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COEFFICIENTS OF STRONGLY ALPHA-CONVEX AND
STRONGLY GAMMA STARLIKE FUNCTIONS

D. K. THOMAS

Abstract. Let the function f be analytic in D = {z : |z| < 1} and be given by f(z) = z+
> ,a,z". For 0 < <1, denote by ¢ (B) and .#* (f) the classes of strongly convex func-
tions and strongly starlike functions respectively. For0<sa<1,0<f<land0<y <1,
let 4 (a, B) be the class of strongly alpha-convex functions defined by

zf'(2) zf"(2) Jr,B
@ Jraa+ (2 )”

and .« * (y, ) the class of strongly gamma starlike functions defined by

arg[(l—a)

Tb

s (52 1+ 22| < 2

f(2) (@)
We give sharp bounds for the initial coefficients of f € .4 (a, 8) and f € .4 " (y, B), and for

the initial coefficients of the inverse function f~! of f € .4 (a, f) and f € .4 *(y, B). These
results generalise, improve and unify known coefficient inequalities for € () and & * ().

1. Introduction

Let </ be the class of analytic normalized functions f, defined in the unit disk D = {z :
|z| < 1} given by

[e 0]
f@=z+) apz", (1.1)
n=2
and let . be the subset of < consisting of functions which are univalent in D.

Suppose that f € of. Then f is respectively strongly starlike, or strongly convex of order
BinDif, and only if, for0< <1,

arg(l + —Zf (Z)) <

f(2)

T
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2

P

, or .
2

zf'(2)
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We denote these classes by .#* () and € (f) respectively, noting that .#*(1) is the class of
starlike functions, and €(1) the class of convex functions, so that both .#*(f) and €4 (f) are
subsets of .#.

For anyreal number a, denote by .# (a) the class of alpha-convex, or so-called Ma-Minda

functions [9] defined for z € D by the relationship

! 1
f( ) a(1+Zf (2)

f( ) f'(2)

Thus .4 (0) gives the starlike functions, and .# (1) the convex functions.

Re [(1- )| >0

It was shown in [10] that for all real a, the class . («) forms a subset of the starlike func-
tions, and is therefore a subset of .. Finding sharp bounds for all coefficients of f € .4 (a)
has received much attention, see e.g. [6, 11, 13], however a complete solution appears still to

be an open problem.

Similarly, for y = 0, denote by .4 *(y) the class of gamma starlike functions, (see e.e. [4, 5,
71) defined for z € D by the relationship

zf'(@\1-v(.  zf"(2)\r

R >0,
e[( f(z) ) ( f’(z) ) ]

so that again .4 *(0) gives the starlike functions, and .4 *(1) the convex functions. It was

shown in [7] (and elsewhere), that for y = 0, .4 (y) € &#*(1). However since the definition

of functions in .4 * (y) requires dealing with powers, relatively little is known about the coef-

ficients of functions in .4 * (y).

In the interests of unifying known results for f € #*(f) and f € €(f), we will assume
throughout this paper that 0 < @ < 1, and 0 < y < 1. We also remark that for « and y outside

[0,1], the methods used in this paper give incomplete results.
Preliminaries

Strongly Alpha-Convex Functions of Order (3

Let f be analytic in D and be given by (1.1). For0< a <1 and 0 < § < 1, we say that f is
strongly alpha-convex of order 8 in D if, and only if,

zf’(z) f”(z) ‘
1.2
f(z) f’( z) )] (12)

We denote this class of functions by .# (a, f), so that .#(0,8) = ¥ *(B) and .4 (1, B) = € ().
Also since 4 () c #* (1), then so must .# (a, f) c F*(1) forO0<sa<land0<f<1.

arg[(l—a)
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Strongly Gamma Starlike Functions of Order 3

Let f be analytic in D and be given by (1.1). For0 <y <1 and 0 < 8 < 1, we say that f is
strongly gamma starlike of order § in D if, and only if,

‘arg[(w)l_y(l . zf”(z))}’] - np (1.3)

f@ f'(2) 2
We denote this class of functions by .4 * (y, B), so that again .4 * (0, 8) = .&*(B) and .4 *(1, B) =
% (B). As was pointed out above, since .4 *(y) c #*(1), it follows that .« * (y, ) < ¥ *(1) for
0<sy<landO<f<]1.

An early paper of Brannan, Clunie and Kirwan [3] established sharp upper bounds for | a|
and |as| when f € &#*(f), and more recently Ali and Singh [2] obtained sharp upper bounds
for |ay|. Since f € €(P) if, and only if, zf' € &*(B), these results provide immediate sharp
upper bounds for these coefficients when f € € (). Since the analysis necessitates the use of
powers, finding bounds for the remaining coefficients appears difficult.

In Theorems 2.1 and 2.2, we give sharp bounds for |ay|, |as| and |ay| for f € 4 («, ) and
for f € .« (y, B), thus unifying and generalising the above results.

For any univalent function f, there exists an inverse function f~! defined on some disc

lw| < ro(f), with Taylor expansion

Flw) =w+ A0 + Az0® + Ayw* + - (1.4)

A classical theorem of Lowner [8] established sharp upper bounds for the modulus of the
inverse coefficients A, for all n = 2 when f € .#, which in particular solves the problem for
functions in . * (1).

For #*(B) and € (B) with 0 < 8 < 1, the problem of finding bounds for the inverse co-
efficients again seems far from simple, the only sharp results to date being those found for
f e #*(B) by Ali [1] for |A,| when n = 2,3 and 4, and in a recent paper [12], similar sharp
bounds for the inverse coefficients of functions in € (8).

In Theorems 3.1 and 3.2, we will find sharp bounds for the initial coefficients of the in-
verse function f ~1 of functions in . («, B) and .4 * (y, B), again unifying the above results.

Lemmas

Denote by 22, the class of functions p satisfying Re p(z) > 0 for z € D, with Taylor series

p(z)=1+)_ ppz".

n=1

We shall use the following [1].
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Lemma l1.1. Ifpe 2P, then|p,| <2 for n=1, and

2= Epi|<maxiz, 2u-1p =4 % OSE=2
- < Imax y - =
p2 2191 # 2|pu—1|, elsewhere.

Lemmal.2. Letpe . [f0<sB<1land B2B—-1)< D < B, then

|p3—ZBp1p2+Dp?| < 2.

Lemmal.3. Ifpe2?, and0< B<1, then

|p3 —ZBp1p2+Bp?| < 2.
Lemma 1.4. I[fp e 2P, then

|ps—1+p) +pp}| < maxi2, 212p— 11} = > et
p3 HWp1p2+ppy|s »cleft a 212u — 1|, elsewhere.

In the following, the methods of proof develop those employed in [1, 2], and in the inter-

ests of brevity, we omit much of the elementary algebra.

Main Results
2. Coefficients of functions in .4 (a, ) and .« * (y, )
Theorem 2.1. Let f € .4 (a, B) and be given by (1.1), then

B 1+ a)?

R 0<fps——,
1+2a h (3+8a+a?)

2p
|a2|<Ta, laz| < 1
B+8a+a’)p?  (I+a)? -1
1+ @21 +2a) (3+8a+a2)\'6\ '
2p
3(1+3a)’

0<p<Aia),
las| < <

Ia,p), Ml@<ps<l,

20+ ) (1 +2a
where A1 (a) = ( gt ) and
17 +109a + 219a2 + 59a3 + 4a*

2B(1+176% +2a*(1+26%) + a3 (7 +59p2) +3a? (3 +734°) + a(5 + 1095?))
91+ a)3(1+2a)(1+3a) '

I'(a,p) =

All the inequalities are sharp.
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Proof. From (1.2) we can write

zf'(2) zf"(@, g
1-a) @ +a(l+ ) ) =p2)",
and so equating coefficients we obtain
az =—'Bp1 )
l1+a
. :ﬁ«—1+a%—1+ﬁ)+3ﬁ+a«2+ﬁﬁnp§+m1+aﬁpg
3 41+ @2(1+2a) ’
_BU-15+17p% +4a*(2-3B+ f*) +a’ (28 - 87 +596°) p}
= 36(1+ )3 (1+2a)(1 +3a) o)
. BBa*(12-51+73p%) +a(20-936+1096%) p3 '
36(1+a)3(1+2a)(1 +3a)
+6ﬁﬂﬁwﬂ%—2+4a%—l+ﬁ)+5ﬂ+3a@2+7ﬂnp”h
36(1+a)3(1+2a)(1+3a)
12B(1+a)3(1+2a) p3
36(1+a)(1+2a)(1+3a)

Since |p1| < 2, the first inequality follows at once, and is sharp when p; = 2.

Next note that the coefficient of p% in the expression for as in (2.1) is positive provided
1+ a)?

(3+8a+a?)
2and |py| < 2.

< f <1, and so the second inequality for |as| in Theorem 2.1 follows since | p;| <

For the first inequality we apply Lemma 1.1. Write

B
a3:2u+2aﬂp2_gpﬂ’
with
_1+a*(1-p)-3p+2a(1-4p)
= (1+a)? ’
so that 0 < u < 2 provided 0 < 8 < ﬂ. The inequality now follows on applying
(B+8a+a?)

Lemma 1.1.

The first inequality for |as| is sharp when p; = 0 and p» = 2, and the second inequality is
sharp when p; = pp =2.

20+a)(1+2a)

(1+4a)5+a)’
p? are positive when Aj(a) < f < 1. So using |p,| <2 for n = 1,2 and 3, gives the second

For ay, first write A (a) = and note that the coefficients of p;, p» and

inequality for |a4| when Aj(a) < < 1.
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Next write
B 3
=—" |p3—2B Dip; |,
as 3(1+3a)(l73 1p1p2+ 1!71)
with
_ 2+4a*(1-P)-5p+3a2-70)
= 4(1+a)(1+2a) ’
and )
Dy = 4-1 176% +4a*(2 - 2
. 12(1+a)3(1+20c)( 56+17p% +4a*(2-3B+ )

+a3 (28— 876 +596%) +3a* (12515 + 73 %)
+a(20-936 + 109/32)).

Then0< By <1if0< < Aj(a), and B;(2B; —1) < D; < By when 0 < < Aj(a). Since A (a) <
A1 (@), applying Lemma 1.2 now gives the first inequality for |ay].

Thus it remains to prove the second inequality on the interval A; (a) < < A ().

We use Lemma 1.3, and the inequality |p;| < 2, noting that 0 < B; <1 and D; - B; =0,
when A; (@) < f < Aj(a) to obtain

|p3 —2B1p1p2+ D1p; = |ps—2B1p1p2 + B1p; + (D1 - B1)p3|
<2+8(D; - By),
from which the result follows.

The first inequality for |ay| is sharp when p; = p» =0 and p3 = 2, and the second inequal-

ity is sharp when p; = p, = p3 =2. g

We note at this point that when 8 = 1, the results in Theorem 2.1 correspond to the esti-

mates found in [6], when a = 0 to those in [2, 3], and when a = 1 to those in [12].
Theorem 2.2. Let f € 4" (y, B) and be given by (1.1), then

B
1+2y’

2
< (1+7)
3(1+3y)

<p

’

2p
|az|<T, las| < 1
Y 362(1+3y) (1+7)?

, <f<],
1+71)2(1+2y)" 3(1+3y)
2p .
m,0<ﬁ<Al(Y),

lasl < 1§

Ti(r,p), Aj(n<p<l,
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21 +5y+9y2 +7y3 + 294
where AY (y) = Aoy +9y" 7y +27)
17 +108y +283y?

IE ) = 2B+ 7y +2y* + 172 +y(5+ 1086%) + y*(9 +2836%))
1= 9(1+7)3(1+2y)(1+3y) :

and

All the inequalities are sharp.

Proof. From (1.3) we can write
zf'(@\1-v(.  zf"(@)\r s
( @ ) (1+ 5 ) =p(2)".

Equating coefficients gives

B
az 2%,
o _B-a +yY2+y(2-90)-3P)p? +2(1+7)*p2)

41 +7)2(1+2y) '

Ba+8y* +y3(28-750) - 156+ 17p%) p}
= 36(1+7)3(1+2y)(1+3Y) o)

. B(y(20— 1056 +108%) + y*(36 — 1650 + 283 2)) p}

36(1+7)3(1+2y)(1+3y)
_6p0 +7)%(2+4y? +y(6-25B) —58) p1 p2
36(1+7Yy)3(1+2y)(1+3y)
12B8(1+7)3 (1 +2y)p3

36(1+7)3(1+2y)(1+3y)

Since |p1| < 2, the first inequality is trivial, and is sharp when p; = 2.

For as we use Lemma 1.1 as follows.

Write
g P ( _A+y*+y(2-9B)-3p) 2)
ST 200+2y) 2(1+7)? 1
1+y?+y(2-96)-3 1+7y)?
Taking u = v 2'6) ﬁ,wenotethatos,usthenO<,6si,andso
I+7v) 3(1+3y)

the first inequality for |as| follows. Applying Lemma 1.1 when p lies outside [0,2] gives the

second inequality.

The first inequality for |as| is sharp when p; = 0 and p» = 2, and the second inequality is

sharp when p; = p» =2.
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For the first inequality for a4 we again use Lemma 1.2. Write

ﬁ * * 3
=" (p3-2B D;p3),
a, 3(1+3)) (P3 1P1p2 + 1P1)
where
B - 2+4y? +y(6-258)) —5p
- 4(1+7)(1+2y) '
and )
D} = 4+8y* +vy%(28 - 75B) — 158 + 178
! 12(1+y)3(1+2y)( v pI=15p+170
+y(20 - 1055+ 108%) +1%(36 — 1658 +283/32)).
20 +y)(1+2
Write A7 (y) = 20T PUE2Y) o 0< BF < 1when0< < A7(y), and Bf 2B —1) < D7 <

5(1+5Y)
B when 0 < B <A (y).

Since A} (y) < Aj(y), applying Lemma 1.2 now gives the first inequality for |a4| on the interval
0< B<AT(Y).

Since —2B;{ and Dj are positive when A} (y) < f <1 and Aj(y) < < 1, the second in-
equality for |a4| now follows (on using the inequalities |p,| < 2 for n = 1,2 and 3) provided
A} (y) < f <1, and noting that A} (y) < AT (y).

Thus it remains to prove the second inequality for |a4| on the interval A} (y) < < A7 (y).
Since 0 < By <1when0< < Aj(y),and Df = Bf when Af(y) < <1,
|3 =2B{ p1p2+ D} pi| = |ps = 2B{ pip2 + By pi + (D} = B)py|
<2+8(D} - B}),

when AJ (y) < < Aj(y), which on substituting for D} and B}, and using Lemma 1.3, proves
the inequality for |a4| on the interval A (y) < B < A (y).

The first inequality for |a4| is sharp when p; = p» = 0 and p3 = 2, and the second inequal-
ity is sharp when p; = p, = p3 =2. g

We note at this point that when § = 1, the results in Theorem 2.2 complete the partial
solution given in [4]. When a = 0 the results correspond to those in [2, 3], and when ¢ =1 to
those in [12].
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3. Inverse coefficients of functions in .4 (a, §) and .4 * (y, B)

First note that since f ( f -1 (w)) = w, comparing coefficients in (1.1) and (1.4) gives

A2 =—day,
A3 :2a§—a3, (3-1)

Ay = —5&3 +5axas — ay.

Theorem 3.1. Let f € .4 (a, B) and the coefficients of the inverse function f~! be given by (1.4),
then

p 0<ﬁsﬂ
28 1+2a’ G+8a—a?)’
|A2|<m, |Asz] < <
G+8a—-a®)f (1+a)? <p<1
1+a)2(1+2a)’ G+8a—-a?) =
2p
m,0<ﬂ$A2(a),

| Agl < <

l(a,p), Axla)<p<l,

where
A (a)_\/ 1+a)(1+2a)
2TV 3141220+ 8702 — 3803 + 2a°
and
Iy, f) = 2B(1+626% +a(7-768%) + a* (2 +46%) +3a?(3+586%) + a (5 + 244 4°))
S 91+ a)3(1 +2a)(1 +3a) '
All the inequalities are sharp.
Proof. From (2.1) and (3.1) we obtain
Ay =— el ,
1+a
B - (=1+B)+56+2a(1 +4p))p] —2(1+a)* py)
3T 40+ @21 +2a) ’
e 2+156+31% +a®(14+24f-386%) +2a* (236 + ) p3
* __ﬁ( 18(1+ )3 (1+2a)(1+3a)
Ba?(6+27p+296%) +2a(5+336+615%)p3
18(1+a)3(1+2a)(1+3a)

+6(1+a)2(—1+2a2(—1+,6)—5,6—3a(1+4,6))p1p2+ P3 )
18(1+a)3(1+2a)(1+3a) 31+3a)/
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Again, the first inequality is trivial, and is sharp when p; = 2.

For A3 we write

B ( (1+a?(1-p)+56+2a(l+4p)) 2)
2= )

Ay =—
3T T+ 2a) 2(1+a)? P1

1+a?(1-B)+5B+2a(1+4p)
(1+a)?

and apply Lemma 1.1 with pg = . Then since 0 < u < 2 when

1+ a)?

0<fps——
h (5+8a—a?)

, the inequalities for | As| follows at once.

The first inequality for | As| is sharp when p; = 0 and p; = 2, and the second inequality is
sharp when p; = pp =2.

To find the bound for the first inequality for A4, we follow the same method employed in
Theorem 2.1 and use Lemma 1.2 so that

B 3
Ay=—L (ps—2B D,pd),
4 3(1+3a)(l93 2p1p2 + 2]91)
with
B — 1+2a%(1—B)+5B8+3a(l+4p)
2" 20+ @)1 +2a) ’
and
D, = ! (2+15ﬁ+31ﬁ2+a3(14+24/3—38ﬂ2)
6(1+a)(1+2a)
+2a4(2—3[3+,62)+3a2(6+27,6+29,32)+2a(5+33,6+61,32)).
l+a)(1+2
Write A (@) = L FDUH20) o 0< By <1 provided 0 < f < Ay(a), and Bs(2By—1) < Dy <

(5+12a—2a?)
B, when 0 < f < Az(a). Then since Ay(a) < Az(a), applying Lemma 1.2 now gives the first
inequality for | A4l.
For the second inequality we use Lemma 1.3 and write
p3s—2Bap1p2+ Dapl = ps—2Byp1pa + By + (D2 — Bo) py.
Since D2 = B when Ay (a) < f<1,and 0 < B, <1 provided 0 < f < Az(a), the second in-

equality for | A4| follows on the interval A, (a) < < Ay(a) by applying Lemma 1.3, and noting
that [p;] < 2.

Thus it remains to establish the second inequality for |A4| on the interval Az (a) < < 1.
We apply Lemma 1.4 as follows.

Write
ps—2Bap1pa+Dapi = p3s— (1 + W p1pa+up; + (D2 - Wp;.
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(5+12a-2a%)p
Q+a)(1+2a)

so that u=

Then 0 < p < 1is false on Ay(a) < f <1, and so since D, = p on 0 < § < 1, applying
Lemma 1.4 and using the fact that |p;| < 2, we obtain the second inequality for |A4] on the
interval A, (a) < 8 < 1, after substituting for D, and p.

The first inequality for | A4] is sharp when p; = p» = 0 and p3 = 2, and the second inequal-
ity is sharp when p; = p, = p3 =2. O

We note again that when f = 1, the results in Theorem 3.1 correspond to the estimates

found in [6], when a = 0 to those in [1], and when a =1 to those in [12].

Theorem 3.2. Let f € .4 * (y, B) and the coefficients of the inverse function f~! be given by (1.4),
then

2
p , 0<p< a+n°
28 1+2y 5+7y
|A2|<r, |A3] < 1
Y 5+77)p° (1+y)2<ﬂ<1
A+y2a+2y)’ 5+7y =
2p
—,0 <AZ(Y),
30 +3)) <B<A;)
[Ag] < A
;r,B), A(p<p<l,
1 3
where A3 (y) = 1+7) an
31+37y
. 2B(1+3y? + 73 + 6282 +y(3+746))
9(1+7)3(1+3Yy)
All the inequalities are sharp.
Proof. From (2.2) and (3.1) we obtain
Ay =— bpn )
1+y
_ Bla+y*+5B+y@2+7P)p —2(+7)p2)
3T A1 +p2(1+2y) ’
s _ﬁ((2+2y3+15/3+31/32+3y2(2+5/3)+y(6+30/3+37/32)p§
‘e 18(1+7)3(1+3y)

_(A+y+5Ppipa  ps )
31+ +3y) 30+3n/
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Again, the first inequality is trivial, and is sharp when p; = 2.

For A3 we write

P (L+y?+58+y2+7P) ,
A= S0+2 ( - 2 1)'
) 2(1+7y)
1+y2+5B8+y(2+7pB)

Now apply Lemma 1.1 with p = ,sothat 0 < pu <2 provided 0 < 8 <

(1+7)?
5+7y

(1+7)?

and the inequalities for | As| follow as before.

The first inequality for | As| is sharp when p; = 0 and p; = 2, and the second inequality is
sharp when p; = p» =2.

For A4 we follow the same methods as previously used, and write

ﬁ * * 3
Ay = ———|p3—-2B D;pi),
4 3(1_‘_3},)(!73 2 P1p2+ 2!’1)
with
« _ 1+y+5p
27 204y
and
Df = 2+2y3 +156+316% +3y2(2+5P) + y(6+ 308 +376°)
27 6(1+7)3 '
1+y

Write AJ (y) = — Then 0 < B; < 1provided 0 < f < A5 (y), and B; (2B, —1) < D < B; when
0 < B <A (y). Since Aj(y) < A;(y), applying Lemma 1.2 now gives the first inequality for | A].

For the second inequality we again use Lemma 1.3, and write

ps — 2B} p1p2+ D3 p} = p3—2B; p1p2 + B} p}
+(D; - B))ps.

Since D; = B; when Aj(y) < f <1, and 0 < B; <1 when 0 < § < Aj(y), the second
inequality for | A4| follows on the interval A (y) < A; (y) on applying Lemma 1.3, and noting
that [p;| < 2.

Thus it remains to prove the second inequality on the interval AJ(y) < f< 1.
We proceed as in the proof of Theorem 3.1, and again write
ps—2B; p1pa+ D p} = ps— (L+ @ p1p2 + upi + (D — ) p}.

5
with u = % Since 0 < p < 11is false on the interval A (y) < < 1, applying Lemma 1.4, and

substituting for D; and p, gives the inequality for | A4| on this interval.
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The first inequality for | A4| is sharp when p; = p» = 0 and p3 = 2, and the second inequal-

ity is sharp when p; = p, = p3 =2. O

We note that when f = 1, the results in Theorem 3.2 complete the partial solution given

in [5]. When a = 0, the results correspond to those [1], and when a =1 to those in [12].

(1]
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