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ON SOME INEQUALITIES OF

CAUCHY-BUNYAKOVSKY-SCHWARZ TYPE

AND APPLICATIONS

S. S. DRAGOMIR AND A. SOFO

Abstract. Some discrete inequalities of Cauchy-Bunyakovsky-Schwarz type for complex numbers with applications

for the maximal deviation of a sequence from its weighted mean are given.

1. Introduction

The following result for complex numbers ak , bk , k ∈ {1, . . . ,n} is well known in the litera-

ture as the Cauchy-Bunyakovsky-Schwarz (CBS) inequality:
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with equality if and only if there is a complex number c ∈ C such that ak = cbk for each k ∈
{1, . . . ,n}, and bk is the complex conjugate of bk .

A simple proof of this statement can be achieved by utilising the following Lagrange iden-

tity for complex numbers (see [2, p. 3])
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If pk , k ∈ {1, . . . ,n} are positive weights, then the weighted version of (1.1) can be stated as
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In [4], the following result connecting the unweighted version of the (CBS) inequality with

the weighted one has been established (see also [2, p. 67-69]):
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= sup
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, (1.3)

where Sn(1)= {p = (p1, . . . , pn)|0 ≤ pk ≤ 1 for each k ∈ {1, . . . ,n}}.

In the same paper the authors also established the following result concerning the length

of summation in the CBS inequality:
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, (1.5)

for any xk , yk ∈C, k ∈ {1, . . . ,n}.

For some historical facts on CBS inequality, see [9] and [2]. Refinements of this inequality

are provided in [1], [6], [8] and in the Chapter 2 of [2]. Other results related to CBS inequality

may be found in [5] and [7].

The aim of the present paper is to establish some inequalities of CBS type under the sup-

plementary assumption that either
∑n

k=1
xk yk = 0 or

∑n
k=1

pk xk yk = 0, when the weighted

version is considered. Applications that provide upper bounds for the maximal deviation of a

sequence xk from the weighted mean
∑n

j=1 p j x j , namely, for the quantity
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where xk ∈C, pk ≥ 0, k ∈ {1, . . . ,n},
∑n

k=1
pk = 1, are also given.

2. The Results

The following result holds:

Theorem 1. Let ak ,bk ∈C, k ∈ {1, . . . ,n}, n ≥ 2 with the property that
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The constant 1
2

in (2.2) is best possible in the sense that it cannot be replaced by a smaller con-

stant.

Proof. For any i ∈ {1, . . . ,n}, we have
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ak bk . (2.3)

Taking the modulus in (2.3) we have
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for any i ∈ {1, . . . ,n}, where we used the Cauchy-Bunyakovsky-Schwarz inequality to state the

required inequality in (2.4).

Utilising the elementary inequality for real numbers
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1
2 (γ2 −δ2)

1
2 ≤αγ−βδ,

provided α,β,γ,δ> 0 and α≥β, γ≥ δ, we have
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for each i ∈ {1, . . . ,n}.

Now, on making use of (2.4) and (2.5) we get the desired inequality (2.2).

To prove the sharpness of the constant, we assume that the inequality (2.2) holds true for

a constant C > 0, i.e.,

max
i∈{1,...,n}
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( n

∑

k=1

|ak |2
)

1
2
( n

∑

k=1

|bk |2
)

1
2
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provided ak , bk , k ∈ {1, . . . ,n} (n ≥ 2) are complex numbers such that
∑n

k=1
ak bk = 0.

Now, for n = 2, choose a1 = a, a2 =−b, b1 = b, b2 =−a with a,b > 0. Then a1b1 +a2b2 = 0,

|a1b1| = |a2b2| = ab and by (2.6) we get

ab ≤C (a2 +b2) for a,b > 0. (2.7)
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Choosing in (2.7) a = b = 1, we deduce C ≥ 1
2

and the proof is complete.

The following corollary is of interest.

Corollary 1. Let xk ∈ C, k ∈ {1, . . . ,n} and pk , k ∈ {1, . . . ,n} be a probability sequence, i.e.,

pk ≥ 0, k ∈ {1, . . . ,n} and
∑n

k=1
pk = 1. Then we have the inequality:
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Proof. If we choose ak = pk , bk := xk −
∑n

j=1 p j x j , then
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Applying the inequality (2.2), we obtain
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and the inequality (2.8) is obtained.

Remark 1. If mini∈{1,...,n} pi = pm > 0, then from (2.8) we can obtain a coarser and perhaps

more useful inequality, providing some upper bounds for the maximal deviation of xk from

the weighted mean
∑n

j=1
p j x j , namely,
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The following weighted version of Theorem 1 may be stated as well:
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Theorem 2. Let xk , yk ∈C, k ∈ {1, . . . ,n} and pk , k ∈ {1, . . . ,n} be a probability sequence with

the property that
n
∑

k=1

pk xk yk = 0. (2.10)

Then
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The constant 1
2

in (2.11) is best possible in (2.11).

Proof. It follows from Theorem 1 on choosing ak =p
pk xk , bk =p

pk yk .

Remark 2. One should notice that Theorem 1 and Theorem 2 are equivalent in the sense

that one implies the other.

The above result provides the opportunity to obtain a different bound for the maximal

deviation of xk from the weighted mean.

Corollary 2. With the assumptions in Corollary 1, we have the inequality:
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Proof. Follows by Theorem 2 on choosing yk = 1, k ∈ {1, . . . ,n}.

Remark 3. If mini∈{1,...,n} pi = pm > 0, then
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Remark 4. It is natural to ask which of the bounds for the maximal deviation
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provided by (2.8) and (2.12) are better and when, respectively?

For n = 2, let p1 = p, p2 = 1−p, p ∈ [0,1], x1 = x, x2 = y , then we have the specific case of

B1(p, x, y) :=
1

2

[

p2 + (1−p)2
] 1

2
[

(x −px − (1−p)y)2 + (y −px − (1−p)y)2
] 1

2

=
1

2

[

p2 + (1−p)2
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2
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2
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=
1

2
·
[

p2 + (1−p)2
]

|x − y |

and

B2(p, x, y :=
1
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[

p(x −px − (1−p)y)2 + (1−p)(y −px − (1−p)y)2
] 1

2

=
1

2

[

p(1−p)2(x − y)2 + (1−p)p2(x − y)2
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·
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Since p2 + (1− p)2 ≥
√

p(1−p) for p ∈ [0,1], we have that the bound (2.12) is always better

than (2.8) for n = 2.

Remark 5. For n = 3, p1 = p, p2 = q , p3 = r , x1 = x, x2 = y , x3 = z, we should compare the

bounds

B1(p, q,r, x, y, z) =
1

2
(p2 +q2 + r 2)

1
2 ×

[

p(x −px −q y − r z)2

+q(y −px −q y − r z)2 + r (z −px −q y − r z)2
] 1

2
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1

2

[

p(x −px −q y − r z)2 +q(y −px −q y − r z)2

+r (z −px −q y − r z)2
] 1

2
.

The plot of the function

∆(0.1,0.5,0.4, x, y,−4) = B1(0.1,0.5,0.4, x, y,−4)−B2 (0.1,0.5,0.4, x, y,−4)

on the box [0,6]× [8,10] shows that one bound is not always better the other (see Figure 1):

Remark 6. In the case of uniform distribution, i.e., when pi = 1
n , i ∈ {1, . . . ,n}, we obtain

from both inequalities (2.8) and (2.12) the same result:

max
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∣
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∣
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1
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p
n
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k=1

∣

∣

∣xk −
1

n

n
∑

j=1

x j

∣

∣

∣

2

=
1

2

[

n
n
∑

k=1

|xk |2 −
∣

∣

∣
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∑
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∣

∣

∣

2
]

1
2

. (2.14)

3. Related Results

The following result may be stated as well.
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Figure 1. Plot of the difference ∆(0.1,0.5,0.4, x, y,−4) showing a transition from positive to

negative.

Theorem 3. Let ak ,bk ∈C\{0}, k ∈ {1, . . . ,n} so that
∑n

k=1
ak bk = 0. Then for any probability

sequence pk , k ∈ {1, . . . ,n}, we have:

∑n
j=1 p j |a j |2

∑n
k=1

|ak |2
+

∑n
j=1 p j |b j |2

∑n
k=1

|bk |2
≤ 1. (3.1)

Proof. We know, from the proof of Theorem 1, that

|ai bi |2 ≤
( n

∑

k=1

|ak |2 −|ai |2
)( n

∑

k=1

|bk |2 −|bi |2
)

=
n
∑

k=1

|ak |2
n
∑

k=1

|bk |2 +|ai |2|bi |2 −|ai |2
n
∑

k=1

|bk |2 −|bi |2
n
∑

k=1

|ak |2,

which is clearly equivalent with

|ai |2
n
∑

k=1

|bk |2 +|bi |2
n
∑

k=1

|ak |2 ≤
n
∑

k=1

|ak |2
n
∑

k=1

|bk |2 (3.2)

for each i ∈ {1, . . . ,n}.

Now, if we multiply (3.2) by pi ≥ 0 and sum over i ∈ {1, . . . ,n}, we deduce:

n
∑

i=1

pi |ai |2
n
∑

k=1

|bk |2 +
n
∑

i=1

pi |bi |2
n
∑

k=1

|ak |2 ≤
n
∑

k=1

|ak |2
n
∑

k=1

|bk |2 (3.3)
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which is clearly equivalent with (3.1).

Corollary 3. With the assumptions of the above theorem, we have:

n
∑

i=1

pi |ai |2
n
∑

i=1

pi |bi |2 ≤
1

4

n
∑

k=1

|ak |2
n
∑

k=1

|bk |2. (3.4)

The constant 1
4 is best possible in (3.4).

Proof. On utilising the inequality α2 +β2 ≥ 2αβ, α,β ∈R+, we have

n
∑

j=1

p j |a j |2
n
∑

k=1

|bk |2 +
n
∑

j=1

p j |b j |2
n
∑

k=1

|ak |2

≥ 2
( n
∑

j=1

p j |a j |2
n
∑

j=1

p j |b j |2
)

1
2
( n

∑

k=1

|ak |2
n
∑

k=1

|bk |2
)

1
2

. (3.5)

Now, by (3.3) and (3.5) we deduce the desired inequality (3.4).

To prove the sharpness of the constant, we assume that (3.4) holds true with a D > 0, i.e.,

n
∑

j=1

p j |a j |2
n
∑

j=1

p j |b j |2 ≤ D
n
∑

k=1

|ak |2
n
∑

k=1

|bk |2,

provided
∑n

k=1
ak bk = 0, n ≥ 2.

For n = 2, we choose a1 = a, a2 =−b, b1 = b, b2 =−a and p1 = p, p2 = 1−p to get:

[

pa2 + (1−p)b2
][

pb2 + (1−p)a2
]

≤ D
[

a2 +b2
]2

. (3.6)

If in (3.6) we choose p = 1
2

, then we get

1

4
(a2 +b2)2 ≤ D(a2 +b2)2,

which shows that D ≥ 1
4 .

Corollary 4. Let xk ∈C, k ∈ {1, . . . ,n} and pk , k ∈ {1, . . . ,n} be a probability sequence. Then:

n
∑

k=1

pk |xk |2 −
∣

∣

∣

n
∑

k=1

pk xk

∣

∣

∣

2

=
n
∑

j=1

p j

∣

∣

∣x j −
n
∑

l=1

pl xl

∣

∣

∣

2

≤
1

4
·
∑n

k=1
p2

k
∑n

k=1
p3

k

n
∑

k=1

∣

∣

∣xk −
n
∑

l=1

pl xl

∣

∣

∣

2

.

Proof. It is obvious by (3.4) on choosing ak = pk and bk = xk −
∑n

l=1
pl xl , k ∈ {1, . . . ,n}.

The following result that provides a refinement of Theorem 2 should be noted.
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Theorem 4. Let xk , yk ∈C, k ∈ {1, . . . ,n} and pk , k ∈ {1, . . . ,n} be a probability sequence with

the property that
n
∑

k=1

pk xk yk = 0. (3.7)

Then

max
i∈{1,...,n}

{pi |xi yi |}

≤
1

2
·

max
i∈{1,...,n}

[

pi |xi |2
n
∑

k=1
pk |yk |2 +pi |yi |2

n
∑

k=1
pk |xk |2

]

( n
∑

k=1
pk |xk |2

n
∑

k=1
pk |yk |2

) 1
2

≤
1

2
·
( n

∑

k=1

pk |xk |2
n
∑

k=1

pk |yk |2
)

1
2

. (3.8)

Proof. As in the proof of Theorem 1, we have

pi |xi yi | ≤
( n

∑

k=1

pk |xk |2 −pi |xi |2
)

1
2
( n

∑

k=1

pk |yk |2 −pi |yi |2
)

1
2

,

which gives

p2
i |xi yi |2 ≤

( n
∑

k=1

pk |xk |2 −pi |xi |2
)( n

∑

k=1

pk |yk |2 −pi |yi |2
)

=
n
∑

k=1

pk |xk |2
n
∑

k=1

pk |yk |2 +p2
i |xi |2|yi |2 −pi |xi |2

n
∑

k=1

pk |yk |2 −pi |yi |2
n
∑

k=1

pk |xk |2,

i.e.,

pi |xi |2
n
∑

k=1

pk |yk |2 +pi |yi |2
n
∑

k=1

pk |xk |2 ≤
n
∑

k=1

pk |xk |2
n
∑

k=1

pk |yk |2 (3.9)

for each i ∈ {1, . . . ,n}.

Taking the maximum in (3.9) over i ∈ {1, . . . ,n}, we get the second inequality in (3.8).

The first inequality follows by the elementary fact that

pi |xi |2
n
∑

k=1

pk |yk |2 +pi |yi |2
n
∑

k=1

pk |xk |2

≥ 2pi |xi ||yi |
( n

∑

k=1

pk |xk |2
)

1
2
( n

∑

k=1

pk |yk |2
)

1
2

,

for each i ∈ {1, . . . ,n}.

Remark 7. The inequality (3.8) is obviously a refinement of the inequality (2.11) in Theo-

rem 2. However, the inequality (3.8) is not apparently useful in deriving upper bounds for the

maximal deviation of xk from its weighted mean
∑n

j=1
p j x j , as the inequality (2.11).
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