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EXTENDED CONSTANT PARTS OF BECKER-STARK’S AND

SHAFER-FINK’S INEQUALITIES

YUSUKE NISHIZAWA

Abstract. In this paper, we give some inequalities which are extended constant parts of

Becker-Stark’s and Shafer-Fink’s inequality.

1. Introduction

Becker-Stark’s inequality is known as that: for 0 < x <π/2, the inequality

8

π2 −4x2
<

tan x

x
<

π
2

π2 −4x2
(1.1)

holds, where the constants 8 and π
2 are the best possible constants. Shafer-Fink’s inequality

is known as that: for 0 < x < 1, the inequality

3x

2+
p

1−x2
< arcsin x <

πx

2+
p

1−x2
(1.2)

holds, where the constants 3 and π are the best possible constants. Many mathematicians

researched Becker-Stark’s inequality [1], [2], [7], [9]–[12] and Shafer-Fink’s inequality [3]–[6],

[8], [13]–[15]. As it now, the inequalities were extended in different forms. In this paper, we

give inequalities which are the extended constant parts of inequalities (1.1) and (1.2). Our

main theorems in this paper are as follows.

Theorem 1.1. For 8 < r <π
2 and (π/2)((π2 − r )/(π2 −8))1/3 < x <π/2, we have

tan x

x
<

r

π2 −4x2
.

Theorem 1.2. For 3 < r <π and ((r −3)/(π−3))1/4 < x < 1, we have

arcsin x <
r x

2+
p

1−x2
.
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2. Proofs of main theorems

2.1. Proof of Theorem 1.1

From (π/2)((π2 − r )/(π2 −8))1/3 < x <π/2, we have

π
2 −

8
(

π
2 −8

)

x3

π3
< r <π

2

and

r

π2 −4x2
−

tan x

x
>

π
2 −

8(π2−8)x3

π3

π2 −4x2
−

tan x

x
=

G(x)

x
(

π2 −4x2
)

cos x
,

where

G(x) = x

(

π
2 −

8
(

π
2 −8

)

x3

π3

)

cos x −
(

π
2 −4x2

)

sin x .

Hence, it suffices to show that G(x) > 0 for 0 < x < π/2. We show two lemmas to prove Theo-

rem 1.1.

Lemma 2.1. For 0 < x ≤ 1, we have G(x) > 0.

Proof of Lemma 2.1. By Taylor series, we have

x −
x3

6
+

x5

120
> sin x

and

cos x > 1−
x2

2
+

x4

24
−

x6

720

for 0< x <π/2. Here, for 0 < x <π/2, we obtain

G(x) >x

(

π
2 −

8
(

π
2 −8

)

x3

π3

)

(

1−
x2

2
+

x4

24
−

x6

720

)

− (π2 −4x2)

(

x −
x3

6
+

x5

120

)

=
x3

720π3
f (x) ,

where

f (x) =2880π3 −240π5 +46080x −5760π2 x −480π3x2 +24π5x2 −23040x3

+2880π2x3 +24π3x4 −π
5x4 +1920x5 −240π2x5 −64x7 +8π2x7 .

It suffices to show that f (x) > 0 for 0 < x ≤ 1. The derivative of f (x) gives

f ′(x) = 4
(

g (x)+h(x)
)

,

where

g (x) = 11520−1440π2 −240π3x +12π5x −17280x2 +2160π2x2 +24π3x3 −π
5x3
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and

h(x) = 2400x4 −300π2x4 −112x6 +14π2x6 .

First, we may show that g (x) < 0 for 0 < x ≤ 1. Here, we have

g (x) = 11520−1440π2 +x
(

−240π3 +12π5 −17280x +2160π2 x +24π3x2 −π
5x2

)

= 11520−1440π2 +x
(

−240π3 +12π5 +x
(

−17280+2160π2 + (24−π
2)π3x

))

.

From 24−π
2 > 0, we have

−17280+2160π2 + (24−π
2)π3x <−17280+2160π2 + (24−π

2)π3 ·1

∼= 4476.48

for 0 < x ≤ 1. Hence, we can get

−240π3 +12π5 +x
(

−17280+2160π2 + (24−π
2)π3x

)

<−240π3 +12π5 +x
(

−17280+2160π2 + (24−π
2)π3 ·1

)

<−240π3 +12π5 +1 ·
(

−17280+2160π2 + (24−π
2)π3 ·1

)

=−17280+2160π2 −216π3 +11π5

∼= 707.206.

Therefore, we have

g (x) < 11520−1440π2 +1 · (−17280+2160π2 −216π3 +11π5)

=−5760+720π2 −216π3 +11π5

∼=−1985.02

for 0 < x ≤ 1. On the other hand, since

h(x)= 2
(

π
2 −8

)

x4
(

−150+7x2
)

and −150+7x2 < 0 for 0 < x ≤ 1, we have h(x) < 0 for 0 < x ≤ 1. Thus, we have f ′(x) < 0 and

f (x) is strictly decreasing for 0 < x < 1. From

f (x) ≥ f (1) = 24896−3112π2 +2424π3 −217π5

∼= 2934.73,

we can obtain f (x) > 0 for 0 < x ≤ 1. ���

Lemma 2.2. For 1 < x <π/2, we have G(x) > 0.
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Proof of Lemma 2.2. By Taylor series, we have

1−
1

2

(

x −
π

2

)2
+

1

24

(

x −
π

2

)4
> sin x

and

cos x >−
(

x −
π

2

)

+
1

6

(

x −
π

2

)3

for 0< x <π/2. Here, for 0 < x <π/2, we obtain

G(x) > x

(

π
2 −

8
(

π
2 −8

)

x3

π3

)

(

−
(

x −
π

2

)

+
1

6

(

x −
π

2

)3
)

−
(

π
2 −4x2

)

(

1−
1

2

(

x −
π

2

)2
+

1

24

(

x −
π

2

)4
)

=
(π−2x)2

384π3
f (x) ,

where

f (x) = −384π3 +48π5 −π
7 −1536π2x +192π4x −4π6x

−3072πx2 +192π3x2 +16π5x2 −6144x3 +768π2x3 −16π4x3

−512πx4 +80π3x4 +1024x5 −128π2x5 .

It suffices to show that f (x) > 0 for 1 < x <π/2. We have the derivative

f ′(x) = 4
(

g (x)+h(x)
)

,

where

g (x) = −384π2 +48π4 −π
6 −1536πx +96π3x +8π5x

−4608x2 +576π2x2 −12π4x2

and

h(x) = −512πx3 +80π3x3 +1280x4 −160π2x4 .

First, we may show that g (x) > 0 for 1 < x <π/2. The derivative of g (x) is

g ′(x) =8(−192π+12π3 +π
5 −1152x +144π2 x −3π4x)

=8(−192π+12π3 +π
5 +3(−384+48π2 −π

4)x) .

From −384+48π2 −π
4 ∼=−7.66808 < 0, we have

−192π+12π3 +π
5 +3(−384+48π2 −π

4)x

>−192π+12π3 +π
5 +3(−384+48π2 −π

4) ·
π

2

=−768π+84π3 −
π

5

2
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∼= 38.7742.

Thus, g ′(x) > 0 and g (x) is strictly increasing for 1 < x <π/2. Here, we can get

g (x) > g (1) =−4608−1536π+192π2 +96π3 +36π4 +8π5 −π
6

∼= 431.576

for 1 < x <π/2. On the other hand, since

h(x)=16x3(−32π+5π3 +80x −10π2 x)

=16x3
(

−32π+5π3 +10(8−π
2)x

)

and 8−π
2 < 0, we have

−32π+5π3 +10(8−π
2)x >−32π+5π3 +10(8−π

2) ·
π

2

= 8π .

Hence, h(x) > 0 for 1 < x < π/2. Thus, we have f ′(x) > 0 and f (x) is strictly increasing for

1 < x <π/2. From

f (x) > f (1) =−5120−3584π−896π2 −112π3 +176π4 +64π5 −4π6 −π
7

∼= 1168.07,

we can obtain f (x) > 0 for 1 < x <π/2. ���

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, the proof of Theorem 1.1 is completed. ���

2.2. Proof of Theorem 1.2

We show the following lemma to prove Theorem 1.2.

Lemma 2.3. For 0 < t < 1, we have

2− t +15t 2 −5πt 2 −12t 3 +4πt 3 > 0

and

1−15t 2 +5πt 2 > 0.

Proof of Lemma 2.3. We set

f (t ) = 2− t +15t 2 −5πt 2 −12t 3 +4πt 3 .
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Then, since we have

f ′(t )=−1+30t −10πt −36t 2 +12πt 2

=−1+2(−3+π)t (−5+6t )

<−1+2(−3+π) ·1 · (−5+6 ·1)

∼=−0.716815,

f (t ) is strictly decreasing for 0 < t < 1. From f (1) = 4−π> 0, we have f (t ) > 0 for 0 < t < 1. On

the other hand, from −15+5π> 0, we have g (t ) = 1−15t 2 +5πt 2 = 1+ (−15+5π)t 2 > 1. ���

Proof of Theorem 1.2. From ((r −3)/(π−3))1/4 < x < 1, we have

(π−3)x4 +3 < r <π

and
r x

2+
p

1−x2
−arcsin x >

((π−3)x4 +3)x

2+
p

1−x2
−arcsin x = f (x) .

It suffices to show that f (x) > 0 for 0 < x < 1. The derivative of f (x) gives

f ′(x)=−2+x2 −15x4 +5πx4 +12x6 −4πx6 +2
√

1−x2
(

1−15x4 +5πx4
)

and we set t = x2 then the function f ′(x) is equal to

−(2− t +15t 2 −5πt 2 −12t 3 +4πt 3)+2
p

1− t
(

1−15t 2 +5πt 2
)

.

From Lemma 2.3, we can consider the following logarithm function: for 0 < t < 1,

g (t ) = ln(2
p

1− t )+ ln (1−15t 2 +5πt 2)

− ln (2− t +15t 2 −5πt 2 −12t 3 +4πt 3) .

The derivative of g (t ) gives

g ′(t ) =
t h(t )

2(1− t )
(

1−15t 2 +5πt 2
)(

2− t +15t 2 −5πt 2 −12t 3 +4πt 3
) ,

where

h(t ) = −181+60π+297t −99πt −105t 2 +35πt 2

−135t 3 +90πt 3 −15π2t 3 +180t 4 −120πt 4 +20π2t 4 .

We have derivative

h′(t )

π−3
=−99+70t +135t 2 −45πt 2 −240t 3 +80πt 3

=−99+70t −45(π−3)t 2 +80(π−3)t 3
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<−99+70t +80(π−3)t 3

<−99+70+80(π−3)

∼=−17.6726

Therefore, h(t ) is strictly decreasing for 0 < t < 1. From h(0) = −181 + 60π ∼= 7.49556 and

h(1) = 56−34π+5π2 ∼= −1.46613. there exists a uniquely real number t0 with 0 < t0 < 1 such

that h(t0) = 0, h(t ) > 0 for 0 < t < t0 and h(t ) < 0 for t0 < t < 1. Since we have g ′(t ) > 0 for

0 < t < t0 and g ′(t ) < 0 for t0 < t < 1, g (t ) is strictly increasing for 0 < t < t0 and g (t ) is strictly

decreasing for t0 < t < 1. From g (0) = 0 and g (1+) =−∞, there exists a uniquely real number

t1 with 0 < t1 < 1 such that g (t1) = 0, g (t )> 0 for 0 < t < t1 and g (t ) < 0 for t1 < t < 1. Therefore,

we can obtain a uniquely real number x1 with 0 < x1 < 1 such that f ′(x1) = 0, f ′(x1) > 0 for

0 < x < x1 and f ′(x1) < 0 for x1 < x < 1. Thus, f (x) is strictly increasing for 0 < x < x1 and f (x)

is strictly decreasing for x1 < x < 1. From f (0) = 0 and f (1) = 0, we have f (x) > 0 for 0 < x < 1.

This completes the proof of Theorem 1.2. ���
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