TAMKANG JOURNAL OF MATHEMATICS
Volume 35, Number 3, Autumn 2004

ON 6-PERFECT FUNCTIONS

C. K. BASU

Abstract. §-continuous [6] and §-perfect [5] functions are both introduced by T. Noiri in the
similar fashion as continuous and perfect functions. The purpose of the present paper is to inves-
tigate several properties of §-perfect functions and also to determine some topological properties

which are preserved by §-continuous §-perfect functions.

1. Introduction

purpose of this paper is to investigate certain properties of d-perfect functions specially,
in addition, when the function is also -continuous. We start this discussion with a new
characterization of §-perfect functions. A new class of functions under the terminology
N-compact function are defined and investigated w.r.t. their relationship with J-perfect
functions; further, we have established that for a J-continuous function, the concepts
of d-perfectness and N-compactness are identical when the range space is locally nearly
compact and Hausdorff. Preservation of certain topological properties by d-perfect -
continuous functions are also investigated.

Throughout this paper, by X or Y we shall mean topological spaces. A set A is called
regular open if A = int (cl A) and regular closed if A = cl(int A). The collection of all
regular open sets containing the point = of X is denoted by RO(x). A point z is said to
be in the d-closure [12] of a subset A of X, denoted by d-cl A, if for every U € RO(x),
UNA # & Ais é-closed if A =0 —clA. The complement of -closed set is called
d-open. A subset A of X is said to be an NC-set [1] if every regular open cover of A has
a finite subcover. If A = X and A is an NC-set, then X is called a nearly compact space
[10]. A space X is said to be locally nearly compact [1] if for each point = of X, there
exists a neighbourhood U of x such that clU is an NC-set in X. A function f: X —- Y
is said to be d-continuous [6] if for each € X and each V € RO(f(x)), there exist a
U € RO(z) such that f(U) C V. A function f : X — Y is said to be §-perfect [5] if for
every filter base S in f(X) d-converging to y € Y, f~1(3) is d-directed towards f~1(y).
Equivalently f is d-perfect iff point inverses are NC-sets in X and f is d-closed i.e. images
of every d-closed sets in X is d-closed in Y [5]. A space X is said to be almost regular
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[9] if for each regular closed set F C X and each x ¢ F, there exist disjoint open sets U
and V in X such that z € U and F C V. For a space (X, T), the collection of all regular
open sets of (X,T) forms a basis for the topology Ts. The space (X,Ts) is called the
semiregularization space of (X, T).

2. 6-Continuous d-Perfect Functions

Theorem 2.1. For a function F': X — Y, where Y is Hausdorff, the following are
equivalent:
(i) f is 0-perfect,
(i) for each y €Y, f~1(y) is a 6-closed subset of X, and if U is a §-open cover of X
that is closed under finite unions, then {Y — f[X — U] : U € U} is a d-open cover
of Y.

Proof. The proof is similar to the proof of Theorem 1.8 (¢) [7] and is thus omitted.

Lemma 2.2. [5] If f : X — Y is a §-perfect function, then f~1(K) is an NC-set in
X for every NC-set K of Y.

Theorem 2.3. A composition of §-perfect functions is d-perfect.

Proof. Since the composition of d-closed function is d-closed, the proof follows from
the Lemma 2.2.

Definition 2.4. Let f: X — Y and g : X — Z be two functions. The function
F: X — Y x Z defined by F(z) = (f(z),g(z)) for each x € X, is called the Diagonal
product of f and g.

Theorem 2.5. Let f : X — Y and g : X — Z (where Z is Hausdorff) be §-perfect
and d-continuous functions respectively and also let both be surjective. Then the set
{(f(x),9(x)) : x € X} is d-closed inY x Z.

Proof. Let (y,2) € {(f(z),g(z)) : v € X} = F(X) (say) where y € Y and z € Z
ie. f7(y)Ng 1(2) = ¢. This implies that z ¢ gf(y). Since gf *(y) is an NC-set
in the Hausdorff space Z, there exist disjoint regular open sets U and V in Z such that
z€ U and gf (y) C V. Since f is §-closed and f~1(y) C g~ 1(V), there exists a regular
open set V;, in Y containing y such that f~*(V,) c g7 (V). So gf~*(V,) C V. Therefore
UNngf=(V,) =¢ie g 1 (U)Nf1(V,) = ¢. Now V,, x U is a regular open set in Y x Z
containing the point (y, z) disjoint from F(X).

Theorem 2.6. If f : X — Y is d-perfect and g : X — Z is §-continuous, where X,
Z are Hausdorff spaces, then the diagonal product of f and g is §-perfect.

where F': X — Y x Z is the diagonal product of f and

Proof. Let (y,2) € F(X),
= f~(y) Ng71(z). Since Z is Hausdorff, it is clear that every

g. We have F~1(y,2) = f
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one pointic set is d-closed and since g is §-continuous, g~1(z) is d-closed in X. As f is
S-perfect, f~1(y) is an NC-set in the Hausdorff space X and hence it is d-closed in X.
Therefore F~1(y,2) = f~(y) N g~!(z) is d-closed in X and is contained in the NC-set
fY(y). So F~(y, 2) is an NC-set. Next we shall show that F': X — F(X) is a é-closed
function. Let A be any d-closed subset of X. To show F(A) is §-closed it is sufficient to
show that for any point 2* & A, either (1) F(z*) € F(A) or (2) there is a regular open set
in Y x Z of the point F(z*) which does not meet F'(A4). Let y* = f(2*) and z* = g(z*)
and D = f~Y(y*), E=DNAand G = g(E). If g(z*) € G, then g(z*) = g(x1) for
some z1 € E. Then F(z*) = (f(z*),g(z*)) = (f(z1),9(x1)) = F(x1) € F(A). Thus (1)
is valid. Now suppose that g(z*) ¢ G. Since g is d-continuous and E is an NC-set, by
Lemma 5.7 of T. Noiri [6], g(E) = G is an NC-set in the Hausdorff space Z. There exist
disjoint regular open sets V* and U* in Z such that g(z*) € V* and G C U*. The set
U=g 1 U*)U(X — A) is 6-open in X and f~1(y*) C U. Since f is é-closed function,
there exists a regular open set V7 in Y containing y* such that f’l(Vy*) C U. The set
V) x V* is a regular open set in Y x Z containing F'(z*) = (f(2*), g(z*)) = (y*, g(z")).
We claim that (V" x V*) N F(A) = ¢. In fact, if for some z € A, F(z) N (V" x V*) # ¢
then f(z) € V; and g(z) € V*. f(z) € V; implies z € U and g(z) € V* implies z ¢ U
— a contradiction. Hence the proof.

Definition 2.7. A function f : X — Y is said to be N-compact if f~!(K) is an
NC-set in X whenever K is an NC-set in Y.

Remark 2.8. Clearly by Lemma 2.2, every d-perfect function is N-compact but that
the converse is not true follows from the following example.

Example 2.9. Consider the identity function i : (N,T1) — (N,T»), where N is
the set of naturals, T} is the discrete topology and T3 is the topology generated by the
collection {{1,2},{3,4},...}. Only finite sets are NC-sets in (N,T%) and as such i is
N-compact but {1} is d-closed in (N, T7) but is not so in (N, T3).

It is therefore natural under what conditions an N-compact function would be a
d-perfect function. The following theorem establishes one such condition.

Theorem 2.10. If f: X — Y is §-continuous N-compact function from a Hausdorff
space X into a locally nearly compact Hausdorff space Y then f is §-perfect.

Proof. Since f is N-compact function, the point inverses are NC-sets. Let A be a
d-closed subset of X and let y ¢ f(A) be in the d-closure of f(A). Since Y is locally
nearly compact, there exists a regular open set U in Y such that y € U and clU is an
NC-set in Y. Now f(A) NclU can not be an NC-set. In fact, if it is an NC-set, there
exist disjoint regular open sets V7 and V5 in Y such that y € V4 and f(A)NclU C V;
(since Y is Hausdorff). Then UNVi N f(A) C ViNclUnN f(A) = ¢ — which contradicts
the fact that y is in the d-closure of f(A). As clU is an NC-set and f is N-compact,
f7Y(clU) is an NC-set in X. Therefore AN f~1(clU) is an NC-set in the Hausdorff space
X and so f[AN f~Y(clU)] = f(A) NeclU is an NC-set — a contradiction. So y € f(A).
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Corollary 2.11. A d-continuous function f: X — Y, where X is Hausdorff and Y
is locally nearly compact Hausdorff is N-compact iff it is 6-perfect.

In the above discussion d-continuity plays a very crucial role. It is of interest under
what conditions on the domain and co-domain spaces, the other restrictions on f may
imply that f is §-continuous.

Theorem 2.12. If f : X — Y is a surjective function from a almost regular space
X onto a nearly compact space Y with the property that f is §-closed and point inverses
are 0-closed sets, then f is 6-continuous.

Proof. Let f be not d-continuous. Then by Theorem 2.2 of T. Noiri [6], there exist
a point x € X and a V € RO(f(x)) such that for every U € RO(z), f(U)N (Y —
V) # ¢. Since f is d-closed f(clU) N (Y — V) is a d-closed set in Y. The collection
{f(clU)N (Y = V) : U € RO(z)} has the finite inter-section property. If not i.e. if
there exist Uy, Us,...,U, € RO(x) such that NP, [f(clU;) N (Y — V)] = &, then it
can be easily shown that f(N'_,U;) N (Y — V) = &, which shows that f is d-continuous
— a contradiction. As Y is nearly compact, Nycro)[f(clU) N (Y — V)] # @. Let
y* belong to the intersection, then clearly f(z) # y*. So x ¢ f~(y*). By the almost
regularity of X, there exist disjoint regualr open sets U and Uj in X such that x € Uy
and f~1(y*) C Us. So y* & f(clU;). But y* € f(clU;) — a contradiction. So f is
d-continuous.

Next we shall show that the product of two d-perfect functions is d-perfect.

Lemma 2.13. Let X1 and Xo be two topological spaces and let K; be NC-sets in X;
fori=1,2. If V be a reqular open set of X1 X X5 containing K1 X Ko, there exist d-open
sets U; of X; containing K; such that K1 x Ko CU; x Uy C V.

Proof. We fix € K; and then for each y € Ko, (x,y) € V. So there exist open sets
W; of X; such that x € W and y € WY and (z,y) € WY x W) Cintcl W{ x intcl WY C
intclV = V. Then the collection {intcl WQy :y € Ko} covers Ks. Since Ko is an
NC-set, there exist yi,...,yn, € Ks such that Ko C U ;intclW3* = W, (say). Let
U, =N int cl W}, Clearly {z} x Ko C U, x W,, C V. Since K; is an NC-set and the
collection {U, : © € K1} is a regular open cover of K7, then there exist x1,...,2, € K
such that Ky C U™, U,, = U (say) and Uy =N W,,. Then Ky x Ko CU; x Uy C V.

Theorem 2.14. Let f; : X; — Y; (i = 1,2) be two d-perfect functions, then the

function f = f1 x fo: X1 x Xo = Y1 X Ya defined by (f1 X fa)(x1,22) = (f1(z1), f2(x2))
is §-perfect.

Proof. Let y = (y1,92) € Y1 x Ya. Then f~(y) = (f1 x fo) " t(y1,92) = fl_l(yl) X
fﬁ1 y2), which is an NC-set in X; x X5. Let P be any J-closed set in X; x X5. Let
2

(y1,92) & F(P). Then (fi x fo) ' (y1,92) = fi '(y1) x f3'(y2) C X1 x Xo — P. By
Lemma 2.13, there exist J-open sets U; containing f[l(yi) such that (f1 x f2) " (y1,92) C
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Uy xUs C X1 x Xg — P. Clearly y; € Y; — fi(X; — U;) = V; and each V; is §-open in Y,
also fi_l(Vi) C Ui. So (y1,y2) € V1 x Va. We shall show that V4 x Vo N f(P) = @. Let
(y%,y3) € VixVa. Then f; ' (yf) C U; and so (f1x fa) " (yf, y5) C UrxUs C X1 x Xo—P.
Therefore (y7,y3) € Y — f(P). Hence f = f1 x fa is d-closed. Therefore f = f1 x f5 is
o-perfect.

Lemma 2.15. [5] A space X is nearly compact iff for any space Y, the projection
mapping Ty : X XY — Y is §-perfect.

Theorem 2.16. Let {X,, : a € I} be a collection of spaces with the product X. Then
{Xa:a€I—{j}} is nearly compact iff m; : X — X is d-perfect.

Proof. Immediate from Lemma 2.15.

Perfect continuous functions preserve, in both directions, certain topological prop-
erties. Here, we shall investigate certain topological properties which are preserved by
d-perfect d-continuous functions.

Definition 2.17. [8] A space X is said to be nearly paracompact if every regular
open cover of X has an open locally finite refinement.

Theorem 2.18. If f : (X,T) — (Y, 0) is a surjective 6-perfect §-continuous function,
then the following are true:
i) (X, T) is almost regular iff (Y, o) is almost regular.
) (X,T) is Hausdorff iff (Y, o) is Hausdorff.
iil) (X,T) is nearly compact iff (Y,0) is nearly compact.
iv) (X,T) is locally nearly compact Hausdorff iff (Y, o) is locally nearly compact Haus-
dorff.

ii

Proof. f: (X,T) — (Y,0) is d-continuous iff f : (X,Ts) — (Y, 05) is continuous [6]
and f: (X, T) — (Y,0) is -perfect iff f: (X,Ts) — (Y, 05) is perfect [5], where (X, T})
and (Y, 0,) are semiregularizations of (X,T') and (Y, o) respectively. Also a space (X, T)
is almost regular (resp. Hausdorff, nearly compact, locally nearly compact Hausdorff
and nearly paracompact iff (X, T%) is regular (resp. Hausdorff, compact, locally compact
Hausdorff [3] and paracompact [4]). Since regularity, Hausdorffness, compactness and
local compactness (in presence of Hausdorfiness) are preserved in both directions by
perfect continuous functions, all the results are immediate.

Definition 2.19. A space X is said to be weakly T5 if every point is the intersection
of regular closed sets of X.

Theorem 2.20. Let f : X — Y be a §-perfect surjuctive function. Then we have the
following:
1) If X is weakly Ty then'Y is also weakly Ts.
il) If f is §-continuous and Y is nearly paracompact, then X is also nearly paracom-
pact.
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Proof. i) Let X be weakly T5. Then every point in X is the intersection of regular
closed sets of X. Therefore every point in X is d-closed. Let y € Y. Then for every z €
fY(y), f(z) = y. Since f is &-perfect and hence d-closed, {y} is 6-closed i.e. intersection
of regular closed sets of Y. Therefore Y is weakly Tb.

ii) It is immediate from the argument given in the proof of Theorem 2.18.

Lemma 2.21. [6] If f : X — Y is O-continuous [2] and almost open [11] then f is
d-continuous.

Theorem 2.22. Let X be nearly compact and Y be nearly paracompact then X XY
is nearly paracompact.

Proof. Since my : X X Y — Y is continuous open and hence #-continuous almost
open, by Lemma 2.21, 7y is d-continuous. Since X is nearly compact by Lemma 2.15,
my : X XY — Y is §-perfect. AsY isnearly paracompact and 7y is §-perfect d-continuous
surjection, by Theorem 2.20, X x Y is nearly paracompact.
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