ON A TRAPEZOIDAL TYPE RULE FOR WEIGHTED INTEGRALS

ZHENG LIU

Abstract. An error runs through a paper by Cerone and Dragomir [1] is corrected. Thus enable us to get a right form of a trapezoidal type rule for weighted integrals and its applications in numerical integration.

1. Preliminaries

Some definitions are required to simplify the subsequent work.

Definition 1. Let $\omega(x)$ be a positive integrable function on [a,b]. Let μ and ν be its zeroth and first moments about zero so that

$$\mu = \int_{a}^{b} \omega(x)dx < \infty \tag{1.1}$$

and

$$\nu = \int_{a}^{b} x\omega(x)dx < \infty \tag{1.2}$$

Definition 2. P and Q will be used to denote the zeroth and first moments of $\omega(x)$ over a subinterval [a,b]. In particular, for $\lambda > 0$ the subscript a or b will be used to indicate the intervals $[a,a+\lambda]$ and $[b-\lambda,b]$ respectively. Thus, for example,

$$P_a = \int_a^{a+\lambda} \omega(x) dx$$

and

$$Q_b = \int_{b-\lambda}^b x\omega(x)dx.$$

The following theorem is due to Hayashi [2, pp.331-312].

Theorem 1. Let $h:[a,b] \to \mathbb{R}$ be a nonincreasing mapping on [a,b] and $g:[a,b] \to \mathbb{R}$ an integrable mapping on [a,b] with

$$0 \le g(x) \le A$$
, for all $x \in [a, b]$.

Received January 6, 2003; revised March 12, 2003.

 $2000\ Mathematics\ Subject\ Classification.\ 26 D15,\ 41 A55.$

Key words and phrases. Hayashi inequality, Iyengar inequality, weighted quadrature rule.

Then

$$A \int_{b-\lambda}^{b} h(x)dx \le \int_{a}^{b} h(x)g(x)dx \le A \int_{a}^{a+\lambda} h(x)dx \tag{1.3}$$

where

$$\lambda = \frac{1}{A} \int_{a}^{b} g(x) dx.$$

Hayashi's inequality (1.3) will now be used to obtain inequalities for weighted integrals to give trapezoidal type quadrature rules.

2. Trapezoidal Inequality for Weighted Integrals

Lemma 1. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on \mathring{I} (the interior of I) and $[a,b] \subset \mathring{I}$ with $M = \sup_{x \in [a,b]} f'(x) < \infty$, $m = \inf_{x \in [a,b]} f'(x) > -\infty$ and M > m. Let $\omega(x) \geq 0$ for all $x \in [a,b]$ and $\mu = \int_a^b \omega(x) dx < \infty$, $\nu = \int_a^b x \omega(x) dx < \infty$ be the zeroth and first moments of $\omega(\cdot)$ on [a,b]. If f' is integrable on [a,b] then the following inequality holds:

$$(M-m)[Q_b - (b-\lambda)P_b] \le \int_a^b \omega(x)f(x)dx - \mu(f(a) - ma) - m\nu$$

$$\le (M-m)[Q_a - (\lambda+a)P_a + \lambda\mu]$$
(2.1)

where P, Q are as describe in Definition 2 and $\lambda = \frac{b-a}{M-m}(S-m)$, $S = \frac{f(b)-f(a)}{b-a}$.

Proof. Let $h_b(x) = \int_x^b \omega(u) du$ and g(x) = f'(x) - m. Then from Hayashi's inequality (1.3)

$$L_b \le I_b \le U_b \tag{2.2}$$

where

$$I_b = \int_a^b h_b(x)(f'(x) - m)dx,$$
$$\lambda = \frac{1}{M - m} \int_a^b (f'(x) - m)dx,$$

and

$$L_b = (M - m) \int_{b-\lambda}^b h_b(x) dx,$$

$$U_b = (M - m) \int_{a+\lambda}^{a+\lambda} h_b(x) dx.$$

Now, an integration by parts gives

$$I_b = -\mu(f(a) - ma) - m\nu + \int_a^b \omega(x)f(x)dx.$$
 (2.3)

Also,

$$\lambda = \frac{b-a}{M-m}(S-m) \tag{2.4}$$

where

$$S = \frac{f(b) - f(a)}{b - a},$$

the slope of the secant over [a, b].

It should be noted that $0 < \lambda \le b - a$ since $S \le M$.

For the lower bound L_b a change of order of integration gives

$$\frac{L_b}{M-m} = \int_{b-\lambda}^b \omega(u) \int_{b-\lambda}^u dx du$$

$$= (\lambda - b)P_b + Q_b \tag{2.5}$$

where P_b and Q_b are as describe in Definition 2.

Similarly, the upper bound U_b may be obtained through a change of order of integration to give

$$\frac{U_b}{M-m} = \int_a^{a+\lambda} \omega(u) \int_a^u dx du + \int_{a+\lambda}^b \omega(u) \int_a^{a+\lambda} dx du$$

$$= \int_a^{a+\lambda} (u-a)\omega(u) du + \lambda \int_{a+\lambda}^b \omega(u) du$$

$$= Q_a - (\lambda+a)P_a + \lambda \mu \tag{2.6}$$

where P_a and Q_a are as describe in Definition 2 and μ is the zeroth moment of $\omega(x)$ on [a,b].

Using (2.2)-(2.6) the lemma is thus proved.

Lemma 2. Let the conditions be as in Lemma 1 then the following inequality holds:

$$(M-m)[Q_b - (\lambda - b)P_b - \lambda \mu] \le \int_a^b \omega(x)f(x)dx - \mu(f(b) - mb) - m\nu \le (M-m)[Q_a - (\lambda + a)P_a].$$
 (2.7)

Proof. The proof follows along similar lines to that of Lemma 1.

Let $h_a(x) = -\int_a^x \omega(u) du$ and g(x) = f'(x) - m. Then using Hayashi's inequality (1.2) gives:

$$L_a \le I_a \le U_a \tag{2.8}$$

where

$$I_a = \int_a^b h_a(x)(f'(x) - m)dx$$

and

$$L_a = (M - m) \int_{b-\lambda}^b h_a(x) dx,$$

$$U_a = (M - m) \int_a^{a+\lambda} h_a(x) dx.$$

Now, a straight forward integration by parts yields

$$I_a = -\mu(f(b) - mb) - m\nu + \int_a^b \omega(x)f(x)dx.$$
 (2.9)

Further, an interchange of the order of integration and simplification of results yields

$$\frac{L_a}{M-m} = Q_b + (\lambda - b)P_b - \lambda_\mu \tag{2.10}$$

and

$$\frac{U_a}{M-m} = Q_a - (\lambda + a)P_a. \tag{2.11}$$

Hence, using (2.8)-(2.11) the lemma is proved.

Theorem 2. Let the conditions of Lemmas 1 and 2 be maintained. Then the following inequality holds:

$$(M-m)[Q_b - (b-\lambda)P_b - \frac{\lambda}{2}\mu] \le \int_a^b \omega(x)f(x)dx - \frac{\mu}{2}[f(a) + f(b) - m(a+b)] - m\nu$$

$$\le (M-m)[Q_a - (\lambda+a)P_a + \frac{\lambda}{2}\mu]$$
(2.12)

where the P's and Q's are as defined in Definition 2.

Proof. Addition of (2.1) and (2.7) produces (2.12) upon division by 2.

Corollary 1. Let the conditions be as in the previous Lemmas and Theorem 2. Then,

$$\left| \int_{a}^{b} \omega(x) f(x) dx - \frac{\mu}{2} [f(a) + f(b) - m(a+b)] - m\nu \right| \le \frac{\mu}{2} (b-a)(S-m)$$

$$\le \frac{M-m}{2} \mu(b-a) \qquad (2.13)$$

where S is the slope of the secant on [a, b].

Proof. The corollary follows readily from (2.12) on noting that

$$Q_b = \int_{b-\lambda}^b x\omega(x)dx \ge (b-\lambda) \int_{b-\lambda}^b \omega(x)dx,$$
$$Q_a = \int_a^{a+\lambda} x\omega(x)dx \le (\lambda+a) \int_a^{a+\lambda} \omega(x)dx$$

and substituting $(M-m)\lambda = (b-a)(S-m)$.

Remark 1. Allowing $\omega(x) \equiv 1$ in (2.12) gives from Definitions 1 and 2

$$\mu = b - a$$
, $\nu = \frac{b^2 - a^2}{2}$, $P_a = P_b = \lambda$, $Q_a = \frac{\lambda}{2}(\lambda + 2a)$ and $Q_b = \frac{\lambda}{2}(2b - \lambda)$.

This reveals the lower bound to be negative the upper bound and we have the result of Cerone and Dragomir [3] as

$$\left| \int_{a}^{b} f(x) - \frac{b-a}{2} [f(a) + f(b)] \right| \le \frac{(b-a)^{2}}{2(M-m)} (S-m)(M-S)$$
 (2.14)

$$\leq \frac{M-m}{2} \left(\frac{b-a}{2}\right)^2 \tag{2.15}$$

where $S = \frac{f(b) - f(a)}{b - a}$. It should be mentioned that (2.14) is first proved by Agarwal and Dragomir [4] which is a generalization of the well known Iyengar inequality [5].

Remark 2. The bounds in (2.12) are not symmetric in general since for this to be so they must sum to zero. Let L_1 be the lower bound and U_1 be the upper bound. Then

$$U_1 + L_1 = (M - m)[(Q_b - (b - \lambda)P_b) - ((\lambda + a)P_a - Q_b)].$$

We know from the proof of Corollary 1 that $Q_b \geq (b-\lambda)P_b$ and $Q_a \leq (\lambda+a)P_a$, so $U_1 + L_1 = 0$ when $Q_b - (b-\lambda)P_b = (\lambda+a)P_a - Q_a$.

Lemma 3. Let the Conditions of Theorem 2 and Lemmas 1 and 2 hold. Then, for $\omega(x)$ symmetric about the mid-point $\frac{a+b}{2}$, the bounds in (2.12) are symmetric. Hence

$$\left| \int_{a}^{b} \omega(x) f(x) dx - \frac{\mu}{2} [f(a) + f(b) - m(a+b)] - m\nu \right|$$

$$\leq (M - m) \left[\frac{\lambda}{2} \mu - \int_{0}^{\lambda} u \omega(\lambda + a - u) du \right].$$

Proof. From Remark 2 and Definition 2, the sum of the upper and lower bounds in (2.12), U_1 and L_1 respectively is:

$$U_1 + L_1 = (M - m) \left[\int_{b - \lambda}^b [x - (b - \lambda)] \omega(x) dx - \int_a^{a + \lambda} (\lambda + a - x) \omega(x) dx \right]$$
$$= (M - m) \left[\int_0^\lambda u \omega(b - \lambda + u) du - \int_0^\lambda u \omega(\lambda + a - u) du \right].$$

Now.

$$U_1 + L_1 = (M - m) \int_0^{\lambda} u \left[\omega \left(\frac{a+b}{2} + z \right) - \omega \left(\frac{a+b}{2} - z \right) \right] du$$

where $z = \frac{b-a}{2} - \lambda + u$. Thus

$$U_1 + L_1 = (M - m) \int_{\frac{b-a}{2} - \lambda}^{\frac{b-a}{2}} \left(z + \lambda - \frac{b-a}{2} \right) \left[\omega \left(\frac{a+b}{2} + z \right) - \omega \left(\frac{a+b}{2} - z \right) \right] dz = 0$$

for $\omega(\cdot)$ symmetric about $\frac{a+b}{2}$. Hence the bounds in (2.12) are symmetric. Now, from the upper bound in (2.12), U_1 is such that

$$\frac{U_1}{M-m} = \frac{\lambda}{2}\mu - [(\lambda+a)P_a - Q_a]$$
$$= \frac{\lambda}{2}\mu - \int_a^{a+\lambda} (\lambda+a-x)\omega(x)dx$$
$$= \frac{\lambda}{2}\mu - \int_0^{\lambda} u\omega(\lambda+a-u)du.$$

Thus, the lemma is proved.

It should be noted that the expression for U_1 obtained above may be written as

$$\frac{U_1}{M-m} = \frac{\lambda}{2}\mu - \int_0^{\lambda} u\omega \left(\frac{a+b}{2} - z\right) dz$$
$$= \frac{\lambda}{2}\mu - \int_0^{\lambda} u\omega \left(z - \frac{a+b}{2}\right) dz$$

where $z=u+\frac{b-a}{2}-\lambda$. Here, we are using the fact that the weight function $\omega(\cdot)$ is symmetric about the mid-point.

Corollary 2. Let the conditions be as in the previous lemmas and Theorem 2. Then

$$(M-m)[Q_b - (b-\lambda)P_b] - \mu \left[\left(\frac{b-a}{2} \right) S + am \right] + m\nu$$

$$\leq \int_a^b \omega(x)f(x)dx - \frac{\mu}{2}[f(a) + f(b)]$$

$$\leq (M-m)[Q_a - (\lambda+a)P_a] + \mu \left[\left(\frac{b-a}{2} \right) S - bm \right] + m\nu.$$

Proof. A simple rearrangement of the terms in (2.12), collecting the coefficient of μ and using the fact that $(M-m)\lambda = (b-a)(S-m)$ produces the result.

Remark 3. Using similar approximation as those in Corollary 1, simpler bounds may be obtained viz.,

$$\begin{split} & m\nu - \mu \left[\left(\frac{b-a}{2} \right) S + am \right] \\ & \leq \int_a^b \omega(x) f(x) dx - \frac{\mu}{2} [f(a) + f(b)] \leq m\nu + \mu \left[\left(\frac{b-a}{2} \right) S - bm \right]. \end{split}$$

3. Application in Numerical Integration

In this section we will demonstrate how the results obtained in Section 2 may be utilized to obtain quadrature rules for weighted functions.

Theorem 3. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with $M=\sup_{x\in[a,b]}f'(x)<\infty$, $m=\inf_{x\in[a,b]}f'(x)>-\infty$, and M>m. Let I_n be a partition of [a,b] such that $I_n:a=x_0< x_1<\dots< x_{n-1}< x_n=b$. Further, let $\omega(x)\geq 0$ for all $x\in[a,b]$ and $\mu=\int_a^b\omega(x)dx<\infty$, $\nu=\int_a^bx\omega(x)dx<\infty$ be the zeroth and first moments of $\omega(\cdot)$ on [a,b]. Then, the following weighted quadrature rule holds

$$\int_{a}^{b} \omega(x)f(x)dx = A(\omega, f, I_n) + R(\omega, f, I_n)$$

where $A(\omega, f, I_n)$ is an approximation to the weighted integral. Namely,

$$A(\omega, f, I_n) = \frac{1}{2} \sum_{i=0}^{n-1} \mu_i [f(x_i) + f(x_{i+1}) - m(x_i + x_{i+1})] + m\nu$$
$$= \frac{1}{2} \left[\mu_0 g_0 + \mu_{n-1} g_n + \sum_{i=1}^{n-1} (u_{i-1} + \mu_i) g_i \right] + m\nu$$

with $g_i = f(x_i) - mx_i$, $u_i = \int_{x_i}^{x_{i+1}} \omega(x) dx$, $\nu_i = \int_{x_i}^{x_{i+1}} x\omega(x) dx$, i = 0, 1, ..., n-1. In addition, the remainder term $R(\omega, f, I_n)$ satisfies

$$|R(\omega, f, I_n)| \le \frac{1}{2} \sum_{i=0}^{n-1} \mu_i [f(x_{i+1}) - f(x_i) - m(x_{i+1} - x_i)]$$

$$= \frac{1}{2} \left[\mu_{n-1} g_n - \mu_0 g_0 + \sum_{i=1}^{n-1} (\mu_{i-1} - \mu_i) g_i \right]$$

$$\le \frac{M - m}{2} \sum_{i=0}^{n-1} \mu_i h_i,$$

where $h_i = x_{i+1} - x_i$.

Proof. Applying inequality (2.13) of Corollary 1 on the interval $[x_i, x_{i+1}]$ for $i = 0, 1, \ldots, n-1$ we have

$$\left| \int_{x_i}^{x_{i+1}} \omega(x) f(x) dx - \frac{\mu_i}{2} [f(x_i) + f(x_{i+1}) - m(x_i + x_{i+1})] - m\nu_i \right|$$

$$\leq \frac{\mu_i}{2} [f(x_{i+1}) - f(x_i) - m(x_{i+1} - x_i)].$$

Summing over i for i = 0, 1, ..., n - 1 gives the quadrature rule

$$A(\omega, f, I_n) = \frac{1}{2} \sum_{i=0}^{n-1} \mu_i [f(x_i) + f(x_{i+1}) - m(x_i + x_{i+1})] + m \sum_{i=0}^{n-1} \nu_i$$

$$= \frac{1}{2} \sum_{i=0}^{n-1} \mu_i(g_i + g_{i+1}) + m\nu$$

where $g_i = f(x_i) - mx_i$.

Hence

$$A(\omega, f, I_n) = \frac{1}{2} \left[\mu_0 g_0 + \mu_{n-1} g_n + \sum_{i=1}^{n-1} (\mu_{i-1} + \mu_i) g_i \right] + m\nu.$$

The remainder term $R(\omega, f, I_n)$ is such that

$$|R(\omega, f, I_n)| \le \frac{1}{2} \sum_{i=0}^{n-1} \mu_i [f(x_{i+1}) - f(x_i) - m(x_{i+1} - x_i)]$$

$$= \frac{1}{2} \sum_{i=0}^{n-1} \mu_i [g_{i+1} - g_i]$$

$$= \frac{1}{2} \left[\mu_{n-1} g_n - \mu_0 g_0 + \sum_{i=1}^{n-1} (\mu_{i-1} - \mu_i) g_i \right].$$

Using the second inequality in Corollary 1 gives

$$|R(\omega, f, I_n)| \le \frac{M - m}{2} \sum_{i=0}^{n-1} \mu_i h_i.$$

Hence the theorem is proved.

If a uniform grid is taken so that $x_i = x_0 + ih$, i = 0, 1, ..., n, then

$$|R(\omega, f, I_n)| \le \frac{M-m}{2}h\mu.$$

References

- [1] P. Cerone and S. S. Dragomir, On a weighted generalization of Iyengar type inequalities involving bounded first derivative, Mathematical Inequalities & Applications 3(2000), 35-44.
- [2] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- [3] P. Cerone and S. S. Dragomir, Lobatto type quadrature rules for functions with bounded derivative, RGMIA Research Report Collection 2(1999), 133-146.
- [4] R. P. Agarwal and S. S. Dragomir, An application of Hayashi's inequality for differentiable functions, Computers Math. Appl. **32**(1996), 95-99.
- [5] K. S. K. Iyengar, Note on an inequality, Math. Student 6(1938), 75-76.

Institute of Applied Mathematics, Faculty of Science, Anshan University of Science and Technology, Anshan 114044, Liaoning, People's Republic of China.