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TWIN SIGNED ROMAN DOMINATION NUMBERS

IN DIRECTED GRAPHS

ASGHAR BODAGHLI, SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

Abstract. Let D be a finite simple digraph with vertex set V (D) and arc set A(D). A

twin signed Roman dominating function (TSRDF) on the digraph D is a function f :

V (D) → {−1,1,2} satisfying the conditions that (i)
∑

x∈N− [v] f (x) ≥ 1 and
∑

x∈N+ [v] f (x) ≥ 1

for each v ∈ V (D), where N−[v] (resp. N+[v]) consists of v and all in-neighbors (resp.

out-neighbors) of v , and (ii) every vertex u for which f (u) = −1 has an in-neighbor v

and an out-neighbor w for which f (v) = f (w) = 2. The weight of an TSRDF f is ω( f ) =
∑

v∈V (D) f (v). The twin signed Roman domination number γ∗
sR

(D) of D is the minimum

weight of an TSRDF on D. In this paper, we initiate the study of twin signed Roman

domination in digraphs and we present some sharp bounds on γ∗
sR

(D). In addition, we

determine the twin signed Roman domination number of some classes of digraphs.

1. Introduction

Let D be a finite simple directed graph with vertex set V (D) and arc set A(D) (briefly V

and A). The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and the size of

the digraph D respectively. A digraph without directed cycles of length 2 is an oriented graph.

For an arc (u, v) ∈ A(D), the vertex v is an out-neighbor of u and u is an in-neighbor of v ,

and we also say that v is out-dominated by u or u is in-dominated by v . For every vertex

v , we denote the set of in-neighbors and out-neighbors of v by N−(v) = N−
D (v) and N+(v) =

N+
D (v), respectively. Let N−

D [v ] = N−[v ] = N−(v)∪ {v} and N+
D [v ] = N+[v ] = N+(v)∪ {v}. We

write d+
D (v) for the outdegree of a vertex v and d−

D (v) for its indegree. The minimum and

maximum indegree and minimum and maximum outdegree of D are denoted by δ−(D) = δ−,

∆
−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆

+, respectively. A digraph D is called regular or r -

regular if δ−(D) = δ+(D) = ∆−(D) = ∆+(D) = r . For a subset S ⊆ V , let d−
S (v) (resp. d+

S (v))

denote the number of in-neighbors (resp. out-neighbors) of v in S. If X ⊆ V (D), then D[X ] is

the subdigraph induced by X . If X ⊆ V (D) and v ∈ V (D), then A(X , v) is the set of arcs from
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X to v . We denote by A(X ,Y ) the set of arcs from a subset X to a subset Y . We denote by D−1

the digraph obtained from D by reversing the arcs of D. For a real-valued function f : V −→R

the weight of f is ω( f ) =
∑

v∈V f (v), and for S ⊆V , we define f (S)=
∑

v∈S f (v), so ω( f )= f (V ).

Consult [10] for the notation and terminology which are not defined here.

A signed Roman dominating function (abbreviated SRDF) on D is defined as a function

f : V −→ {−1,1,2} such that (i) f (N−[v ])=
∑

x∈N−[v] f (x) ≥ 1 for each vertex v ∈V and (ii) every

vertex u for which f (u) =−1 has an in-neighbor v for which f (v) = 2. The weight of an SRDF

f on a digraph D is ω( f ) =
∑

v∈V (D) f (v). The signed Roman domination number γsR (D) of D

is the minimum weight of an SRDF on D. A γsR (D)-function is a signed Roman dominating

function on D of weight γsR (D). For an SRDF f on D, let Vi = Vi ( f ) = {v ∈ V | f (v) = i }.

A signed Roman dominating function f : V −→ {−1,1,2} can be represented by the ordered

partition (V−1,V1,V2) of V . For notational convenience, we let V1,2 =V1 ∪V2, |V1,2| = n1,2 and

|Vi | = ni for i = −1,1,2. Then, n1,2 = n1 +n2 and n = n1 +n2 +n−1. Furthermore, let D1,2 =
D[V1 ∪V2] be the subdigraph induced by the set V1,2 =V1 ∪V2 and let D1,2 have size m1,2. For

i = 1,2, if Vi 6= ;, let Di = D[Vi ] be the subdigraph induced by the set Vi and let Di have size

mi . Hence, m1,2 = m1 +m2 +|A(V1,V2)|+ |A(V2,V1)|. The signed Roman domination number

of a digraph was introduced by Sheikholeslami and Volkmann in [8] and has been studied in

[9].

A signed Roman dominating function of D is called a twin signed Roman dominating

function (briefly TSRDF) if it also is a signed Roman dominating function of D−1 , i.e., f (N+[v ])≥
1 for every v ∈ V and every vertex u for which f (u) = −1 has an out-neighbor v for which

f (v) = 2. The twin signed Roman domination number for a digraph D is γ∗sR (D) = min{ω( f ) |
f is a TSRDF of D}. Since every TSRDF of D is an SRDF on both D and D−1 and since the con-

stant function 1 is a TSRDF of D, we have

max{γsR (D),γsR (D−1)} ≤γ∗sR (D) ≤ n. (1.1)

In this paper, we initiate the study of the twin signed Roman domination number and estab-

lish some sharp lower bounds on twin signed Roman domination number of digraphs.

We make use of the following results in this paper.

Observation 1. If f = (V−1,V1,V2) is a TSRDF on a digraph D of order n, then

(a) n = |V1|+ |V2|+ |V−1|.

(b) Every vertex in V−1 is in-dominated and out-dominated by some vertex of V2.

(c) ω( f ) = |V1|+2|V2|− |V−1|.

(d) V1 ∪V2 is a dominating set of D.

(e) γ∗sR (D) = n −k if and only if |V2| = 2|V−1|−k.
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Proof. Since (a), (b), (c), (d) are trivial, we only prove (e). If γ∗sR (D) = n −k , then we deduce

from (a) and (c) that |V1|+|V2|+|V−1|−k = n−k = |V1|+2|V2|−|V−1| which implies that |V2| =
2|V−1|−k . The proof of the inverse is similar. ���

As we observed in (1.1), γ∗sR (D) ≥ max{γsR (D),γsR (D−1)}. Now we show that the differ-

ence γ∗sR (D)−max{γsR (D),γsR (D−1)} can be arbitrarily large.

Theorem 2. For every positive integer k, there exists a digraph D such that

γ∗sR (D)−max{γsR (D),γsR (D−1)} ≥ 4k −2.

Proof. Let k ≥ 1 be an integer, and let D be a digraph with vertex set

V (D) = {x, y,u1,u2, . . . ,u2k , v1, v2, . . . , v2k}

and arc set

A(D) = {(x,ui ), (vi ,ui ), (y, vk+i ), (uk+i , x), (uk+i , vk+i ), (vi , y) | 1 ≤ i ≤ k}.

Obviously, D ∼=D−1 and so, γsR (D) = γsR (D−1). It is easy to verify that the function f : V (D) →
{−1,1,2} defined by f (x) = f (y) = 2, f (ui ) = f (vk+i ) = −1 for 1 ≤ i ≤ k and f (u) = 1 other-

wise, is an SRDF of D and so γsR (D) ≤ 4. Now let g be a γ∗sR (D)-function. Since N+[u] =
{u} for each u ∈ {ui , vk+i | 1 ≤ i ≤ k} and N−[u] = {u} for each u ∈ {uk+i , vi | 1 ≤ i ≤ k},

we must have g (u) ≥ 1 for each u ∈ V (D) − {x, y}. It follows that γ∗sR (D) ≥ 4k + 2. Thus

γ∗sR (D)−max{γsR (D),γsR (D−1)} ≥ 4k −2, and the proof is complete. ���

Observation 3. Let D be a digraph of order n ≥ 2. Then γ∗sR (D) ≥ 3−n, with equality if and

only if D is a directed cycle of order 2.

Proof. Let f be a γ∗sR (D)-function. If f (x) ≥ 1 for each x ∈ V (D), then γ∗sR (D) ≥ n ≥ 3−n.

Suppose next that f (v) = −1 for at least one vertex v ∈ V (D). Then there exists a vertex w ∈
V (D) with f (w )= 2 and therefore γ∗sR (D) ≥ 2−(n−1) = 3−n, and the desired bound is proved.

Assume now that γ∗sR (D) = 3−n, and let f be a γ∗sR (D)-function. This implies that D

has exactly one vertex w with f (w ) = 2 and n −1 vertices y1, y2, . . . , yn−1 such that f (yi ) =−1

for 1 ≤ i ≤ n −1. By the definition, w is an in-neighbor as well as an out-neighbor of yi for

1 ≤ i ≤n −1. This implies n = 2, and thus D is a directed 2-cycle of order 2.

Conversely, if D is a directed 2-cycle of order 2 with the vertex set {v, w }, then define the

function g : V (D) → {−1,1,2} by g (v) = −1 and g (w ) = 2. Then g is a TSRDF on D of weight

1 = 3−n and so γ∗sR (D) = 3−n. ���

Observation 4. If D is a digraph of order n ≥ 3, then γ∗sR (D) ≥ 5−n.
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Proof. Let f be a γ∗sR (D)-function. If f (x) ≥ 1 for each x ∈ V (D), then γ∗sR (D) ≥ n ≥ 5−n.

Suppose next that f (v) = −1 for at least one vertex v ∈ V (D). Then there exist a vertex w ∈
V (D) with f (w ) = 2. If there is a second vertex z 6= w with f (z) = 2, then we deduce that

γ∗sR (D) ≥ 4− (n −2) ≥ 6−n. Thus we suppose that f (x) ≤ 1 for x ∈ V (D)− {w }. If f (x) = 1 for

all vertices x ∈V (D)− {v, w }, then we obtain γ∗sR (D) ≥ 1+ (n −2) ≥ 5−n. So assume that there

is a second vertex u 6= v with f (u) =−1. Then w is an in-neighbor as well as an out-neighbor

of u and v . Consequently, there exists an in-neighbor z1 and an out-neighbor z2 (z1 = z2 is

possible) such that f (z1)= f (z2) = 1. This leads to γ∗sR (D) ≥ 3− (n−2) = 5−n, and the proof is

complete. ���

2. Special families of digraphs

In this section we determine the twin signed Roman domination number of some classes

of digraphs, including directed paths, directed cycles, acyclic tournaments and circulant tour-

naments.

Proposition 5. If Pn is a directed path of order n ≥ 3, then γ∗sR (Pn) = ⌊n
2 ⌋+2.

Proof. Let Pn = v1v2 . . . vn be a directed path where (vi , vi+1) ∈ A(Pn) for 1 ≤ i ≤ n−1. First we

show that γ∗sR (Pn) ≥ ⌊n
2
⌋+2. Let f be a γ∗sR (Pn)-function. Clearly, f (v1) ≥ 1, f (vn) ≥ 1 and if

f (vi ) = −1, then f (vi+1) = f (vi−1) = 2 for each 2 ≤ i ≤ n −1. We proceed by induction on n.

Assume that n = 3. If f (v2) ≥ 1, then γ∗sR (P3) =ω( f ) ≥ 3 as desired. If f (v2) =−1, then we must

have f (v1) = f (v3) = 2 that implies γ∗sR (P3) =ω( f ) ≥ 3. If n = 4, then as above we can see that

γ∗sR (P4) ≥ 4. Let n ≥ 5, and let the statement be true for any directed path of order less than n.

If f (vn−1) ≥ 1, then clearly the function f , restricted to Pn −vn is a TSRDF and it follows from

the induction hypothesis that γ∗sR (Pn) = ω( f ) ≥ f (vn)+γ∗sR (Pn−1) ≥ 1+⌊n−1
2 ⌋+ 2 ≥ ⌊n

2 ⌋+ 2.

Assume that f (vn−1) =−1. Then f (vn) = f (vn−2) = 2 and clearly the function f , restricted to

Pn − {vn , vn−1} is a TSRDF and it follows from the induction hypothesis that γ∗sR (Pn ) =ω( f ) ≥
f (vn)+ f (vn−1)+γ∗sR (Pn−2) ≥ 1+⌊n−2

2 ⌋+2 = ⌊n
2 ⌋+2. Thus γ∗sR (Pn) ≥ ⌊n

2 ⌋+2.

Now we show that γ∗sR (Pn) ≤ ⌊n
2
⌋+ 2. If n is odd, then define g : V (Pn) −→ {−1,1,2} by

g (v2i−1) = 2 for 1 ≤ i ≤ (n + 1)/2 and g (v2i ) = −1 for 1 ≤ i ≤ (n − 1)/2, and if n is even then

define g : V (Pn) −→ {−1,1,2} by g (vn) = 1, g (v2i−1) = 2 for 1 ≤ i ≤ n/2 and g (v2i ) =−1 for 1 ≤
i ≤ (n−2)/2. It is easy to see that g is a TSRDF of Pn of weight ⌊n

2
⌋+2 and so γ∗sR (Pn) = ⌊n

2
⌋+2.

This completes the proof. ���

The proof of next result can be found in [8].

Proposition A. Let Cn be a directed cycle of order n ≥ 2. Then γsR (Cn) = n/2 when n is even

and γsR (Cn) = (n +3)/2 when n is odd.
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Proposition 6. Let Cn be a directed cycle of order n ≥ 2. Then γ∗sR (Cn) = γsR (Cn ).

Proof. By (1.1) and Proposition A, we have

γ∗sR (Cn) ≥
{

n/2 if n is even

(n +3)/2 if n is odd.

Let Cn = v1v2 . . . vn v1. If n is even, then the function g : V (Cn) −→ {−1,1,2} defined by g (v2i−1) =
−1 and g (v2i ) = 2 for 1 ≤ i ≤ n/2, is clearly a TSRDF on Cn of weight n/2. Thus γ∗sR (Cn) =
γsR (Cn) in this case. Let n be odd and define g : V (Cn) −→ {−1,1,2} by g (v2i−1) = −1 and

g (v2i ) = 2 for 1 ≤ i ≤ (n−1)/2 and g (vn)= 2. Obviously, g is a TSRDF on Cn of weight (n+3)/2

and so γ∗sR (Cn) = γsR (Cn). ���

A tournament is a digraph in which for every pair u, v of different vertices, either (u, v) ∈
A(D) or (v,u) ∈ A(D), but not both. Here we determine the exact value of the twin signed

Roman domination number for particular types of tournaments.

The acyclic tournament AT (n) of order n has the vertex set V (AT (n))= {u1,u2, . . . ,un}. An

arc goes from ui into u j if and only if i < j .

Let n be an odd positive integer such that n = 2r + 1 with a positive integer r . We de-

fine the circulant tournament CT(n) with n vertices as follows. The vertex set of CT(n) is

V (CT(n))= {u0,u1, . . . ,un−1}. For each i , the arcs are going from ui to the vertices ui+1,ui+2, . . .,

ui+r , where the indices are taken modulo n.

Proposition 7. For n ≥ 3,

γ∗sR (AT (n)) =
{

3 if n is odd

4 if n is even.

Proof. First let n be odd. Define f : V (AT(n)) → {−1,1,2} by f (u1) = f (un) = 2, f (v2i ) = −1

for 1 ≤ i ≤ (n − 1)/2 and f (x) = 1 otherwise. It is easy to see that f is a TSRDF on AT (n) of

weight 3 which implies γ∗sR (AT(n)) ≤ 3. Now we show that γ∗sR (AT(n)) ≥ 3. Assume that g is a

γ∗sR (AT(n))-function. Since N−[u1] = {u1} and N+[un] = {un}, we have g (u1) ≥ 1 and g (un)≥ 1.

If V−1 = ;, then the result is immediate. Suppose that ui ∈ V−1 for some 2 ≤ i ≤ n −1. Then

γ∗sR (AT(n))=ω(g ) = g (N−[ui ])+ g (N+[ui ])− g (ui ) ≥ 3 and hence γ∗sR (AT(n))= 3.

Now let n ≥ 4 be even. Define f : V (AT(n)) → {−1,1,2} by f (u1) = f (un) = 2, f (u2i ) = −1

for 1 ≤ i ≤ (n − 2)/2 and f (x) = 1 otherwise. It is easy to see that f is a TSRDF on AT (n) of

weight 4 which implies that γ∗sR (AT(n)) ≤ 4. To prove γ∗sR (AT(n)) ≥ 4, let g be a γ∗sR (AT(n))-

function. If V−1 = ;, then the result is immediate. Suppose that V−1 6= ;. If g (ui ) = 2 for

some 2 ≤ i ≤ n −1, then we have γ∗sR (AT(n)) = ω(g ) = g (N−[ui−1])+ g (N+[ui+1])+ g (ui ) ≥ 4

as desired. Henceforth, g (ui ) ≤ 1 for each 2 ≤ i ≤ n −1 and g (u1) = g (un) = 2. We claim that

|V−1| ≤ |V1|. Assume, to the contrary, |V−1| > |V1|. Since |V−1|+ |V1| = n −2 is even, we deduce
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that |V−1| ≥ |V1|+2. But then g (N−[un−1]) ≤ 0 which is a contradiction. Thus |V−1| ≤ |V1| and

so γ∗sR (AT(n))=ω(g ) = 2|V2|+ |V1|− |V−1| ≥ 4 as desired. Therefore γ∗sR (AT(n)) = 4 in this case.

This completes the proof. ���

The proof of the next result can be found in [8].

Proposition B. Let n = 2r +1 where r is a positive integer. If r 6= 2, then γsR (CT(n)) = 3 and

γsR (CT(5)) = 4.

Proposition 8. Let n ≥ 3 and n = 2r +1, where r is a positive integer. Then

γ∗sR (C T (n)) =
{

5 if n = 5,

3 otherwise.

Proof. First let r 6= 2. If r = 1, then the result is immediate by Proposition 6. Suppose that

r ≥ 3. By (1.1) and Proposition B, we haveγ∗sR (CT(n)) ≥ 3. If r is an odd integer, then define the

function f : V (C T (n)) → {−1,1,2} by f (u r+1
2

) = f (ur+ r+1
2

) = 2, f (ui ) =−1 for 0 ≤ i ≤ r−1
2

or r +
1 ≤ i ≤ r + r−1

2 and f (ui ) = 1 otherwise. Assume now that r is even. If r = 4, then define

f (u3) = f (u4) = f (u7) = f (u8) = 2 and f (x) =−1 otherwise. If r ≥ 6, then define the function

f : V (C T (n)) → {−1,1,2} by f (u r+2
2

) = f (u r+4
2

) = f (u 3r+2
2

) = f (u 3r+4
2

) = 2, f (ui ) = −1 for 0 ≤ i ≤
r
2 or r +1 ≤ i ≤ r + r

2 and f (ui ) = 1 otherwise. Obviously, f is a TSRDF on C T (n) with ω( f ) = 3

in each case. It follows that γ∗sR (C T (n)) = 3.

Now, let r = 2 and f be a γ∗sR (CT(5))-function. If V−1 = ;, then γ∗sR (CT(5)) ≥ 5. Let V−1 6=
;. Assume, without loss of generality, that f (u0) = −1. Since f is a TSRDF, we must have

f (u1)+ f (u2) ≥ 3 and f (u3)+ f (u4) ≥ 3. This yields γ∗sR (CT(5)) ≥ 5. Now the result follows by

(1.1) and the proof is complete. ���

3. Bounds

In this section we establish some lower sharp bounds on the twin signed Roman domi-

nation number in terms of order and size of a digraph.

Theorem 9. If D is a digraph of order n ≥ 2, then

γ∗sR (D) ≥
3
p

2

p
n −n.

Furthermore, this bound is sharp.

Proof. Let f = (V−1,V1,V2) be a γ∗sR (D)-function. If V−1 = ;, then γ∗sR (D) ≥ n ≥ 3p
2

p
n −n

for n ≥ 2. Hence we may assume that V−1 6= ;. Since each vertex of V−1 has at least one in-

neighbor and one out-neighbor in V2, it follows from the Pigeonhole Principle that we have

|A(v,V−1)|+ |A(V−1, v)| ≥
2|V−1|
|V2|

=
2n−1

n2
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for at least one vertex v ∈ V2. Therefore 2 ≤ f (N+[v ])+ f (N−[v ]) ≤ 4n2 + 2n1 − 2n−1

n2
, and so

2n2
2 +n1n2−n−1 −n2 ≥ 0. It follows from Observation 1 (part (a)) that 2n2

2 +n1n2+n1 −n ≥ 0.

Since n2 ≥ 1 and n1 is an non-negative integer, 5
3 n1n2 − 1

9 n1 ≥ 0 and n2
1 ≥ n1. Thus

2n2
2 +

8

3
n1n2 +

8

9
n2

1 −n ≥ (2n2
2 +n1n2 +n1 −n)+ (

5

3
n1n2 −

1

9
n1) ≥ 0

and thus 3n2 +2n1 ≥ 3
p

n/2. Therefore γ∗sR (D) = 2n2 +n1 −n−1 = 3n2 +2n1 −n ≥ 3
p

n/2−n,

which establishes the desired bound.

To prove the sharpness, let K ∗
k

be the complete digraph with k ≥ 1 vertices v1, v2, . . . , vk .

To each vi add 2k −1 vertices w i
1, w i

2, . . . , w i
2k−1

such that w i
j

is an in-neighbor as well as an

out-neighbor of vi for 1 ≤ i ≤ k and 1 ≤ j ≤ 2k − 1. Let D be the resulting digraph of order

2k2. Then the function f : V (D) → {−1,1,2} defined by f (v) = 2 if v ∈ V (K ∗
k

) and f (x) = −1

otherwise, is a TSRDF of weight 2k − k(2k − 1) = 3k − 2k2 = 3
p

n(D)/2) − n(D). Therefore

γ∗sR (D) ≤ 3
p

n(D)/2−n(D) and so γ∗sR (D) = 3
p

n(D)/2−n(D). ���

Next we establish some sharp bounds on the twin signed Roman domination numbers

of oriented graphs.

Theorem 10. If D is an oriented graph of order n ≥ 2, then

γ∗sR (D) ≥
3

2
(−1+

p
1+4n)−n.

Furthermore, this bound is sharp.

Proof. Let f = (V−1,V1,V2) be a γ∗sR (D)-function. If V−1 = ;, then γ∗sR (D) ≥ n ≥ 3
2 (−1 +

p
1+4n)−n for n ≥ 2. Hence, we may assume that V−1 6= ;. Since each vertex in V−1 has

at least one in-neighbor and one out-neighbor in V2, it follows from the Pigeonhole Principle

that for at least one vertex v ∈ V2 the sum of its in-neighbors and its out-neighbors is at least
2|V−1|
|V2| = 2n−1

n2
. Therefore, 2 ≤ f (N+[v ])+ f (N−[v ])≤ 2n2+n1− 2n−1

n2
+2, and so 2n2

2+n1n2−2n−1 ≥
0. It follows from Observation 1 (part (a)) that 4n2

2 +2n1n2 +4n2 +4n1 −4n ≥ 0. Since n2 ≥ 1

and n1 is an non-negative integer, 10
3 n1n2 − 4

9 n1 ≥ 0. Therefore,

4

(

n2 +
2

3
n1 +

1

2

)2

−1−4n = 4n2
2 +

16

9
n2

1 +1+
16

3
n1n2 +

8

3
n1 +4n2 −4n −1

≥ (4n2
2 +2n1n2 +4n2 +4n1 −4n)+ (

10

3
n1n2 −

4

9
n1)

≥ 0,

or equivalently, 3n2 +2n1 ≥ 3
2

(−1+
p

1+4n). Thus

γ∗sR (D) = 2n2 +n1 −n−1 = 3n2 +2n1 −n ≥
3

2
(−1+

p
1+4n)−n,
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as desired.

To prove the sharpness, let k be an odd integer and Kk a complete graph. Assume that

V (G) = {v1, v2, . . . , vk } is the vertex set of Kk and let {C1,C2, . . . ,C(k−1)/2} be a Hamiltonian fac-

torization of Kk . Suppose, without loss of generality, that C1 = (v1v2 . . . vk). Let Gk be the

graph obtained from Kk by adding k paths of length 2 between vi and vi+1 for each 1 ≤ i ≤ n,

where vn+1 = v1. Clearly, Gk has k +k2 vertices. Suppose that Hk is an orientation of Gk so

that:

1. Ci is a directed cycle in Hk for each i ,

2. (vi , vi+1) ∈ A(Hk ) for i = 1,2, . . . ,n,

3. k paths of length 2 between vi and vi+1 are directed paths from vi to vi+1.

Then the function f : V (G) → {−1,1,2} defined by f (v) = 2 if v ∈ V (Kk ) and f (x) = −1 other-

wise, is a TSRDF of weight 2k − k2 = 3
2 (−1+

p
1+4n(G))−n(G). Therefore γ∗sR (D) ≤ 3

2 (−1+
p

1+4n(G))−n(G) and so γ∗sR (D) = 3
2 (−1+

p
1+4n(G))−n(G). ���

Let f = (V−1,V1,V2) be a signed Roman dominating function on D. We recall that D1,2 =
D[V1 ∪V2] is the subdigraph induced by the set V1,2 =V1 ∪V2 and D1,2 has size m1,2. Also, for

i = 1,2, if Vi 6= ;, then Di = D[Vi ] is the subdigraph induced by the set Vi and Di has size mi .

Hence, m1,2 = m1 +m2 +|A(V1,V2)|+ |A(V2,V1)|.

Theorem 11. Let D be an oriented graph of order n and size m without isolated vertices. Then

γ∗sR (D) ≥
3n

2
−m.

Proof. Let D be an orientation of G and f = (V−1,V1,V2) be a γ∗sR (D)-function. By the defini-

tion of a TSRDF, each vertex in V−1 has at least an in-neighbor and an out-neighbor in V2, and

so |A(V−1,V12)| + |A(V12,V−1)| ≥ |A(V−1,V2)| + |A(V2,V−1)| ≥ 2n−1. For each vertex v ∈ V2, we

have f (v)+2d+
V2

(v)+d+
V1

(v)−d+
V−1

(v) = f (N+[v ]) ≥ 1, and f (v)+2d−
V2

(v)+d−
V1

(v)−d−
V−1

(v) =
f (N−[v ])≥ 1. So f (v)+2d+

V2
(v)+d+

V1
(v)−1 ≥ d+

V−1
(v) and f (v)+2d−

V2
(v)+d−

V1
(v)−1 ≥ d−

V−1
(v).

Hence,

2n−1 ≤ |A(V−1,V2)|+ |A(V2,V−1)|

=
∑

v∈V2

(d+
V−1

(v)+d−
V−1

(v))

≤
∑

v∈V2

( f (v)+2d+
V2

(v)+d+
V1

(v)−1+ f (v)+2d−
V2

(v)+d−
V1

(v)−1)

=
∑

v∈V2

(2d+
V2

(v)+2d−
V2

(v)+d+
V1

(v)+d−
V1

(v)+2 f (v)−2)
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= 4m2 +|A(V1,V2)|+ |A(V2,V1)|+2n2

= 4m12 −3(|A(V1,V2)|+ |A(V2,V1)|)−4m1 +2n2,

and so

m12 ≥
3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +2n−1 −2n2

4
.

Thus

m ≥ m12 +|A(V−1,V12)|+ |A(V12,V−1)|+m−1

≥
3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +2n−1 −2n2

4
+2n−1 +m−1

=
3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +10n−1 −2n12 +2n1

4
+m−1

=
3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +10n −12n12 +2n1

4
+m−1

or equivalently, n12 ≥ (3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +10n −4m +2n1 +4m−1)/12. So

γ∗sR (D) = 2n2 +n1 −n−1

= 3n12 − (n2 +2n1)−n−1

= 3n12 −n1 − (n1 +n2 +n−1)

= 3n12 −n1 −n

≥
(3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 +10n −4m +2n1 +4m−1)

4
−n1 −n

=
3n −2m

2
+

3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 −2n1 +4m−1

4
.

Let I = (3(|A(V1,V2)|+ |A(V2,V1)|)+4m1 −2n1 +4m−1)/4. It suffices to show that I ≥ 0, since

then γ∗sR (D) ≥ 3n−2m
2 as desired. If n1 = 0, then I = m−1 ≥ 0. Henceforth, we may assume that

n1 ≥ 1. If v ∈ V1, d+
V12

(v) = 0 and d−
V12

(v) = 0, then since there is no isolated vertex in G , we

deduce that every in-neighbor and out-neighbor of v belongs to V−1. But then f (N−[v ]) ≤ 0

and f (N+[v ]) ≤ 0, a contradiction. Hence |A(v,V1 ∪V2)| + |A(V1 ∪V2, v)| ≥ 1 for each v ∈ V1.

Therefore,

4I = 3(|A(V1,V2)|+ |A(V2,V1)|)−2n1 +4m1 +4m−1

= |A(V1,V2)|+ |A(V2,V1)|+4m−1+

+2
∑

v∈V1

(|A(v,V2)|+ |A(V2, v)|)+2
∑

v∈V1

(|A(v,V1)|+ |A(V1, v)|)−2n1

≥ |A(V1,V2)|+ |A(V2,V1)|+4m−1 > 0

Therefore γ∗sR (D) > 3n−2m
2 and the proof is complete. ���
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Corollary 12. Let T be a tree of order n ≥ 3. If
−→
T is an orientation of T , then γ∗sR (

−→
T ) ≥ ⌈n

2
⌉+1.

Proposition 5 shows that Corollary 12 and therefore Theorem 11 is sharp for odd n.

4. Twin Signed Roman domination in oriented graphs

Let G be the complete bipartite graph K3,5 with bipartite sets V1 = {v1, v2, v3} and V2 =
{u1,u2,u3,u4,u5}. Let D1 be an orientation of G such that all arcs go from V1 to V2 and D2

be an orientation of G such that A(D2) = {(vi ,u j ), (u j , vr ) | i = 1,2,r = 3 and 1 ≤ j ≤ 5}. It

is easy to see that γ∗sR (D1) = 8 and γ∗sR (D2) = 5. Thus two distinct orientations of a graph can

have distinct twin signed Roman domination numbers. Motivated by this observation, we de-

fine lower orientable twin signed Roman domination number dom∗
sR (G) and upper orientable

twin signed Roman domination number Dom∗
sR (G) of a graph G as follows:

dom∗
sR (G) =min{γ∗sR (D) | D is an orientation of G},

and

Dom∗
sR (G) = max{γ∗sR (D) | D is an orientation of G}.

Corresponding concepts have been defined and studied for orientable domination (out-dom-

ination) [7], twin signed total domination [4] and twin domination number [6].

In this section, we determine the orientable twin signed Roman domination number of

complete bipartite graphs and complete graphs. Let m ≤ n and Km,n be the bipartite graph

with bipartite sets X = {u1,u2, . . . ,um} and Y = {v1, v2, . . . , vn}.

Proposition 13. For n ≥ 2,

dom∗
sR (K2,n) =

{

3 if n = 3

2 otherwise.

Proof. The result is immediate for n = 2 by Proposition 6. Suppose that n ≥ 3. First let n ≥
4. Let D be an orientation of K2,n such that γ∗sR (D) = dom∗

sR (K2,n) and let f be a γ∗sR (D)-

function. Assume, without loss of generality, that f (u1) ≤ f (u2). It follows from f (N+[u1])≥ 1

and f (N−[u1]) ≥ 1 that

2 ≤ f (N+[u1])+ f (N−[u1])=
n
∑

i=1

f (vi )+2 f (u1) = γ∗sR (D)+ f (u1)− f (u2).

Since f (u1)≤ f (u2), we deduce that γ∗sR (D) ≥ 2.

Now we show that dom∗
sR (K2,n) ≤ 2. Let D be an orientation of K2,n such that

A(D) = {(v1,u1), (u2, v1)}∪ {(u1, v j ), (v j ,u2) | 2 ≤ j ≤n}.
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First let n be even. Define f : V (K2,n) → {−1,1,2} by f (v1) =−1, f (u1) = f (u2) = 2 and f (v j ) =
(−1) j+1 for 2 ≤ j ≤ n. It is easy to see that f is a TSRDF of D of weight 2 and so dom∗

sR (K2,n) ≤ 2

in this case. Now let n be odd. Define f : V (K2,n) → {−1,1,2} by f (v1) = f (v2) = f (v3) =
−1, f (u1) = f (u2) = f (v4) = 2 and f (v j ) = (−1) j for 5 ≤ j ≤ n. Clearly, f is a TSRDF of D of

weight 2. Hence, dom∗
sR (K2,n) = 2.

Suppose that n = 3. If f (u1) = −1 (the case f (u2) =−1 is similar), then at least for two i ,

f (vi ) = 2, say i = 1,2 and f (v3) ≥ 1. Thus we have γ∗sR (K2,3) ≥ 5−2 = 3. Henceforth, we assume

f (ui ) ≥ 1 for i = 1,2. Let f (vi ) = −1 for some 1 ≤ i ≤ 3. Then f (u1) = f (u2) = 2. Since either

d+(u1) > d−(u1) or d−(u1) > d+(u1), we have
∑3

i=1 f (vi ) ≥ −1. Thus γ∗sR (K2,3) ≥ 3. To prove

γ∗sR (K2,3)≤ 3, let D be an orientation of K2,3 such that

A(D) = {(vi ,u1), (u2, vi ) | i = 1,2}∪ {(u1, v3), (v3,u2)}.

Now define g : V (D) → {−1,1,2} by g (u1) = g (u2) = 2, f (v2) = +1 and f (v1) = f (v3) = −1.

Obviously, g is a TSRDF on D of weight 3 and the proof is complete. ���

Proposition 14. dom∗
sR (K3,3) = 5.

Proof. First we show that dom∗
sR (K3,3) ≥ 5. Let D be an orientation of K3,3 with γ∗sR (D) =

dom∗
sR (K3,3), and let f be a γ∗sR (D)-function. If f (x) ≥ 1 for each x ∈ V (K3,3), then we are

done. Assume, without loss of generality, that f (u1) =−1. Since f is a TSRDF of D, u1 has an

in-neighbor and an out-neighbor with label 2. Suppose f (v1) = f (v2) = 2. We deduce from

f (N+[u1])≥ 1 and f (N−[u1]) ≥ 1 that f (v3) ≥ 1 and so

3
∑

i=1

f (vi )≥ 5. (3.1)

If f (v3) = 1, then it follows from f (N+[v3]) ≥ 1 and f (N−[v3]) ≥ 1 that
∑3

i=1 f (ui ) ≥ 0 and so

γ∗sR (D) =
∑3

i=1 f (ui )+
∑3

i=1 f (vi ) ≥ 5 as desired. Let f (v3) = 2. We deduce from f (N+[v3]) ≥ 1

and f (N−[v3]) ≥ 1 that
∑3

i=1 f (ui ) ≥ −1 and so γ∗sR (D) =
∑3

i=1 f (ui )+
∑3

i=1 f (vi ) ≥ 5. Thus

dom∗
sR (K3,3) ≥ 5.

To prove dom∗
sR (K3,3) ≤ 5, let D be an orientation of K3,3 such that

A(D) = {(u1, vi ), (u2, vi ), (vi ,u3) | 1 ≤ i ≤ 3}

and define f : V (K3,3) → {−1,1,2} by f (u1) = f (u3) = f (v1)= 2, f (u2) = 1, f (v2) = f (v3) =−1. It

is easy to see that f is a TSRDF of D of weight 5 and so dom∗
sR (K3,3) ≤ 5. Thus dom∗

sR (K3,3) = 5

and the proof is complete. ���

Proposition 15. For n ≥ 4, dom∗
sR (K3,n) = 4.
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Proof. First we show that dom∗
sR (K3,n) ≥ 4. Let D be an orientation of K3,n such that γ∗sR (D) =

dom∗
sR (K3,n), and let f be a γ∗sR (D)-function such that |V−1∩Y | is as large as possible. Suppose

f (X ) =
∑3

i=1 f (ui ) and f (Y ) =
∑n

i=1 f (vi ). If V−1 = ;, then γ∗sR (D) = n + 3 > 4 and we are

done. Assume that V−1 6= ;. First let |V−1 ∩Y | ≥ 1. Assume, without loss of generality, that

v1 ∈ V−1 ∩Y . Since f is a TSRDF of D, v1 has an in-neighbor and an out-neighbor with label

2. Suppose f (u1) = f (u2) = 2. It follows from f (N+[u3]) ≥ 1 and f (N−[u3]) ≥ 1 that f (Y ) ≥
2−2 f (u3). Hence

γ∗sR (D) = f (X )+ f (Y ) ≥ (4+ f (u3))+ (2−2 f (u3)) = 6− f (u3) ≥ 4.

Now let |V−1 ∩Y | = 0. Then V−1 ⊆ X . Assume, without loss of generality, that u1 ∈ V−1. As

above, we may assume that f (v1) = f (v2) = 2. If f (vi ) = 1 for some 3 ≤ i ≤ n, then we must

have f (X ) ≥ 2−2 f (vi ) ≥ 0 that implies γ∗sR (D) = f (X )+ f (Y ) ≥ n +2 ≥ 6. Otherwise, we have

γ∗sR (D) = f (X )+ f (Y ) ≥ 2n −3 ≥ 5. Thus γ∗sR (D) ≥ 4 in all cases.

Now we prove that dom∗
sR (K3,n) ≤ 4. First let n be even. Let D be an orientation of K3,n

such that

A(D) = {(u1, v1), (u3, v1), (v1,u2), (v2,u3)}∪ {(vi ,u1), (u2, vi ), (u3, v j ) | 2 ≤ i ≤ n,3≤ j ≤ n}.

Define f : V (K3,n) → {−1,1,2} by f (v1) = f (v2) = −1, f (u1) = f (u2) = f (u3) = 2 and f (v j ) =
(−1) j for 3 ≤ j ≤ n. It is easy to see that f is a TSRDF of D of weight 4 and so dom∗

sR (K3,n) ≤ 4.

Hence dom∗
sR (K3,n) = 4 in this case. Now let n be odd. Let D be an orientation of K3,n such

that

A(D) = {(v1,u1), (u2, v1), (u3, v1)}∪ {(u1, vi ), (vi ,u2), (vi ,u3) | 2 ≤ i ≤ n}.

Define f : V (K3,n) → {−1,1,2} by f (v1) = f (v2) = f (v3) = f (v4) =−1, f (v5) = 2, f (u1) = f (u2) =
f (u3) = 2 and f (v j ) = (−1) j for 6 ≤ j ≤ n. It is easy to see that f is a TSRDF of D of weight 4

and so dom∗
sR (K3,n)≤ 4. Thus dom∗

sR (K3,n) = 4 and the proof is complete. ���

Proposition 16. If m = 4,5, then dom∗
sR (Km,n) =m +2.

Proof. First we show that dom∗
sR (Km,n) ≥ m + 2. Let D be an orientation of Km,n such that

γ∗sR (D) = dom∗
sR (Km,n) and let f be a γ∗sR (D)-function such that |V−1∩Y | is as large as possible.

The result is immediate if |V−1| = 0. Suppose that |V−1| ≥ 1. If |V−1 ∩ X | 6= 0 and |V−1 ∩Y | 6=
0, then f (X ) ≥ 4 and f (Y ) ≥ 4. Thus γ∗sR (Km,n ) = f (X ) + f (Y ) ≥ 8 > m + 2. Suppose that

|V−1 ∩ X | = 0 (the case |V−1 ∩Y | = 0 is similar). If |V1 ∩ X | ≥ 1, then clearly f (Y ) ≥ 0. On

the other hand, it follows from V−1 ∩Y 6= ; that |V2 ∩ X | ≥ 2 and so f (X ) ≥ m +2. Therefore

γ∗sR (Km,n) = f (X )+ f (Y ) ≥ m +2. Let f (ui ) = 2 for each 1 ≤ i ≤ m. Then we have f (X ) ≥ 2m

and f (Y ) ≥−2. Consequently, γ∗sR (Km,n) = f (X )+ f (Y ) ≥ 2m −2 ≥ m +2.
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Now we show that dom∗
sR (Km,n) ≤ m +2. Let D be an orientation of Km,n such that

A(D) = {(u1, vi ), (vi ,u2) | 1 ≤ i ≤ n}∪ {(ui , v j ) | 3 ≤ i ≤ m,1 ≤ j ≤n}.

Define f : V (Km,n) → {−1,1,2} by f (u1) = f (u2) = 2, f (ui ) = 1 for 3 ≤ i ≤ m and f (vi ) = (−1)i+1

for 1 ≤ i ≤ n when n is even, and f (v1) = 2, f (v2) = f (v3) =−1, f (vi ) = (−1)i+1 for 4 ≤ i ≤ n if

n is odd. It is easy to see that f is a TSRDF of D of weight m +2 and so dom∗
sR (Km,n) ≤ m +2.

Thus dom∗
sR (Km,n)= m +2 and the proof is complete. ���

Proposition 17. For n ≥ m ≥ 6, dom∗
sR (Km,n)= 8.

Proof. First we show that dom∗
sR (Km,n) ≥ 8. Let D be an orientation of Km,n such that γ∗sR (D) =

dom∗
sR (Km,n), and let f = (V−1,V1,V2) be a γ∗sR (D)-function. If V−1 = ;, we are done. Let

V−1 6= ;. If |V−1 ∩ X | 6= 0 and |V−1 ∩Y | 6= 0, then clearly f (X ) ≥ 4 and f (Y ) ≥ 4 that implies

γ∗sR (Km,n) = f (X )+ f (Y ) ≥ 8. Suppose that |V−1 ∩Y | = 0 (the case |V−1 ∩ X | = 0 is similar).

Since each vertex with label -1 has an in-neighbor and an out-neighbor with label 2, we have

f (Y ) ≥ n +2. If V1 ∩Y 6= ;, then f (X ) ≥ 0 that implies γ∗sR (Km,n) = f (X )+ f (Y ) ≥ n +2 ≥ 8.

Otherwise, f (vi ) = 2 for each 1 ≤ i ≤ n. It follows that f (Y )≥ 2n and f (X ) ≥−2. Consequently,

γ∗sR (Km,n) = f (X )+ f (Y ) ≥ 2n −2 > 8.

To prove dom∗
sR (Km,n) ≤ 8, let D be an orientation of Km,n such that

A(D) = {(ui , v1), (v2,ui ) | 1 ≤ i ≤ m}∪ {(u1, v j ), (v j ,u2), (ui , v j ) | 3 ≤ i ≤ m,3 ≤ j ≤n}.

If m and n are even, then define f : V (Km,n) → {−1,1,2} by f (u1) = f (u2) = f (v1) = f (v2) =
2, f (ui ) = (−1)i for each 3 ≤ i ≤ m and f (v j ) = (−1) j for each 3 ≤ j ≤ n. If m and n are

odd, then define f : V (Km,n) → {−1,1,2} by f (u1) = f (u2) = f (u3) = f (v1) = f (v2) = f (v3) = 2,

f (u4) = f (u5) = f (v4) = f (v5) = −1, f (ui ) = (−1)i for each 6 ≤ i ≤ m and f (v j ) = (−1) j for

each 6 ≤ j ≤ n. If m is even and n is odd (the case m is odd and n is even is similar), then

define f : V (Km,n) → {−1,1,2} by f (u1) = f (u2) = f (v1)= f (v2) = f (v3) = 2, f (v4) = f (v5) =−1,

f (ui ) = (−1)i for each 3 ≤ i ≤ m and f (v j ) = (−1) j for each 6 ≤ j ≤ n. It is easy to see that f

is a TSRDF of D of weight 8 and so dom∗
sR (Km,n) ≤ 8. Thus dom∗

sR (Km,n) = 8 and the proof is

complete. ���

Proposition 18. If G is a bipartite graph of order n, then Dom∗
sR (G) = n.

Proof. Let X and Y be the partite sets of G . Let D be an orientation of G such that A(D) =
{(u, v) | u ∈ X and v ∈ Y } and let f be a γ∗sR (D)-function. Since d−(u) = 0 for each u ∈ X and

d+(v) = 0 for each v ∈ Y , we must have f (x) ≥ 1 for each x ∈V (G). Hence, Dom∗
sR (G) ≥ω( f )=

n and the result follows by (1.1). ���
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Proposition 19. For n ≥ 3,

dom∗
sR (Kn) =

{

4 if n = 4,6

3 otherwise.

Proof. Let V (Kn) = {v1, v2, . . . , vn} be the vertex set of Kn . First let n 6= 4,6. Assume that D is an

orientation of Kn such that γ∗sR (D) = dom∗
sR (Kn) and f is a γ∗sR (D)-function. If V−1 = ;, then

clearly dom∗
sR (Kn) ≥ 3. Hence, we may suppose that f (vi ) = −1 for some i , say i = 1. Since

f (N−[v1])≥ 1 and f (N+[v1])≥ 1, we have that

dom∗
sR (Kn) = f (N+[v1])+ f (N−[v1])− f (v1) ≥ 1+1− (−1) = 3.

Now we show that dom∗
sR (Kn) ≤ 3. If n is odd, then dom∗

sR (Kn) ≤ 3 by Proposition 7. Let n be

even and D be an orientation of Kn such that

A(D) ={(v1, v3), (v1, v5), (v1, v7), (v2, v1), (v2, v6), (v2, v8), (v3, v2, ), (v3, v4), (v3, v6), (v3, v8),

(v4, v1), (v4, v2), (v4, v6), (v4, v7), (v5, v2), (v5, v3), (v5, v4), (v5, v6), (v5, v7), (v5, v8),

(v6, v1), (v7, v2), (v7, v3), (v7, v6), (v7, v8), (v8, v1), (v8, v4), (v8, v6)}

∪ {(v j , vi ), (vi , v2) | j = 1,3, . . . ,8 and 9 ≤ i ≤ n}∪ {(vi , vi+1), (v j , v j+1), (vi , v j ),

(vi , v j+1), (vi+1, v j ), (vi+1, v j+1) | 9 ≤ i < j ≤ n and i , j are odd}.

Define f : V (Kn) → {−1,1,2} by f (v1) = f (v2) = f (v3) = 2, f (v4) = 1, f (v5) = f (v6) = f (v7) =
f (v8) =−1 and f (vi ) = (−1)i+1 for 9 ≤ i ≤ n. It is easy to verify that f is a TSRDF of D of weight

3 and so dom∗
sR (Kn) ≤ 3. Thus dom∗

sR (Kn)= 3 in this case.

It is not hard to see that dom∗
sR (K4) = 4. Let n = 6. It follows from Proposition 7 that

dom∗
sR (K6) ≤ 4. Assume that D is an orientation of K6 such that γ∗sR (D) = dom∗

sR (K6) and

f is a γ∗sR (D)-function. Since ω( f ) ≤ 4, we have V−1 6= ;. Since each vertex with label −1

must have an in-neighbor and an out-neighbor with label 2, we may assume, without loss

of generality, that f (v1) = −1 and f (v2) = f (v3) = 2. As above, we obtain dom∗
sR (K6) ≥ 3 that

implies f (v4)+ f (v5)+ f (v6) ≥ 0. If f (v4)+ f (v5)+ f (v6) = 0, then, without loss of generality,

we may suppose that f (v4) = f (v5) = −1, f (v6) = 2. The digraph induced by v1, v4, v5 has

at least one vertex with in-degree one and out-degree one, say x. Since f (N+[x]) ≥ 1 and

f (N−[x]) ≥ 1, the vertex x should have at least two in-neighbors and two out-neighbors in

{v2, v3, v6} that is impossible. Thus f (v4)+ f (v5)+ f (v6) ≥ 1 that implies dom∗
sR (K6) ≥ 4. This

completes the proof. ���
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