ON δ -PERFECT FUNCTIONS

C. K. BASU

Abstract. δ -continuous [6] and δ -perfect [5] functions are both introduced by T. Noiri in the similar fashion as continuous and perfect functions. The purpose of the present paper is to investigate several properties of δ -perfect functions and also to determine some topological properties which are preserved by δ -continuous δ -perfect functions.

1. Introduction

T. Noiri initiated the concepts of δ -perfect [5] and δ -continuous [6] functions. The purpose of this paper is to investigate certain properties of δ -perfect functions specially, in addition, when the function is also δ -continuous. We start this discussion with a new characterization of δ -perfect functions. A new class of functions under the terminology N-compact function are defined and investigated w.r.t. their relationship with δ -perfect functions; further, we have established that for a δ -continuous function, the concepts of δ -perfectness and N-compactness are identical when the range space is locally nearly compact and Hausdorff. Preservation of certain topological properties by δ -perfect δ continuous functions are also investigated.

Throughout this paper, by X or Y we shall mean topological spaces. A set A is called regular open if $A = \text{int}(\operatorname{cl} A)$ and regular closed if $A = \operatorname{cl}(\operatorname{int} A)$. The collection of all regular open sets containing the point x of X is denoted by RO(x). A point x is said to be in the δ -closure [12] of a subset A of X, denoted by δ -cl A, if for every $U \in RO(x)$, $U \cap A \neq \Phi$. A is δ -closed if $A = \delta - \operatorname{cl} A$. The complement of δ -closed set is called δ -open. A subset A of X is said to be an NC-set [1] if every regular open cover of A has a finite subcover. If A = X and A is an NC-set, then X is called a nearly compact space [10]. A space X is said to be locally nearly compact [1] if for each point x of X, there exists a neighbourhood U of x such that $\operatorname{cl} U$ is an NC-set in X. A function $f: X \to Y$ is said to be δ -continuous [6] if for each $x \in X$ and each $V \in RO(f(x))$, there exist a $U \in RO(x)$ such that $f(U) \subset V$. A function $f: X \to Y$ is said to be δ -perfect [5] if for every filter base \Im in f(X) δ -converging to $y \in Y$, $f^{-1}(\Im)$ is δ -directed towards $f^{-1}(y)$. Equivalently f is δ -perfect iff point inverses are NC-sets in X and f is δ -closed i.e. images of every δ -closed sets in X is δ -closed in Y [5]. A space X is said to be almost regular

Received December 12, 2002; revised March 11, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 54D30, 54C10.

Key words and phrases. δ -continuous, δ -perfect, nearly compact, NC-sets, locally nearly compact, nearly paracompact, N-compact.

C. K. BASU

[9] if for each regular closed set $F \subset X$ and each $x \notin F$, there exist disjoint open sets Uand V in X such that $x \in U$ and $F \subset V$. For a space (X, T), the collection of all regular open sets of (X, T) forms a basis for the topology T_s . The space (X, T_s) is called the semiregularization space of (X, T).

2. δ -Continuous δ -Perfect Functions

Theorem 2.1. For a function $F : X \to Y$, where Y is Hausdorff, the following are equivalent:

- (i) f is δ -perfect,
- (ii) for each y ∈ Y, f⁻¹(y) is a δ-closed subset of X, and if U is a δ-open cover of X that is closed under finite unions, then {Y − f[X − U] : U ∈ U} is a δ-open cover of Y.

Proof. The proof is similar to the proof of Theorem 1.8 (c) [7] and is thus omitted.

Lemma 2.2. [5] If $f: X \to Y$ is a δ -perfect function, then $f^{-1}(K)$ is an NC-set in X for every NC-set K of Y.

Theorem 2.3. A composition of δ -perfect functions is δ -perfect.

Proof. Since the composition of δ -closed function is δ -closed, the proof follows from the Lemma 2.2.

Definition 2.4. Let $f: X \to Y$ and $g: X \to Z$ be two functions. The function $F: X \to Y \times Z$ defined by F(x) = (f(x), g(x)) for each $x \in X$, is called the Diagonal product of f and g.

Theorem 2.5. Let $f : X \to Y$ and $g : X \to Z$ (where Z is Hausdorff) be δ -perfect and δ -continuous functions respectively and also let both be surjective. Then the set $\{(f(x), g(x)) : x \in X\}$ is δ -closed in $Y \times Z$.

Proof. Let $(y, z) \notin \{(f(x), g(x)) : x \in X\} = F(X) \text{ (say) where } y \in Y \text{ and } z \in Z$ i.e. $f^{-1}(y) \cap g^{-1}(z) = \phi$. This implies that $z \notin gf^{-1}(y)$. Since $gf^{-1}(y)$ is an NC-set in the Hausdorff space Z, there exist disjoint regular open sets U and V in Z such that $z \in U$ and $gf^{-1}(y) \subset V$. Since f is δ -closed and $f^{-1}(y) \subset g^{-1}(V)$, there exists a regular open set V_y in Y containing y such that $f^{-1}(V_y) \subset g^{-1}(V)$. So $gf^{-1}(V_y) \subset V$. Therefore $U \cap gf^{-1}(V_y) = \phi$ i.e. $g^{-1}(U) \cap f^{-1}(V_y) = \phi$. Now $V_y \times U$ is a regular open set in $Y \times Z$ containing the point (y, z) disjoint from F(X).

Theorem 2.6. If $f : X \to Y$ is δ -perfect and $g : X \to Z$ is δ -continuous, where X, Z are Hausdorff spaces, then the diagonal product of f and g is δ -perfect.

Proof. Let $(y, z) \in F(X)$, where $F : X \to Y \times Z$ is the diagonal product of f and g. We have $F^{-1}(y, z) = f^{-1}(y) \cap g^{-1}(z)$. Since Z is Hausdorff, it is clear that every

one pointic set is δ -closed and since g is δ -continuous, $g^{-1}(z)$ is δ -closed in X. As f is δ -perfect, $f^{-1}(y)$ is an NC-set in the Hausdorff space X and hence it is δ -closed in X. Therefore $F^{-1}(y,z) = f^{-1}(y) \cap g^{-1}(z)$ is δ -closed in X and is contained in the NC-set $f^{-1}(y)$. So $F^{-1}(y,z)$ is an NC-set. Next we shall show that $F: X \to F(X)$ is a δ -closed function. Let A be any δ -closed subset of X. To show F(A) is δ -closed it is sufficient to show that for any point $x^* \notin A$, either (1) $F(x^*) \in F(A)$ or (2) there is a regular open set in $Y \times Z$ of the point $F(x^*)$ which does not meet F(A). Let $y^* = f(x^*)$ and $z^* = g(x^*)$ and $D = f^{-1}(y^*), E = D \cap A$ and G = g(E). If $g(x^*) \in G$, then $g(x^*) = g(x_1)$ for some $x_1 \in E$. Then $F(x^*) = (f(x^*), g(x^*)) = (f(x_1), g(x_1)) = F(x_1) \in F(A)$. Thus (1) is valid. Now suppose that $g(x^*) \notin G$. Since g is δ -continuous and E is an NC-set, by Lemma 5.7 of T. Noiri [6], q(E) = G is an NC-set in the Hausdorff space Z. There exist disjoint regular open sets V^* and U^* in Z such that $g(x^*) \in V^*$ and $G \subset U^*$. The set $U = g^{-1}(U^*) \cup (X - A)$ is δ -open in X and $f^{-1}(y^*) \subset U$. Since f is δ -closed function, there exists a regular open set V_y^* in Y containing y^* such that $f^{-1}(V_y^*) \subset U$. The set $V_y^* \times V^*$ is a regular open set in $Y \times Z$ containing $F(x^*) = (f(x^*), g(x^*)) = (y^*, g(x^*))$. We claim that $(V_y^* \times V^*) \cap F(A) = \phi$. In fact, if for some $x \in A$, $F(x) \cap (V_y^* \times V^*) \neq \phi$ then $f(x) \in V_y^*$ and $g(x) \in V^*$. $f(x) \in V_y^*$ implies $x \in U$ and $g(x) \in V^*$ implies $x \notin U$ — a contradiction. Hence the proof.

Definition 2.7. A function $f : X \to Y$ is said to be N-compact if $f^{-1}(K)$ is an NC-set in X whenever K is an NC-set in Y.

Remark 2.8. Clearly by Lemma 2.2, every δ -perfect function is N-compact but that the converse is not true follows from the following example.

Example 2.9. Consider the identity function $i : (N, T_1) \to (N, T_2)$, where N is the set of naturals, T_1 is the discrete topology and T_2 is the topology generated by the collection $\{\{1, 2\}, \{3, 4\}, \ldots\}$. Only finite sets are NC-sets in (N, T_2) and as such i is N-compact but $\{1\}$ is δ -closed in (N, T_1) but is not so in (N, T_2) .

It is therefore natural under what conditions an N-compact function would be a δ -perfect function. The following theorem establishes one such condition.

Theorem 2.10. If $f : X \to Y$ is δ -continuous N-compact function from a Hausdorff space X into a locally nearly compact Hausdorff space Y then f is δ -perfect.

Proof. Since f is N-compact function, the point inverses are NC-sets. Let A be a δ -closed subset of X and let $y \notin f(A)$ be in the δ -closure of f(A). Since Y is locally nearly compact, there exists a regular open set U in Y such that $y \in U$ and cl U is an NC-set in Y. Now $f(A) \cap cl U$ can not be an NC-set. In fact, if it is an NC-set, there exist disjoint regular open sets V_1 and V_2 in Y such that $y \in V_1$ and $f(A) \cap cl U \subset V_2$ (since Y is Hausdorff). Then $U \cap V_1 \cap f(A) \subset V_1 \cap cl U \cap f(A) = \phi$ —which contradicts the fact that y is in the δ -closure of f(A). As cl U is an NC-set and f is N-compact, $f^{-1}(cl U)$ is an NC-set in X. Therefore $A \cap f^{-1}(cl U)$ is an NC-set in the Hausdorff space X and so $f[A \cap f^{-1}(cl U)] = f(A) \cap cl U$ is an NC-set — a contradiction. So $y \in f(A)$.

Corollary 2.11. A δ -continuous function $f : X \to Y$, where X is Hausdorff and Y is locally nearly compact Hausdorff is N-compact iff it is δ -perfect.

In the above discussion δ -continuity plays a very crucial role. It is of interest under what conditions on the domain and co-domain spaces, the other restrictions on f may imply that f is δ -continuous.

Theorem 2.12. If $f : X \to Y$ is a surjective function from a almost regular space X onto a nearly compact space Y with the property that f is δ -closed and point inverses are δ -closed sets, then f is δ -continuous.

Proof. Let f be not δ -continuous. Then by Theorem 2.2 of T. Noiri [6], there exist a point $x \in X$ and a $V \in RO(f(x))$ such that for every $U \in RO(x)$, $f(U) \cap (Y - V) \neq \phi$. Since f is δ -closed $f(\operatorname{cl} U) \cap (Y - V)$ is a δ -closed set in Y. The collection $\{f(\operatorname{cl} U) \cap (Y - V) : U \in RO(x)\}$ has the finite inter-section property. If not i.e. if there exist $U_1, U_2, \ldots, U_n \in RO(x)$ such that $\bigcap_{i=1}^n [f(\operatorname{cl} U_i) \cap (Y - V)] = \emptyset$, then it can be easily shown that $f(\bigcap_{i=1}^n U_i) \cap (Y - V) = \emptyset$, which shows that f is δ -continuous — a contradiction. As Y is nearly compact, $\bigcap_{U \in RO(x)} [f(\operatorname{cl} U) \cap (Y - V)] \neq \emptyset$. Let y^* belong to the intersection, then clearly $f(x) \neq y^*$. So $x \notin f^{-1}(y^*)$. By the almost regularity of X, there exist disjoint regual open sets U_1^* and U_2^* in X such that $x \in U_1^*$ and $f^{-1}(y^*) \subset U_2^*$. So $y^* \notin f(\operatorname{cl} U_1^*)$. But $y^* \in f(\operatorname{cl} U_1^*)$ — a contradiction. So f is δ -continuous.

Next we shall show that the product of two δ -perfect functions is δ -perfect.

Lemma 2.13. Let X_1 and X_2 be two topological spaces and let K_i be NC-sets in X_i for i = 1, 2. If V be a regular open set of $X_1 \times X_2$ containing $K_1 \times K_2$, there exist δ -open sets U_i of X_i containing K_i such that $K_1 \times K_2 \subseteq U_1 \times U_2 \subseteq V$.

Proof. We fix $x \in K_1$ and then for each $y \in K_2$, $(x, y) \in V$. So there exist open sets W_i of X_i such that $x \in W_1^y$ and $y \in W_2^y$ and $(x, y) \in W_1^y \times W_2^y \subset \operatorname{int} \operatorname{cl} W_1^y \times \operatorname{int} \operatorname{cl} W_2^y \subset \operatorname{int} \operatorname{cl} W_2^y = V$. Then the collection $\{\operatorname{int} \operatorname{cl} W_2^y : y \in K_2\}$ covers K_2 . Since K_2 is an NC-set, there exist $y_1, \ldots, y_n \in K_2$ such that $K_2 \subseteq \bigcup_{i=1}^n \operatorname{int} \operatorname{cl} W_2^{y_i} = W_x$ (say). Let $U_x = \bigcap_{i=1}^n \operatorname{int} \operatorname{cl} W_1^{y_i}$. Clearly $\{x\} \times K_2 \subseteq U_x \times W_x \subseteq V$. Since K_1 is an NC-set and the collection $\{U_x : x \in K_1\}$ is a regular open cover of K_1 , then there exist $x_1, \ldots, x_m \in K_1$ such that $K_1 \subseteq \bigcup_{i=1}^m U_{x_i} = U_1$ (say) and $U_2 = \bigcap_{i=1}^m W_{x_i}$. Then $K_1 \times K_2 \subseteq U_1 \times U_2 \subseteq V$.

Theorem 2.14. Let $f_i : X_i \to Y_i$ (i = 1, 2) be two δ -perfect functions, then the function $f = f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ defined by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ is δ -perfect.

Proof. Let $y = (y_1, y_2) \in Y_1 \times Y_2$. Then $f^{-1}(y) = (f_1 \times f_2)^{-1}(y_1, y_2) = f_1^{-1}(y_1) \times f_2^{-1}(y_2)$, which is an NC-set in $X_1 \times X_2$. Let P be any δ -closed set in $X_1 \times X_2$. Let $(y_1, y_2) \notin f(P)$. Then $(f_1 \times f_2)^{-1}(y_1, y_2) = f_1^{-1}(y_1) \times f_2^{-1}(y_2) \subset X_1 \times X_2 - P$. By Lemma 2.13, there exist δ -open sets U_i containing $f_i^{-1}(y_i)$ such that $(f_1 \times f_2)^{-1}(y_1, y_2) \subseteq$

 $U_1 \times U_2 \subseteq X_1 \times X_2 - P$. Clearly $y_i \in Y_i - f_i(X_i - U_i) = V_i$ and each V_i is δ -open in Y_i , also $f_i^{-1}(V_i) \subset U_i$. So $(y_1, y_2) \in V_1 \times V_2$. We shall show that $V_1 \times V_2 \cap f(P) = \emptyset$. Let $(y_1^*, y_2^*) \in V_1 \times V_2$. Then $f_i^{-1}(y_1^*) \subset U_i$ and so $(f_1 \times f_2)^{-1}(y_1^*, y_2^*) \subset U_1 \times U_2 \subset X_1 \times X_2 - P$. Therefore $(y_1^*, y_2^*) \in Y - f(P)$. Hence $f = f_1 \times f_2$ is δ -closed. Therefore $f = f_1 \times f_2$ is δ -perfect.

Lemma 2.15. [5] A space X is nearly compact iff for any space Y, the projection mapping $\pi_Y : X \times Y \to Y$ is δ -perfect.

Theorem 2.16. Let $\{X_{\alpha} : \alpha \in I\}$ be a collection of spaces with the product X. Then $\pi\{X_{\alpha} : \alpha \in I - \{j\}\}$ is nearly compact iff $\pi_j : X \to X_j$ is δ -perfect.

Proof. Immediate from Lemma 2.15.

Perfect continuous functions preserve, in both directions, certain topological properties. Here, we shall investigate certain topological properties which are preserved by δ -perfect δ -continuous functions.

Definition 2.17. [8] A space X is said to be nearly paracompact if every regular open cover of X has an open locally finite refinement.

Theorem 2.18. If $f : (X,T) \to (Y,\sigma)$ is a surjective δ -perfect δ -continuous function, then the following are true:

- i) (X,T) is almost regular iff (Y,σ) is almost regular.
- ii) (X,T) is Hausdorff iff (Y,σ) is Hausdorff.
- iii) (X,T) is nearly compact iff (Y,σ) is nearly compact.
- iv) (X,T) is locally nearly compact Hausdorff iff (Y,σ) is locally nearly compact Hausdorff.

Proof. $f: (X,T) \to (Y,\sigma)$ is δ -continuous iff $f: (X,T_s) \to (Y,\sigma_s)$ is continuous [6] and $f: (X,T) \to (Y,\sigma)$ is δ -perfect iff $f: (X,T_s) \to (Y,\sigma_s)$ is perfect [5], where (X,T_s) and (Y,σ_s) are semiregularizations of (X,T) and (Y,σ) respectively. Also a space (X,T)is almost regular (resp. Hausdorff, nearly compact, locally nearly compact Hausdorff and nearly paracompact iff (X,T_s) is regular (resp. Hausdorff, compact, locally compact Hausdorff [3] and paracompact [4]). Since regularity, Hausdorffness, compactness and local compactness (in presence of Hausdorffness) are preserved in both directions by perfect continuous functions, all the results are immediate.

Definition 2.19. A space X is said to be weakly T_2 if every point is the intersection of regular closed sets of X.

Theorem 2.20. Let $f : X \to Y$ be a δ -perfect surjuctive function. Then we have the following:

- i) If X is weakly T_2 then Y is also weakly T_2 .
- ii) If f is δ-continuous and Y is nearly paracompact, then X is also nearly paracompact.

Proof. i) Let X be weakly T_2 . Then every point in X is the intersection of regular closed sets of X. Therefore every point in X is δ -closed. Let $y \in Y$. Then for every $x \in f^{-1}(y)$, f(x) = y. Since f is δ -perfect and hence δ -closed, $\{y\}$ is δ -closed i.e. intersection of regular closed sets of Y. Therefore Y is weakly T_2 .

ii) It is immediate from the argument given in the proof of Theorem 2.18.

Lemma 2.21. [6] If $f : X \to Y$ is θ -continuous [2] and almost open [11] then f is δ -continuous.

Theorem 2.22. Let X be nearly compact and Y be nearly paracompact then $X \times Y$ is nearly paracompact.

Proof. Since $\pi_Y : X \times Y \to Y$ is continuous open and hence θ -continuous almost open, by Lemma 2.21, π_Y is δ -continuous. Since X is nearly compact by Lemma 2.15, $\pi_Y : X \times Y \to Y$ is δ -perfect. As Y is nearly paracompact and π_Y is δ -perfect δ -continuous surjection, by Theorem 2.20, $X \times Y$ is nearly paracompact.

Acknowledgement

The author wishes to thank the learned referee for his valuable suggestions which improved the paper to a great extent.

References

- [1] D. Carnahan, Locally nearly compact spaces, Boll. Un. Mat. Ital. 4(1972), 146-153.
- [2] S. Fomin, Extensions of topological spaces, Ann. of Math. 44(1943), 471-480.
- [3] L. L. Herrington, Properties of nearly compact spaces, Proc. Amer. Math. Soc. 45(1974), 431-436.
- [4] T. Noiri, Completely continuous images of nearly paracompact spaces, Mat. Vesnik 1, 14(1977), 59-64.
- [5] T. Noiri, A generalization of perfect functions, J. London Math. Soc. 2(1978), 540-544.
- [6] T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 16(1980), 161-166.
- [7] J. R. Poter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer Verlag, 1988.
- [8] M. K. Singal and S. P. Arya, On nearly paracompact spaces, Mat. Vesnik 6(1969), 3-16.
- [9] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Mat. 4(1969), 89-99.
- [10] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital. 4(1969), 702-710.
- [11] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J. 16(1968), 63-73.
- [12] N. V. Velicko, *H-closed topological spaces*, Amer. Math. Soc. Transl. 2(1968), 103-118.

Department of Mathematics, University of Kalyani, Kalyani, Dist.-Nadia, West Bengal, Pin-741235, India.

E-mail: ckbasu@klyuniv.ernet.in