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ON δ-PERFECT FUNCTIONS

C. K. BASU

Abstract. δ-continuous [6] and δ-perfect [5] functions are both introduced by T. Noiri in the

similar fashion as continuous and perfect functions. The purpose of the present paper is to inves-

tigate several properties of δ-perfect functions and also to determine some topological properties

which are preserved by δ-continuous δ-perfect functions.

1. Introduction

T. Noiri initiated the concepts of δ-perfect [5] and δ-continuous [6] functions. The

purpose of this paper is to investigate certain properties of δ-perfect functions specially,
in addition, when the function is also δ-continuous. We start this discussion with a new
characterization of δ-perfect functions. A new class of functions under the terminology

N-compact function are defined and investigated w.r.t. their relationship with δ-perfect
functions; further, we have established that for a δ-continuous function, the concepts
of δ-perfectness and N-compactness are identical when the range space is locally nearly

compact and Hausdorff. Preservation of certain topological properties by δ-perfect δ-
continuous functions are also investigated.

Throughout this paper, by X or Y we shall mean topological spaces. A set A is called

regular open if A = int (cl A) and regular closed if A = cl (intA). The collection of all
regular open sets containing the point x of X is denoted by RO(x). A point x is said to
be in the δ-closure [12] of a subset A of X , denoted by δ-cl A, if for every U ∈ RO(x),

U ∩ A 6= Φ. A is δ-closed if A = δ − clA. The complement of δ-closed set is called
δ-open. A subset A of X is said to be an NC-set [1] if every regular open cover of A has

a finite subcover. If A = X and A is an NC-set, then X is called a nearly compact space
[10]. A space X is said to be locally nearly compact [1] if for each point x of X , there
exists a neighbourhood U of x such that cl U is an NC-set in X . A function f : X → Y

is said to be δ-continuous [6] if for each x ∈ X and each V ∈ RO(f(x)), there exist a
U ∈ RO(x) such that f(U) ⊂ V . A function f : X → Y is said to be δ-perfect [5] if for
every filter base ℑ in f(X) δ-converging to y ∈ Y , f−1(ℑ) is δ-directed towards f−1(y).

Equivalently f is δ-perfect iff point inverses are NC-sets in X and f is δ-closed i.e. images
of every δ-closed sets in X is δ-closed in Y [5]. A space X is said to be almost regular
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[9] if for each regular closed set F ⊂ X and each x 6∈ F , there exist disjoint open sets U

and V in X such that x ∈ U and F ⊂ V . For a space (X, T ), the collection of all regular

open sets of (X, T ) forms a basis for the topology Ts. The space (X, Ts) is called the

semiregularization space of (X, T ).

2. δ-Continuous δ-Perfect Functions

Theorem 2.1. For a function F : X → Y , where Y is Hausdorff, the following are

equivalent:

(i) f is δ-perfect,

(ii) for each y ∈ Y , f−1(y) is a δ-closed subset of X, and if U is a δ-open cover of X

that is closed under finite unions, then {Y − f [X − U ] : U ∈ U} is a δ-open cover

of Y .

Proof. The proof is similar to the proof of Theorem 1.8 (c) [7] and is thus omitted.

Lemma 2.2. [5] If f : X → Y is a δ-perfect function, then f−1(K) is an NC-set in

X for every NC-set K of Y .

Theorem 2.3. A composition of δ-perfect functions is δ-perfect.

Proof. Since the composition of δ-closed function is δ-closed, the proof follows from

the Lemma 2.2.

Definition 2.4. Let f : X → Y and g : X → Z be two functions. The function

F : X → Y × Z defined by F (x) = (f(x), g(x)) for each x ∈ X , is called the Diagonal

product of f and g.

Theorem 2.5. Let f : X → Y and g : X → Z (where Z is Hausdorff) be δ-perfect

and δ-continuous functions respectively and also let both be surjective. Then the set

{(f(x), g(x)) : x ∈ X} is δ-closed in Y × Z.

Proof. Let (y, z) 6∈ {(f(x), g(x)) : x ∈ X} = F (X) (say) where y ∈ Y and z ∈ Z

i.e. f−1(y) ∩ g−1(z) = φ. This implies that z 6∈ gf−1(y). Since gf−1(y) is an NC-set

in the Hausdorff space Z, there exist disjoint regular open sets U and V in Z such that

z ∈ U and gf−1(y) ⊂ V . Since f is δ-closed and f−1(y) ⊂ g−1(V ), there exists a regular

open set Vy in Y containing y such that f−1(Vy) ⊂ g−1(V ). So gf−1(Vy) ⊂ V . Therefore

U ∩ gf−1(Vy) = φ i.e. g−1(U)∩ f−1(Vy) = φ. Now Vy ×U is a regular open set in Y ×Z

containing the point (y, z) disjoint from F (X).

Theorem 2.6. If f : X → Y is δ-perfect and g : X → Z is δ-continuous, where X,

Z are Hausdorff spaces, then the diagonal product of f and g is δ-perfect.

Proof. Let (y, z) ∈ F (X), where F : X → Y × Z is the diagonal product of f and

g. We have F−1(y, z) = f−1(y) ∩ g−1(z). Since Z is Hausdorff, it is clear that every
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one pointic set is δ-closed and since g is δ-continuous, g−1(z) is δ-closed in X . As f is

δ-perfect, f−1(y) is an NC-set in the Hausdorff space X and hence it is δ-closed in X .
Therefore F−1(y, z) = f−1(y) ∩ g−1(z) is δ-closed in X and is contained in the NC-set
f−1(y). So F−1(y, z) is an NC-set. Next we shall show that F : X → F (X) is a δ-closed

function. Let A be any δ-closed subset of X . To show F (A) is δ-closed it is sufficient to
show that for any point x∗ 6∈ A, either (1) F (x∗) ∈ F (A) or (2) there is a regular open set
in Y × Z of the point F (x∗) which does not meet F (A). Let y∗ = f(x∗) and z∗ = g(x∗)
and D = f−1(y∗), E = D ∩ A and G = g(E). If g(x∗) ∈ G, then g(x∗) = g(x1) for

some x1 ∈ E. Then F (x∗) = (f(x∗), g(x∗)) = (f(x1), g(x1)) = F (x1) ∈ F (A). Thus (1)
is valid. Now suppose that g(x∗) 6∈ G. Since g is δ-continuous and E is an NC-set, by
Lemma 5.7 of T. Noiri [6], g(E) = G is an NC-set in the Hausdorff space Z. There exist

disjoint regular open sets V ∗ and U∗ in Z such that g(x∗) ∈ V ∗ and G ⊂ U∗. The set
U = g−1(U∗) ∪ (X − A) is δ-open in X and f−1(y∗) ⊂ U . Since f is δ-closed function,
there exists a regular open set V ∗

y in Y containing y∗ such that f−1(V ∗

y ) ⊂ U . The set
V ∗

y × V ∗ is a regular open set in Y × Z containing F (x∗) = (f(x∗), g(x∗)) = (y∗, g(x∗)).

We claim that (V ∗

y × V ∗) ∩ F (A) = φ. In fact, if for some x ∈ A, F (x) ∩ (V ∗

y × V ∗) 6= φ

then f(x) ∈ V ∗

y and g(x) ∈ V ∗. f(x) ∈ V ∗

y implies x ∈ U and g(x) ∈ V ∗ implies x 6∈ U

— a contradiction. Hence the proof.

Definition 2.7. A function f : X → Y is said to be N-compact if f−1(K) is an
NC-set in X whenever K is an NC-set in Y .

Remark 2.8. Clearly by Lemma 2.2, every δ-perfect function is N-compact but that
the converse is not true follows from the following example.

Example 2.9. Consider the identity function i : (N, T1) → (N, T2), where N is

the set of naturals, T1 is the discrete topology and T2 is the topology generated by the
collection {{1, 2}, {3, 4}, . . .}. Only finite sets are NC-sets in (N, T2) and as such i is
N-compact but {1} is δ-closed in (N, T1) but is not so in (N, T2).

It is therefore natural under what conditions an N-compact function would be a

δ-perfect function. The following theorem establishes one such condition.

Theorem 2.10. If f : X → Y is δ-continuous N-compact function from a Hausdorff

space X into a locally nearly compact Hausdorff space Y then f is δ-perfect.

Proof. Since f is N-compact function, the point inverses are NC-sets. Let A be a

δ-closed subset of X and let y 6∈ f(A) be in the δ-closure of f(A). Since Y is locally
nearly compact, there exists a regular open set U in Y such that y ∈ U and cl U is an
NC-set in Y . Now f(A) ∩ cl U can not be an NC-set. In fact, if it is an NC-set, there

exist disjoint regular open sets V1 and V2 in Y such that y ∈ V1 and f(A) ∩ clU ⊂ V2

(since Y is Hausdorff). Then U ∩ V1 ∩ f(A) ⊂ V1 ∩ cl U ∩ f(A) = φ — which contradicts
the fact that y is in the δ-closure of f(A). As clU is an NC-set and f is N-compact,
f−1(cl U) is an NC-set in X . Therefore A∩f−1(cl U) is an NC-set in the Hausdorff space

X and so f [A ∩ f−1(cl U)] = f(A) ∩ cl U is an NC-set — a contradiction. So y ∈ f(A).
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Corollary 2.11. A δ-continuous function f : X → Y , where X is Hausdorff and Y

is locally nearly compact Hausdorff is N-compact iff it is δ-perfect.

In the above discussion δ-continuity plays a very crucial role. It is of interest under

what conditions on the domain and co-domain spaces, the other restrictions on f may

imply that f is δ-continuous.

Theorem 2.12. If f : X → Y is a surjective function from a almost regular space

X onto a nearly compact space Y with the property that f is δ-closed and point inverses

are δ-closed sets, then f is δ-continuous.

Proof. Let f be not δ-continuous. Then by Theorem 2.2 of T. Noiri [6], there exist

a point x ∈ X and a V ∈ RO(f(x)) such that for every U ∈ RO(x), f(U) ∩ (Y −

V ) 6= φ. Since f is δ-closed f(clU) ∩ (Y − V ) is a δ-closed set in Y . The collection

{f(clU) ∩ (Y − V ) : U ∈ RO(x)} has the finite inter-section property. If not i.e. if

there exist U1, U2, . . . , Un ∈ RO(x) such that ∩n
i=1[f(cl Ui) ∩ (Y − V )] = ∅, then it

can be easily shown that f(∩n
i=1Ui) ∩ (Y − V ) = ∅, which shows that f is δ-continuous

— a contradiction. As Y is nearly compact, ∩U∈RO(x)[f(cl U) ∩ (Y − V )] 6= ∅. Let

y∗ belong to the intersection, then clearly f(x) 6= y∗. So x 6∈ f−1(y∗). By the almost

regularity of X , there exist disjoint regualr open sets U∗

1 and U∗

2 in X such that x ∈ U∗

1

and f−1(y∗) ⊂ U∗

2 . So y∗ 6∈ f(cl U∗

1 ). But y∗ ∈ f(cl U∗

1 ) — a contradiction. So f is

δ-continuous.

Next we shall show that the product of two δ-perfect functions is δ-perfect.

Lemma 2.13. Let X1 and X2 be two topological spaces and let Ki be NC-sets in Xi

for i = 1, 2. If V be a regular open set of X1×X2 containing K1×K2, there exist δ-open

sets Ui of Xi containing Ki such that K1 × K2 ⊆ U1 × U2 ⊆ V .

Proof. We fix x ∈ K1 and then for each y ∈ K2, (x, y) ∈ V . So there exist open sets

Wi of Xi such that x ∈ W
y
1 and y ∈ W

y
2 and (x, y) ∈ W

y
1 ×W

y
2 ⊂ int cl W y

1 × int cl W y
2 ⊂

int clV = V . Then the collection {int cl W y
2 : y ∈ K2} covers K2. Since K2 is an

NC-set, there exist y1, . . . , yn ∈ K2 such that K2 ⊆ ∪n
i=1int cl W yi

2 = Wx (say). Let

Ux = ∩n
i=1int cl W yi

1 . Clearly {x} × K2 ⊆ Ux × Wx ⊆ V . Since K1 is an NC-set and the

collection {Ux : x ∈ K1} is a regular open cover of K1, then there exist x1, . . . , xm ∈ K1

such that K1 ⊆ ∪m
i=1Uxi

= U1 (say) and U2 = ∩m
i=1Wxi

. Then K1 × K2 ⊆ U1 × U2 ⊆ V .

Theorem 2.14. Let fi : Xi → Yi (i = 1, 2) be two δ-perfect functions, then the

function f = f1 × f2 : X1 × X2 → Y1 × Y2 defined by (f1 × f2)(x1, x2) = (f1(x1), f2(x2))

is δ-perfect.

Proof. Let y = (y1, y2) ∈ Y1 × Y2. Then f−1(y) = (f1 × f2)
−1(y1, y2) = f−1

1 (y1) ×

f−1
2 (y2), which is an NC-set in X1 × X2. Let P be any δ-closed set in X1 × X2. Let

(y1, y2) 6∈ f(P ). Then (f1 × f2)
−1(y1, y2) = f−1

1 (y1) × f−1
2 (y2) ⊂ X1 × X2 − P . By

Lemma 2.13, there exist δ-open sets Ui containing f−1
i (yi) such that (f1×f2)

−1(y1, y2) ⊆
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U1 × U2 ⊆ X1 ×X2 − P . Clearly yi ∈ Yi − fi(Xi − Ui) = Vi and each Vi is δ-open in Yi,

also f−1
i (Vi) ⊂ Ui. So (y1, y2) ∈ V1 × V2. We shall show that V1 × V2 ∩ f(P ) = ∅. Let

(y∗

1 , y∗

2) ∈ V1×V2. Then f−1
i (y∗

1) ⊂ Ui and so (f1×f2)
−1(y∗

1 , y∗

2) ⊂ U1×U2 ⊂ X1×X2−P .
Therefore (y∗

1 , y∗

2) ∈ Y − f(P ). Hence f = f1 × f2 is δ-closed. Therefore f = f1 × f2 is
δ-perfect.

Lemma 2.15. [5] A space X is nearly compact iff for any space Y , the projection

mapping πY : X × Y → Y is δ-perfect.

Theorem 2.16. Let {Xα : α ∈ I} be a collection of spaces with the product X. Then

π{Xα : α ∈ I − {j}} is nearly compact iff πj : X → Xj is δ-perfect.

Proof. Immediate from Lemma 2.15.

Perfect continuous functions preserve, in both directions, certain topological prop-
erties. Here, we shall investigate certain topological properties which are preserved by
δ-perfect δ-continuous functions.

Definition 2.17. [8] A space X is said to be nearly paracompact if every regular
open cover of X has an open locally finite refinement.

Theorem 2.18. If f : (X, T ) → (Y, σ) is a surjective δ-perfect δ-continuous function,

then the following are true:

i) (X, T ) is almost regular iff (Y, σ) is almost regular.

ii) (X, T ) is Hausdorff iff (Y, σ) is Hausdorff.

iii) (X, T ) is nearly compact iff (Y, σ) is nearly compact.

iv) (X, T ) is locally nearly compact Hausdorff iff (Y, σ) is locally nearly compact Haus-

dorff.

Proof. f : (X, T ) → (Y, σ) is δ-continuous iff f : (X, Ts) → (Y, σs) is continuous [6]
and f : (X, T ) → (Y, σ) is δ-perfect iff f : (X, Ts) → (Y, σs) is perfect [5], where (X, Ts)
and (Y, σs) are semiregularizations of (X, T ) and (Y, σ) respectively. Also a space (X, T )

is almost regular (resp. Hausdorff, nearly compact, locally nearly compact Hausdorff
and nearly paracompact iff (X, Ts) is regular (resp. Hausdorff, compact, locally compact
Hausdorff [3] and paracompact [4]). Since regularity, Hausdorffness, compactness and
local compactness (in presence of Hausdorffness) are preserved in both directions by
perfect continuous functions, all the results are immediate.

Definition 2.19. A space X is said to be weakly T2 if every point is the intersection
of regular closed sets of X .

Theorem 2.20. Let f : X → Y be a δ-perfect surjuctive function. Then we have the

following:

i) If X is weakly T2 then Y is also weakly T2.

ii) If f is δ-continuous and Y is nearly paracompact, then X is also nearly paracom-

pact.
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Proof. i) Let X be weakly T2. Then every point in X is the intersection of regular
closed sets of X . Therefore every point in X is δ-closed. Let y ∈ Y . Then for every x ∈
f−1(y), f(x) = y. Since f is δ-perfect and hence δ-closed, {y} is δ-closed i.e. intersection
of regular closed sets of Y . Therefore Y is weakly T2.

ii) It is immediate from the argument given in the proof of Theorem 2.18.

Lemma 2.21. [6] If f : X → Y is θ-continuous [2] and almost open [11] then f is

δ-continuous.

Theorem 2.22. Let X be nearly compact and Y be nearly paracompact then X × Y

is nearly paracompact.

Proof. Since πY : X × Y → Y is continuous open and hence θ-continuous almost
open, by Lemma 2.21, πY is δ-continuous. Since X is nearly compact by Lemma 2.15,
πY : X×Y → Y is δ-perfect. As Y is nearly paracompact and πY is δ-perfect δ-continuous
surjection, by Theorem 2.20, X × Y is nearly paracompact.
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