6) we get

n
max |a;b;| < C(
i€ll,...,n} =1

ab<C(@®+b%) for a,b>0. 2.7)
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Choosingin (2.7) a= b =1, we deduce C = % and the proofis complete.

The following corollary is of interest.

Corollary 1. Let x; € C, k€ {1,...,n} and py, k € {1,...,n} be a probability sequence, i.e.,
prk=0,kefl,...,nt and ¥} _, px = 1. Then we have the inequality:

s (oS |

ie{l,...,n}

IA
N
—_—
M=
=
=N
—
Nl
—_—
=~
N

Nl=

(ixk)(jilpjx_j)” : (2.8)

n ) % n ) n 2
- —(Z pk) { > Ixgl +n| > pjxj| —2Re
= k=1 j=1 k=1
Proof. If we choose ay = py, by := Xy — Z}Ll pjxj, then

n n n
kz ayby = kz Pk(xk - Z P]xj)
=1 =1 j=1

and the condition (2.1) is satisfied.
Applying the inequality (2.2), we obtain

IA
—_—

i M=
=
Eaull\S]
SN————

D=

—_——

i M:s

l

ip;x]| )

kel
™M=

- %(glpi)%(éwz_me( xk']z:pjx_j)‘Fn

and the inequality (2.8) is obtained.

Remark 1. If min;eqy,  n pi = pm > 0, then from (2.8) we can obtain a coarser and perhaps
more useful inequality, providing some upper bounds for the maximal deviation of x; from

the weighted mean 27=1 p;jXj, namely,

n

1 1
kellon) i ‘ %(ipk)é(k_l xk—épjxj‘z)z- (2.9)

The following weighted version of Theorem 1 may be stated as well:
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Theorem 2. Let xi, yx €C, k€ {1,...,n} and py, k € {1,...,n} be a probability sequence with
the property that

n
Y prxkyi=0. 2.10)
k=1
Then
3 N
jmax {pilxiyilt = 5 (Z pk|xk|2) (Zpklykl ) 2.11)

.....

The constant % in (2.11) is best possible in (2.11).
Proof. It follows from Theorem 1 on choosing ay = /Px Xk, bx = /Pk Vk-

Remark 2. One should notice that Theorem 1 and Theorem 2 are equivalent in the sense
that one implies the other.

The above result provides the opportunity to obtain a different bound for the maximal
deviation of xj from the weighted mean.

Corollary 2. With the assumptions in Corollary 1, we have the inequality:

max x
i€l {P; !

n 1( 2 n N3
—Zlﬂjxf|} = E(antxk—mejl )
j=1 k=1 j=1

1
2

=3 Z pelxel? —( Zp]x]| (2.12)
k=1
Proof. Follows by Theorem 2 on choosing yx =1, ke {1,...,n}.
Remark 3. If min;eqy,. 3 pi = pm >0, then
1
1 1 2
Joax xk—Zp]x]| Z—(Zpk|xk—2p]x]| ) . (2.13)

j=
Remark 4. It is natural to ask which of the bounds for the maximal deviation

n
{pl|xl ijxj|}
Jj=1

l€{l .....

provided by (2.8) and (2.12) are better and when, respectively?
Forn=2let py =p, p2o=1-p, pel0,1], x1 = x, X2 = y, then we have the specific case of

1 1 1
Bi(p,x,y) = 5[p2+(1—p)2]2 [(x—px—(1—p)y)z+(y—px—(1—;n)y)2 ‘

1 1
= 5[p2+(1—p)2] : [(l—p)z(x—y)2+p2(x—y)2 :



296 S.S. DRAGOMIR AND A. SOFO

_ 1 2 2
= 5[+ a-pr)ix-y
and
1 2 2 %
Bz(p,x,y:=5[p(x—px—(1—p)y) +(A-p)(y—px—1-p)y)
1 1
= E[p(l—p)z(x—y)2+(1—p)p2(x—y)2 ’

1
= —-vpad-plx-yl

2

Since p? + (1 - p)? = \/p(1—p) for p € [0,1], we have that the bound (2.12) is always better
than (2.8) for n = 2.

Remark 5. Forn=3, p1=p, p2=4q, p3 =71, X1 = X, X2 = ¥, X3 = Z, we should compare the
bounds

_loo o ol )
BI(P»Q»r;x;y;Z)—Z(P +q +r )ZX p(x px qy rZ)
1

+q(y—px—qy— rz)2 +r(z—px—qy-— rz)2 2
and

px—px—qy—rz)*+q(y-px—qy—-rz)°
1
+r(z—px—qy—rz)2 ‘)

By(p,q,1,x,y,2) =

DN~

The plot of the function
A(0.1,0.5,0.4,x,y,—4) = B1(0.1,0.5,0.4, x, y,—4) — B2 (0.1,0.5,0.4, x, y, —4)
on the box [0, 6] x [8,10] shows that one bound is not always better the other (see Figure 1):

Remark 6. In the case of uniform distribution, i.e., when p; = %, ie{l,...,n}, we obtain
from both inequalities (2.8) and (2.12) the same result:

1 i 1\/_i 1 i 2
max |xp—— xj|s— n |xk__ xj‘
kell,...n} nis 2 & nj=1
. :
= 1ny il _‘Zxk‘ _ (2.14)
21 o k=1

3. Related Results

The following result may be stated as well.
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Figure 1. Plot of the difference A(0.1,0.5,0.4, x, y,—4) showing a transition from positive to
negative.

Theorem 3. Let ay, by € C\{0}, k€ {1,...,n} sothat Y.7!_| ayby = 0. Then for any probability
sequence pi, k€ {1,...,n}, we have:

27:1Pj|aj|2+2j=1pj|bj|2< 3.1)
T N T '

Proof. We know, from the proof of Theorem 1, that
2 - 2 2)\( v 2 2
jaibil? < (X law? ~1ail?)( X 1bel* - 1:P?)
k=1 k=1
- 2 v 2 2712 2 v 2 2 v 2
= Y laxl? Y bl +1ailPIbil? = 1ai? Y b = 1bi 2 Y lal?,
k=1 k=1 k=1 k=1
which is clearly equivalent with
2 v 2 2 v 2_ v 2 v 2
lail? Y bl 4152 Y larl? < Y la? Y 1bgl 3.2)
k=1 k=1 k=1 k=1

foreachie{l,...,n}.

Now, if we multiply (3.2) by p; = 0 and sum over i € {1, ..., n}, we deduce:

n n n n n n
Y pilail® Y 1beP+ Y pilbil* Y larl* < Y lar* Y bl 3.3)
i=1 k=1 i=1 k=1 k=1 k=1
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which is clearly equivalent with (3.1).

Corollary 3. With the assumptions of the above theorem, we have:

Y pilail* Y pilbil? ZZ
i=1 i=1 =1

|biel?. (3.4)

1M§

The constant i is best possible in (3.4).

Proof. On utilising the inequality a? + % = 2ap, a, f € R,, we have

n n n n
Y pilail? Y Ibil*+ Y pjlbil? Z |ay|*
j=1 k=1 j=1 k=1

Nl=

n n 1
—Z(Zpﬂaﬂzzpﬂbﬂz)z(zIakl Zlbkl ). (3.5)
j=1 j=1

Now, by (3.3) and (3.5) we deduce the desired inequality (3.4).
To prove the sharpness of the constant, we assume that (3.4) holds true witha D >0, i.e.,

n n n n
Y pjlaj* Y pilbil* <D Y laxl* Y Ibil?,
j=1 j=1 k=1 k=1

provided Y.}, axby =0, n=2.
For n =2, we choose a; =a, a =-b, by =b, b =—aand p; = p, po =1— p to get:

pa2+(1—p)b2][pb2+(1—p)a2]sD[a2+b2]2. (3.6)
Ifin (3.6) we choose p = %, then we get
i(a2 +b%)?% < D(a® + b*)?,
which shows that D = %.

Corollary4. Let x; €C, ke {l,...,n} and py, k€ {1,...,n} be a probability sequence. Then:

n ) n 2 n n 2
Y prlxl _|Zpkxk‘ = ij‘xj_zplxl|
k=1 k=1 j=1 =

1 Xp,p Pi
= 3
4 YiaPrk

:

n
xk - Z pixi
=1

Proof. It is obvious by (3.4) on choosing ay = py and by = x —Z;l:l pix;, kell,..., nh.

The following result that provides a refinement of Theorem 2 should be noted.
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Theorem 4. Let xi, yx €C, k€ {1,...,n} and py, k € {1,...,n} be a probability sequence with
the property that

n
PiXk Yk =0. (3.7
k=1

Then

.....

n n
_max [Pi|xi|2 Y pelyrl? + pilyil? X Pk|xk|2]
i€ n} k=1 k=1

1 ,...,
= E n n 1
( Y prlxl? X Pk|.Vk|2)2
k=1 k=1
1 (& L 3
= 3 ( Y pelxel? Y Pk|)’k|2) . (3.8)
k=1 k=1

Proof. As in the proof of Theorem 1, we have

Nl
Nl—

n n
Pi|xiyl‘|5(Zpk|xk|2—l9i|xi|2) (Zpk|Yk|2_Pi|J’i|2) )
k=1 k=1

which gives

n n
plxiyil® < (Z Pk|xk|2_Pi|xi|2)(Z Pk|)’k|2—Pi|yl‘|2)
= k=1

1

n n n n
Y prlxl® Y pelyil® + p2lxiPlyil? = pilxil? Y prlyel? = pilyil® Y. prlxel?,
k=1 k=1 k=1 k=1

ie., . . . .
pilxil® 3 pilyel® + pilyil® 3 pelxel® < 3 prlxl® Y prlyel® 3.9)
k=1 k=1 k=1 k=1
foreachie{l,...,n}.
Taking the maximum in (3.9) over i € {1,..., n}, we get the second inequality in (3.8).
The first inequality follows by the elementary fact that

n n
pilxil® Y prlyel? + pilyil® Y. pelxl®
k=1 k=1
n 1l n
22pi|xi||.)’i|( Pklxklz)z(ZPli/Hz) )
k=1 k=1

Nl

foreachie{l,...,n}.

Remark 7. The inequality (3.8) is obviously a refinement of the inequality (2.11) in Theo-
rem 2. However, the inequality (3.8) is not apparently useful in deriving upper bounds for the
maximal deviation of xj from its weighted mean 27:1 pjXxj, as the inequality (2.11).
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