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ON A TRAPEZOIDAL TYPE RULE FOR WEIGHTED INTEGRALS

ZHENG LIU

Abstract. An error runs through a paper by Cerone and Dragomir [1] is corrected. Thus enable
us to get a right form of a trapezoidal type rule for weighted integrals and its applications in
numerical integration.

1. Preliminaries
Some definitions are required to simplify the subsequent work.

Definition 1. Let w(x) be a positive integrable function on [a, b]. Let p and v be its
zeroth and first moments about zero so that

b
= / w(z)dr < oo (1.1)
and

b
v= / rw(x)dr < 0o (1.2)

Definition 2. P and @ will be used to denote the zeroth and first moments of w(x)
over a subinterval [a,b]. In particular, for A > 0 the subscript a or b will be used to
indicate the intervals [a,a + \] and [b — A, b] respectively. Thus, for example,

a+A
P, = / w(zx)dx

b
Qy = /b arw(x)dz.

-

and

The following theorem is due to Hayashi [2, pp.331-312].
Theorem 1. Let h : [a,b] — R be a nonincreasing mapping on [a,b] and g : [a,b] — R

an integrable mapping on [a,b] with

0<g(x) <A, forallzxc€la,b.
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Then
b b atA
A/ h(x)dx S/ h(z)g(xz)dr < A/ h(z)dx (1.3)
b—X a a
where
1 b
A= 1 g(x)dx

Hayashi’s inequality (1.3) will now be used to obtain inequalities for weighted integrals
to give trapezoidal type quadrature rules.

2. Trapezoidal Inequality for Weighted Integrals
Lemma 1. Let f: I CR — R be a differentiable mapping on I (the interior of I)
and [a,b] C I with M = SUP,e(ap J'(2) < 00, m = inf (o f'(x) > —00 and M > m.
Let w(z) > 0 for all x € [a,b] and p = f:w(ac)da: < 00, V= fab zw(z)dr < oo be the
zeroth and first moments of w(-) on [a,b]. If [’ is integrable on [a,b] then the following
inequality holds:
b
(M = m)[Qs (b= NP < [ w(o)f(@)do — ulf(a) = ma) — my
< (M = m)[Qa — (A +a)Pa + i) (2.1)

where P, Q are as describe in Definition 2 and \ = Aﬁ’[:‘jn(S —m), S = W.

Proof. Let hy(x) = ffw(u)du and g(z) = f'(x) —m. Then from Hayashi’s inequality

(1.3)
Ly <I <Uy (2.2)
where
b
I, = hy(z)(f' (z) —m)dx,
b

A= Ml—m/a (f'(x) — m)dx,

and

b
Ly=(M —m) hy(x)dz,
b=\

a+A
Up=(M — m)/ hy(z)dx.

Now, an integration by parts gives

b
Iy = —u(f(a) —ma) — mv +/ w(z) f(x)dz. (2.3)
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Also,
b—a
)\:M_m(S—m) (2.4)
where
5 {1
b—a

the slope of the secant over [a, b].
It should be noted that 0 < A < b — a since S < M.
For the lower bound L; a change of order of integration gives
Lb b u
= w(u) dxdu
M —m b—X b—X
=A=bP+Qs (2.5)

where P, and () are as describe in Definition 2.
Similarly, the upper bound U, may be obtained through a change of order of integra-

Ub a+A u b a+A
i :/ w(u)/ d:cdqu/ w(u)/ dxdu
-m a a a
a+A

+A a
b
= / (u—a)w(u)du + X w(u)du
a a+A

= Qu— (At a)Put+ (2.6)

tion to give

where P, and @, are as describe in Definition 2 and p is the zeroth moment of w(zx) on
[a, b].
Using (2.2)-(2.6) the lemma is thus proved.

Lemma 2. Let the conditions be as in Lemma 1 then the following inequality holds:

b
(M —m)[Qp — (A—=b)P, — A\l < / w(@) f(z)dr — p(f(b) — mb) — mv
< (M = m)[Qu — (A + )P, 2.7)

Proof. The proof follows along similar lines to that of Lemma 1.

Let hq(z) = — [Tw(u)du and g(z) = f'(z) —m. Then using Hayashi’s inequality
(1.2) gives:
Lo<I,<U, (2.8)
where
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and
b
L,= (M - m) /bf)\ ha(l')d:ﬂ,
a+A
Uy = (M —m) / ha(w)dz.

Now, a straight forward integration by parts yields

b
I, = —u(f(b) —mb) — mv + / w(z) f(x)dz. (2.9)
Further, an interchange of the order of integration and simplification of results yields
L,
= A=D)P,— A 2.1
= QDR - (210)
and
Ua
T = Qu— (At a)Pu. (2.11)

Hence, using (2.8)-(2.11) the lemma is proved.

Theorem 2. Let the conditions of Lemmas 1 and 2 be maintained. Then the following
inequality holds:

b
(M = m)[@s ~ (b= NPy~ 5] < [ (o) f(ado — §17(0) + F6) ~ m{a + )] = mv

A
< (M~ m)Qu ~ (A+ @)Pu+ S (2.12)
where the P’s and Q’s are as defined in Definition 2.
Proof. Addition of (2.1) and (2.7) produces (2.12) upon division by 2.

Corollary 1. Let the conditions be as in the previous Lemmas and Theorem 2. Then,

< 5b—a)(S—m)

t/wmﬂmm—gv@+f@—mm+w—mu

o=

=

—-m
2

IN

wb—a) (2.13)
where S is the slope of the secant on [a,b].

Proof. The corollary follows readily from (2.12) on noting that
b

Qv = /bb aw(x)dr > (b— )\)/ w(z)dz,

—A b—X

Qa= /:—M zw(z)dr < (A +a) /:H\w(:c)d:c
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and substituting (M —m)X = (b — a)(S —m).
Remark 1. Allowing w(z) =1 in (2.12) gives from Definitions 1 and 2

b27a2
2

This reveals the lower bound to be negative the upper bound and we have the result of
Cerone and Dragomir [3] as

A A
w=b—a, v= , P,=P, =), Qa=§()\+2a) and Qb=§(26—)\).

b —a —a)?
[ 5@ = SR+ 0] < G s w0 - 5) (214)
2
§M2m<b2a> (2.15)

where S = W. It should be mentioned that (2.14) is first proved by Agarwal and
Dragomir [4] which is a generalization of the well known Iyengar inequality [5].

Remark 2. The bounds in (2.12) are not symmetric in general since for this to be
so they must sum to zero. Let L; be the lower bound and U; be the upper bound. Then

Ur+ Ly = (M =m)[(Qp = (b= NF) = (A +a)Pa — Q)]

We know from the proof of Corollary 1 that Q, > (b — AP, and Qu < (A + a)P,, so
Up+ L1 =0 when Qp — (b— NPy = (A + )Py — Qu.

Lemma 3. Let the Conditions of Theorem 2 and Lemmas 1 and 2 hold. Then, for
w(zx) symmetric about the mid-point “T'H’, the bounds in (2.12) are symmetric. Hence

’ u
[ @ i@ds - 515 + 70) ~ mla+ b)) - mo

A
< (M —m) lgu/o uw()\+au)du].

Proof. From Remark 2 and Definition 2, the sum of the upper and lower bounds in
(2.12), U; and L; respectively is:

b

a+A
Uy + Ly = (M — m) [/b o — (b— Nw(z)dz — / (A ta-— x)w(x)dx]

-

A A
=(M —m) [/0 uw(bf)\Jru)duf/O uw()\Jrau)du].

U1+L1(Mm)AAu[w (“;bﬂ) w<a;rbz)}du

Now,
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where z = b_T“ — A+ u.
Thus
b—a

U1+L1:(Mfm)/ ’ <z+)\ba) [w<a+b+z)w<a+bz)]dz()
oy 2 2 2

for w(-) symmetric about 2. Hence the bounds in (2.12) are symmetric.
Now, from the upper bound in (2.12), U; is such that

Ui A
== Gh A+ @R - Ql

A at+\
:§uf/ A+ a—2)w(z)dx

A A
=—,u—/ uw(A + a — u)du.
2 0

Thus, the lemma is proved.

It should be noted that the expression for U; obtained above may be written as

U A /A a+b p
M_—m 2M ), W\ )%

A /k < a+b>
= —u— uw | z — —— | dz
2 0 2

where z = u + b*T“ — A. Here, we are using the fact that the weight function w(-) is

symmetric about the mid-point.

Corollary 2. Let the conditions be as in the previous lemmas and Theorem 2. Then

(M —m)[Q@s — (b~ NPy — 1 KbT“) S—i—am} -

b
< / w(z) f(z)dz — g[f(a) + f(0)]

b—a

<01 = m)lQu~ ()R] | (150 5= bm) 4

Proof. A simple rearrangement of the terms in (2.12), collecting the coefficient of u

and using the fact that (M —m)A = (b — a)(S — m) produces the result.

Remark 3. Using similar approximation as those in Corollary 1, simpler bounds
may be obtained viz.,

s [(252) 5 an]

</ @) @)ds — L{fa) + S0 < v+ [(”T) 5- bm] .
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3. Application in Numerical Integration

In this section we will demonstrate how the results obtained in Section 2 may be
utilized to obtain quadrature rules for weighted functions.

Theorem 3. Let f : [a,b] — R be a differentiable mapping on (a,b) with M =
SUP,efqp) f'(2) < 00, m = inf,ciay f'(2) > —00, and M > m. Let I,, be a partition of
[a,b] such that I, : a =29 < 1 < -+ < Tp_1 < x, = b. Further, let w(x) > 0 for all
x € [a,b] and p = f;w(m)d:c <00, V= f; zw(x)dr < oo be the zeroth and first moments
of w(-) on [a,b]. Then, the following weighted quadrature rule holds

b
/ w(z)f(x)de = A(w, f,I,) + R(w, f, 1)

where A(w, f,1I,) is an approzimation to the weighted integral. Namely,

—

n—

Alw, f, 1) = % D uilf (@) + f@ipa) = mla; + @i)] + mv
1 r —
=5 |Ho90 + Hn—19n + ;(Uiq + pi)gi | +mv
with g; = f(x;) — mxy, w; = f;““ w(z)dz, v; = f:'“ rw(z)dr, i =0,1,...,n—1. In

addition, the remainder term R(w, f,In,) satisfies

R, 1| < 5 30wl @) = f(e) = mlain 0]
1=0

n—1
1
=5 [ﬂnlgn — Mogo + Z(uiq - Ni)gi‘|

=1

Af—-ﬂln_l
< 2 ;g;ﬁ%hi

where h; = ;41 — ;.

Proof. Applying inequality (2.13) of Corollary 1 on the interval [x;,z;41] for i =
0,1,...,n — 1 we have

[ et f@de — 1) + i) = ma )] -

< S @) = ) = m(ri — ).

Summing over ¢ for ¢ = 0,1,...,n — 1 gives the quadrature rule

n—1 n—1

Alw, f, 1) = % D wilf @) + f@ipa) = mla; +x)] +m ) v
=0

=0
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n—1
=5 Zﬂi(gi + git1) +mv
i=0
where g; = f(x;) — ma;.
Hence
1 n—1
Aw, f, In) = 5 |Hogo + Un—-19n + Z(Mz‘—1 + i) gi | +mu.
i=1

The remainder term R(w, f, I;,) is such that

[R(w, f, In)| < % D wilf(@ien) = flai) = m(zi — )]
=0

n—1
1
= ) E wilgiv1 — gil
i=0

1 n—1
=3 Hn—19n — Hogo + ;(Ni—l — 14i)Gi

Using the second inequality in Corollary 1 gives

M—m n—1
|R(w7f7 In)' S ) ZM’Lh’L
1=0

Hence the theorem is proved.

If a uniform grid is taken so that x; = zo +ih, 1 =0,1,...,n, then
M—m
[B(w, fiIn)| < —5—hp
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