COEFFICIENTS OF STRONGLY ALPHA-CONVEX AND STRONGLY GAMMA STARLIKE FUNCTIONS

D. K. THOMAS

Abstract

Let the function f be analytic in $\mathbb{D}=\{z:|z|<1\}$ and be given by $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n}$. For $0<\beta \leq 1$, denote by $\mathscr{C}(\beta)$ and $\mathscr{S}^{*}(\beta)$ the classes of strongly convex functions and strongly starlike functions respectively. For $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $0 \leq \gamma \leq 1$, let $\mathscr{M}(\alpha, \beta)$ be the class of strongly alpha-convex functions defined by

$$
\left.\left\lvert\, \arg \left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}\right)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right.\right] \left\lvert\,<\frac{\pi \beta}{2}\right.,
$$

and $\mathscr{M}^{*}(\gamma, \beta)$ the class of strongly gamma starlike functions defined by

$$
\left|\arg \left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right]\right|<\frac{\pi \beta}{2} .
$$

We give sharp bounds for the initial coefficients of $f \in \mathscr{M}(\alpha, \beta)$ and $f \in \mathscr{M}^{*}(\gamma, \beta)$, and for the initial coefficients of the inverse function f^{-1} of $f \in \mathscr{M}(\alpha, \beta)$ and $f \in \mathscr{M}^{*}(\gamma, \beta)$. These results generalise, improve and unify known coefficient inequalities for $\mathscr{C}(\beta)$ and $\mathscr{S}^{*}(\beta)$.

1. Introduction

Let \mathscr{A} be the class of analytic normalized functions f, defined in the unit disk $\mathbb{D}=\{z$: $|z|<1\}$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1.1}
\end{equation*}
$$

and let \mathscr{S} be the subset of \mathscr{A} consisting of functions which are univalent in \mathbb{D}.
Suppose that $f \in \mathscr{A}$. Then f is respectively strongly starlike, or strongly convex of order β in \mathbb{D} if, and only if, for $0<\beta \leqslant 1$,

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi \beta}{2}, \quad \text { or } \quad\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\pi \beta}{2} .
$$

Received January 28, 2015, accepted October 4, 2016.

We denote these classes by $\mathscr{S}^{*}(\beta)$ and $\mathscr{C}(\beta)$ respectively, noting that $\mathscr{S}^{*}(1)$ is the class of starlike functions, and $\mathscr{C}(1)$ the class of convex functions, so that both $\mathscr{S}^{*}(\beta)$ and $\mathscr{C}(\beta)$ are subsets of \mathscr{S}.

For any real number α, denote by $\mathscr{M}(\alpha)$ the class of alpha-convex, or so-called Ma-Minda functions [9] defined for $z \in \mathbb{D}$ by the relationship

$$
\operatorname{Re}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0 .
$$

Thus $\mathscr{M}(0)$ gives the starlike functions, and $\mathscr{M}(1)$ the convex functions.
It was shown in [10] that for all real α, the class $\mathscr{M}(\alpha)$ forms a subset of the starlike functions, and is therefore a subset of \mathscr{S}. Finding sharp bounds for all coefficients of $f \in \mathscr{M}(\alpha)$ has received much attention, see e.g. [6, 11, 13], however a complete solution appears still to be an open problem.

Similarly, for $\gamma \geqslant 0$, denote by $\mathscr{M}^{*}(\gamma)$ the class of gamma starlike functions, (see e.e. [4, 5, 7]) defined for $z \in \mathbb{D}$ by the relationship

$$
\operatorname{Re}\left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right]>0
$$

so that again $\mathscr{M}^{*}(0)$ gives the starlike functions, and $\mathscr{M}^{*}(1)$ the convex functions. It was shown in [7] (and elsewhere), that for $\gamma \geqslant 0, \mathscr{M}^{*}(\gamma) \subset \mathscr{S}^{*}(1)$. However since the definition of functions in $\mathscr{M}^{*}(\gamma)$ requires dealing with powers, relatively little is known about the coefficients of functions in $\mathscr{M}^{*}(\gamma)$.

In the interests of unifying known results for $f \in \mathscr{S}^{*}(\beta)$ and $f \in \mathscr{C}(\beta)$, we will assume throughout this paper that $0 \leqslant \alpha \leqslant 1$, and $0 \leqslant \gamma \leqslant 1$. We also remark that for α and γ outside $[0,1]$, the methods used in this paper give incomplete results.

Preliminaries

Strongly Alpha-Convex Functions of Order β

Let f be analytic in \mathbb{D} and be given by (1.1). For $0 \leqslant \alpha \leqslant 1$ and $0<\beta \leqslant 1$, we say that f is strongly alpha-convex of order β in \mathbb{D} if, and only if,

$$
\begin{equation*}
\left|\arg \left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]\right|<\frac{\pi \beta}{2} . \tag{1.2}
\end{equation*}
$$

We denote this class of functions by $\mathscr{M}(\alpha, \beta)$, so that $\mathscr{M}(0, \beta)=\mathscr{S}^{*}(\beta)$ and $\mathscr{M}(1, \beta)=\mathscr{C}(\beta)$. Also since $\mathscr{M}(\alpha) \subset \mathscr{S}^{*}(1)$, then so must $\mathscr{M}(\alpha, \beta) \subset \mathscr{S}^{*}(1)$ for $0 \leqslant \alpha \leqslant 1$ and $0<\beta \leqslant 1$.

Strongly Gamma Starlike Functions of Order β

Let f be analytic in \mathbb{D} and be given by (1.1). For $0 \leqslant \gamma \leqslant 1$ and $0<\beta \leqslant 1$, we say that f is strongly gamma starlike of order β in \mathbb{D} if, and only if,

$$
\begin{equation*}
\left|\arg \left[\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}\right]\right|<\frac{\pi \beta}{2} \tag{1.3}
\end{equation*}
$$

We denote this class of functions by $\mathscr{M}^{*}(\gamma, \beta)$, so that again $\mathscr{M}^{*}(0, \beta)=\mathscr{S}^{*}(\beta)$ and $\mathscr{M}^{*}(1, \beta)=$ $\mathscr{C}(\beta)$. As was pointed out above, since $\mathscr{M}^{*}(\gamma) \subset \mathscr{S}^{*}(1)$, it follows that $\mathscr{M}^{*}(\gamma, \beta) \subset \mathscr{S}^{*}(1)$ for $0 \leqslant \gamma \leqslant 1$ and $0<\beta \leqslant 1$.

An early paper of Brannan, Clunie and Kirwan [3] established sharp upper bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ when $f \in \mathscr{S}^{*}(\beta)$, and more recently Ali and Singh [2] obtained sharp upper bounds for $\left|a_{4}\right|$. Since $f \in \mathscr{C}(\beta)$ if, and only if, $z f^{\prime} \in \mathscr{S}^{*}(\beta)$, these results provide immediate sharp upper bounds for these coefficients when $f \in \mathscr{C}(\beta)$. Since the analysis necessitates the use of powers, finding bounds for the remaining coefficients appears difficult.

In Theorems 2.1 and 2.2, we give sharp bounds for $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for $f \in \mathscr{M}(\alpha, \beta)$ and for $f \in \mathscr{M}^{*}(\gamma, \beta)$, thus unifying and generalising the above results.

For any univalent function f, there exists an inverse function f^{-1} defined on some disc $|\omega|<r_{0}(f)$, with Taylor expansion

$$
\begin{equation*}
f^{-1}(\omega)=\omega+A_{2} \omega^{2}+A_{3} \omega^{3}+A_{4} \omega^{4}+\cdots \tag{1.4}
\end{equation*}
$$

A classical theorem of Löwner [8] established sharp upper bounds for the modulus of the inverse coefficients A_{n} for all $n \geqslant 2$ when $f \in \mathscr{S}$, which in particular solves the problem for functions in $\mathscr{S}^{*}(1)$.

For $\mathscr{S}^{*}(\beta)$ and $\mathscr{C}(\beta)$ with $0<\beta<1$, the problem of finding bounds for the inverse coefficients again seems far from simple, the only sharp results to date being those found for $f \in \mathscr{S}^{*}(\beta)$ by Ali [1] for $\left|A_{n}\right|$ when $n=2,3$ and 4 , and in a recent paper [12], similar sharp bounds for the inverse coefficients of functions in $\mathscr{C}(\beta)$.

In Theorems 3.1 and 3.2, we will find sharp bounds for the initial coefficients of the inverse function f^{-1} of functions in $\mathscr{M}(\alpha, \beta)$ and $\mathscr{M}^{*}(\gamma, \beta)$, again unifying the above results.

Lemmas

Denote by \mathscr{P}, the class of functions p satisfying $\operatorname{Re} p(z)>0$ for $z \in \mathbb{D}$, with Taylor series

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} .
$$

We shall use the following [1].

Lemma 1.1. If $p \in \mathscr{P}$, then $\left|p_{n}\right| \leqslant 2$ for $n \geqslant 1$, and

$$
\left|p_{2}-\frac{\mu}{2} p_{1}^{2}\right| \leqslant \max \{2,2|\mu-1|\}= \begin{cases}2, & 0 \leqslant \mu \leqslant 2 \\ 2|\mu-1|, & \text { elsewhere }\end{cases}
$$

Lemma 1.2. Let $p \in \mathscr{P}$. If $0 \leqslant B \leqslant 1$ and $B(2 B-1) \leqslant D \leqslant B$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right| \leqslant 2
$$

Lemma 1.3. If $p \in \mathscr{P}$, and $0 \leqslant B \leqslant 1$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}\right| \leqslant 2
$$

Lemma 1.4. If $p \in \mathscr{P}$, then

$$
\left|p_{3}-(1+\mu) p_{1} p_{2}+\mu p_{1}^{3}\right| \leqslant \max \{2,2|2 \mu-1|\}= \begin{cases}2, & 0 \leqslant \mu \leqslant 1 \\ 2|2 \mu-1|, & \text { elsewhere } .\end{cases}
$$

In the following, the methods of proof develop those employed in [1, 2], and in the interests of brevity, we omit much of the elementary algebra.

Main Results

2. Coefficients of functions in $\mathscr{M}(\alpha, \beta)$ and $\mathscr{M}^{*}(\gamma, \beta)$

Theorem 2.1. Let $f \in \mathscr{M}(\alpha, \beta)$ and be given by (1.1), then

$$
\begin{aligned}
& \left|a_{2}\right| \leqslant \frac{2 \beta}{1+\alpha}, \quad\left|a_{3}\right| \leqslant\left\{\begin{array}{lc}
\frac{\beta}{1+2 \alpha}, & 0<\beta \leqslant \frac{(1+\alpha)^{2}}{\left(3+8 \alpha+\alpha^{2}\right)}, \\
\frac{\left(3+8 \alpha+\alpha^{2}\right) \beta^{2}}{(1+\alpha)^{2}(1+2 \alpha)}, & \frac{(1+\alpha)^{2}}{\left(3+8 \alpha+\alpha^{2}\right)} \leqslant \beta \leqslant 1,
\end{array}\right. \\
& \left|a_{4}\right| \leqslant\left\{\begin{array}{l}
\frac{2 \beta}{3(1+3 \alpha)}, 0<\beta \leqslant \Delta_{1}(\alpha), \\
\Gamma_{1}(\alpha, \beta), \quad \Delta_{1}(\alpha) \leqslant \beta \leqslant 1,
\end{array}\right.
\end{aligned}
$$

$$
\text { where } \begin{aligned}
\Delta_{1}(\alpha) & =\sqrt{\frac{2(1+\alpha)^{3}(1+2 \alpha)}{17+109 \alpha+219 \alpha^{2}+59 \alpha^{3}+4 \alpha^{4}}} \text { and } \\
\Gamma_{1}(\alpha, \beta) & =\frac{2 \beta\left(1+17 \beta^{2}+2 \alpha^{4}\left(1+2 \beta^{2}\right)+\alpha^{3}\left(7+59 \beta^{2}\right)+3 \alpha^{2}\left(3+73 \beta^{2}\right)+\alpha\left(5+109 \beta^{2}\right)\right)}{9(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} .
\end{aligned}
$$

All the inequalities are sharp.

Proof. From (1.2) we can write

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=p(z)^{\beta}
$$

and so equating coefficients we obtain

$$
\begin{align*}
a_{2}= & \frac{\beta p_{1}}{1+\alpha}, \\
a_{3}= & \frac{\beta\left(\left(-1+\alpha^{2}(-1+\beta)+3 \beta+\alpha(-2+8 \beta)\right) p_{1}^{2}+2(1+\alpha)^{2} p_{2}\right)}{4(1+\alpha)^{2}(1+2 \alpha)}, \\
a_{4}= & \frac{\beta\left(4-15 \beta+17 \beta^{2}+4 \alpha^{4}\left(2-3 \beta+\beta^{2}\right)+\alpha^{3}\left(28-87 \beta+59 \beta^{2}\right)\right) p_{1}^{3}}{36(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} \\
& +\frac{\beta\left(3 \alpha^{2}\left(12-51 \beta+73 \beta^{2}\right)+\alpha\left(20-93 \beta+109 \beta^{2}\right)\right) p_{1}^{3}}{36(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} \tag{2.1}\\
& +\frac{6 \beta(1+\alpha)^{2}\left(-2+4 \alpha^{2}(-1+\beta)+5 \beta+3 \alpha(-2+7 \beta)\right) p_{1} p_{2}}{36(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} \\
& +\frac{12 \beta(1+\alpha)^{3}(1+2 \alpha) p_{3}}{36(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} .
\end{align*}
$$

Since $\left|p_{1}\right| \leqslant 2$, the first inequality follows at once, and is sharp when $p_{1}=2$.
Next note that the coefficient of p_{1}^{2} in the expression for a_{3} in (2.1) is positive provided $\frac{(1+\alpha)^{2}}{\left(3+8 \alpha+\alpha^{2}\right)} \leqslant \beta \leqslant 1$, and so the second inequality for $\left|a_{3}\right|$ in Theorem 2.1 follows since $\left|p_{1}\right| \leqslant$ 2 and $\left|p_{2}\right| \leqslant 2$.

For the first inequality we apply Lemma 1.1. Write

$$
a_{3}=\frac{\beta}{2(1+2 \alpha)}\left(p_{2}-\frac{\mu}{2} p_{1}^{2}\right),
$$

with

$$
\mu=\frac{1+\alpha^{2}(1-\beta)-3 \beta+2 \alpha(1-4 \beta)}{(1+\alpha)^{2}}
$$

so that $0 \leqslant \mu \leqslant 2$ provided $0<\beta \leqslant \frac{(1+\alpha)^{2}}{\left(3+8 \alpha+\alpha^{2}\right)}$. The inequality now follows on applying Lemma 1.1.

The first inequality for $\left|a_{3}\right|$ is sharp when $p_{1}=0$ and $p_{2}=2$, and the second inequality is sharp when $p_{1}=p_{2}=2$.

For a_{4}, first write $\Lambda_{1}(\alpha)=\frac{2(1+\alpha)(1+2 \alpha)}{(1+4 \alpha)(5+\alpha)}$, and note that the coefficients of p_{1}, p_{2} and p_{1}^{3} are positive when $\Lambda_{1}(\alpha) \leqslant \beta \leqslant 1$. So using $\left|p_{n}\right| \leqslant 2$ for $n=1,2$ and 3 , gives the second inequality for $\left|a_{4}\right|$ when $\Lambda_{1}(\alpha) \leqslant \beta \leqslant 1$.

Next write

$$
a_{4}=\frac{\beta}{3(1+3 \alpha)}\left(p_{3}-2 B_{1} p_{1} p_{2}+D_{1} p_{1}^{3}\right),
$$

with

$$
B_{1}=\frac{2+4 \alpha^{2}(1-\beta)-5 \beta+3 \alpha(2-7 \beta)}{4(1+\alpha)(1+2 \alpha)}
$$

and

$$
\begin{aligned}
D_{1}= & \frac{1}{12(1+\alpha)^{3}(1+2 \alpha)}\left(4-15 \beta+17 \beta^{2}+4 \alpha^{4}\left(2-3 \beta+\beta^{2}\right)\right. \\
& +\alpha^{3}\left(28-87 \beta+59 \beta^{2}\right)+3 \alpha^{2}\left(12-51 \beta+73 \beta^{2}\right) \\
& \left.+\alpha\left(20-93 \beta+109 \beta^{2}\right)\right) .
\end{aligned}
$$

Then $0 \leqslant B_{1} \leqslant 1$ if $0<\beta \leqslant \Lambda_{1}(\alpha)$, and $B_{1}\left(2 B_{1}-1\right) \leqslant D_{1} \leqslant B_{1}$ when $0<\beta \leqslant \Delta_{1}(\alpha)$. Since $\Delta_{1}(\alpha)<$ $\Lambda_{1}(\alpha)$, applying Lemma 1.2 now gives the first inequality for $\left|a_{4}\right|$.

Thus it remains to prove the second inequality on the interval $\Delta_{1}(\alpha) \leqslant \beta \leqslant \Lambda_{1}(\alpha)$.
We use Lemma 1.3, and the inequality $\left|p_{1}\right| \leqslant 2$, noting that $0 \leqslant B_{1} \leqslant 1$ and $D_{1}-B_{1} \geqslant 0$, when $\Delta_{1}(\alpha) \leqslant \beta \leqslant \Lambda_{1}(\alpha)$ to obtain

$$
\begin{aligned}
\mid p_{3}-2 B_{1} p_{1} p_{2}+D_{1} p_{1}^{3} & =\left|p_{3}-2 B_{1} p_{1} p_{2}+B_{1} p_{1}^{3}+\left(D_{1}-B_{1}\right) p_{1}^{3}\right| \\
& \leqslant 2+8\left(D_{1}-B_{1}\right),
\end{aligned}
$$

from which the result follows.
The first inequality for $\left|a_{4}\right|$ is sharp when $p_{1}=p_{2}=0$ and $p_{3}=2$, and the second inequality is sharp when $p_{1}=p_{2}=p_{3}=2$.

We note at this point that when $\beta=1$, the results in Theorem 2.1 correspond to the estimates found in [6], when $\alpha=0$ to those in [2, 3], and when $\alpha=1$ to those in [12].

Theorem 2.2. Let $f \in \mathscr{M}^{*}(\gamma, \beta)$ and be given by (1.1), then

$$
\begin{aligned}
\left|a_{2}\right| \leqslant \frac{2 \beta}{1+\gamma}, & \left|a_{3}\right| \leqslant
\end{aligned} \begin{array}{ll}
\frac{\beta}{1+2 \gamma}, & 0<\beta \leqslant \frac{(1+\gamma)^{2}}{3(1+3 \gamma)} \\
\frac{3 \beta^{2}(1+3 \gamma)}{(1+\gamma)^{2}(1+2 \gamma)}, & \frac{(1+\gamma)^{2}}{3(1+3 \gamma)} \leqslant \beta \leqslant 1,
\end{array}, \begin{array}{ll}
\frac{2 \beta}{3(1+3 \gamma)}, 0<\beta \leqslant \Delta_{1}^{*}(\gamma), \\
\Gamma_{1}^{*}(\gamma, \beta), & \Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant 1
\end{array}, ~ \$
$$

where $\Delta_{1}^{*}(\gamma)=\sqrt{\frac{2\left(1+5 \gamma+9 \gamma^{2}+7 \gamma^{3}+2 \gamma^{4}\right)}{17+108 \gamma+283 \gamma^{2}}}$ and

$$
\Gamma_{1}^{*}(\gamma, \beta)=\frac{2 \beta\left(1+7 \gamma^{3}+2 \gamma^{4}+17 \beta^{2}+\gamma\left(5+108 \beta^{2}\right)+\gamma^{2}\left(9+283 \beta^{2}\right)\right)}{9(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} .
$$

All the inequalities are sharp.
Proof. From (1.3) we can write

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\gamma}=p(z)^{\beta}
$$

Equating coefficients gives

$$
\begin{align*}
a_{2}= & \frac{\beta p_{1}}{1+\gamma}, \\
a_{3}= & \frac{\beta\left(-\left(1+\gamma^{2}+\gamma(2-9 \beta)-3 \beta\right) p_{1}^{2}+2(1+\gamma)^{2} p_{2}\right)}{4(1+\gamma)^{2}(1+2 \gamma)}, \\
a_{4}= & \frac{\beta\left(4+8 \gamma^{4}+\gamma^{3}(28-75 \beta)-15 \beta+17 \beta^{2}\right) p_{1}^{3}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \tag{2.2}\\
& +\frac{\beta\left(\gamma\left(20-105 \beta+108 \beta^{2}\right)+\gamma^{2}\left(36-165 \beta+283 \beta^{2}\right)\right) p_{1}^{3}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \\
& -\frac{6 \beta(1+\gamma)^{2}\left(2+4 \gamma^{2}+\gamma(6-25 \beta)-5 \beta\right) p_{1} p_{2}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} \\
& +\frac{12 \beta(1+\gamma)^{3}(1+2 \gamma) p_{3}}{36(1+\gamma)^{3}(1+2 \gamma)(1+3 \gamma)} .
\end{align*}
$$

Since $\left|p_{1}\right| \leqslant 2$, the first inequality is trivial, and is sharp when $p_{1}=2$.
For a_{3} we use Lemma 1.1 as follows.
Write

$$
a_{3}=\frac{\beta}{2(1+2 \gamma)}\left(p_{2}-\frac{\left(1+\gamma^{2}+\gamma(2-9 \beta)-3 \beta\right)}{2(1+\gamma)^{2}} p_{1}^{2}\right) .
$$

Taking $\mu=\frac{1+\gamma^{2}+\gamma(2-9 \beta)-3 \beta}{(1+\gamma)^{2}}$, we note that $0 \leqslant \mu \leqslant 2$ when $0<\beta \leqslant \frac{(1+\gamma)^{2}}{3(1+3 \gamma)}$, and so the first inequality for $\left|a_{3}\right|$ follows. Applying Lemma 1.1 when μ lies outside [0,2] gives the second inequality.

The first inequality for $\left|a_{3}\right|$ is sharp when $p_{1}=0$ and $p_{2}=2$, and the second inequality is sharp when $p_{1}=p_{2}=2$.

For the first inequality for a_{4} we again use Lemma 1.2. Write

$$
a_{4}=\frac{\beta}{3(1+3 \gamma)}\left(p_{3}-2 B_{1}^{*} p_{1} p_{2}+D_{1}^{*} p_{1}^{3}\right)
$$

where

$$
B_{1}^{*}=\frac{\left.2+4 \gamma^{2}+\gamma(6-25 \beta)\right)-5 \beta}{4(1+\gamma)(1+2 \gamma)}
$$

and

$$
\begin{aligned}
D_{1}^{*}= & \frac{1}{12(1+\gamma)^{3}(1+2 \gamma)}\left(4+8 \gamma^{4}+\gamma^{3}(28-75 \beta)-15 \beta+17 \beta^{2}\right. \\
& \left.+\gamma\left(20-105 \beta+108 \beta^{2}\right)+\gamma^{2}\left(36-165 \beta+283 \beta^{2}\right)\right) .
\end{aligned}
$$

Write $\Lambda_{1}^{*}(\gamma)=\frac{2(1+\gamma)(1+2 \gamma)}{5(1+5 \gamma)}$. Then $0 \leqslant B_{1}^{*} \leqslant 1$ when $0<\beta \leqslant \Lambda_{1}^{*}(\gamma)$, and $B_{1}^{*}\left(2 B_{1}^{*}-1\right) \leqslant D_{1}^{*} \leqslant$ B_{1}^{*} when $0<\beta \leqslant \Delta_{1}^{*}(\gamma)$.

Since $\Delta_{1}^{*}(\gamma)<\Lambda_{1}^{*}(\gamma)$, applying Lemma 1.2 now gives the first inequality for $\left|a_{4}\right|$ on the interval $0 \leqslant \beta \leqslant \Delta_{1}^{*}(\gamma)$.

Since $-2 B_{1}^{*}$ and D_{1}^{*} are positive when $\Lambda_{1}^{*}(\gamma) \leqslant \beta \leqslant 1$ and $\Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant 1$, the second inequality for $\left|a_{4}\right|$ now follows (on using the inequalities $\left|p_{n}\right| \leqslant 2$ for $n=1,2$ and 3) provided $\Lambda_{1}^{*}(\gamma) \leqslant \beta \leqslant 1$, and noting that $\Delta_{1}^{*}(\gamma) \leqslant \Lambda_{1}^{*}(\gamma)$.

Thus it remains to prove the second inequality for $\left|a_{4}\right|$ on the interval $\Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant \Lambda_{1}^{*}(\gamma)$.
Since $0 \leqslant B_{1}^{*} \leqslant 1$ when $0<\beta \leqslant \Lambda_{1}^{*}(\gamma)$, and $D_{1}^{*} \geqslant B_{1}^{*}$ when $\Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant 1$,

$$
\begin{aligned}
\left|p_{3}-2 B_{1}^{*} p_{1} p_{2}+D_{1}^{*} p_{1}^{3}\right| & =\left|p_{3}-2 B_{1}^{*} p_{1} p_{2}+B_{1}^{*} p_{1}^{3}+\left(D_{1}^{*}-B_{1}^{*}\right) p_{1}^{3}\right| \\
& \leqslant 2+8\left(D_{1}^{*}-B_{1}^{*}\right),
\end{aligned}
$$

when $\Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant \Lambda_{1}^{*}(\gamma)$, which on substituting for D_{1}^{*} and B_{1}^{*}, and using Lemma 1.3, proves the inequality for $\left|a_{4}\right|$ on the interval $\Delta_{1}^{*}(\gamma) \leqslant \beta \leqslant \Lambda_{1}^{*}(\gamma)$.

The first inequality for $\left|a_{4}\right|$ is sharp when $p_{1}=p_{2}=0$ and $p_{3}=2$, and the second inequality is sharp when $p_{1}=p_{2}=p_{3}=2$.

We note at this point that when $\beta=1$, the results in Theorem 2.2 complete the partial solution given in [4]. When $\alpha=0$ the results correspond to those in [2, 3], and when $\alpha=1$ to those in [12].
3. Inverse coefficients of functions in $\mathscr{M}(\alpha, \beta)$ and $\mathscr{M}^{*}(\gamma, \beta)$

First note that since $f\left(f^{-1}(\omega)\right)=\omega$, comparing coefficients in (1.1) and (1.4) gives

$$
\begin{align*}
& A_{2}=-a_{2} \\
& A_{3}=2 a_{2}^{2}-a_{3} \tag{3.1}\\
& A_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4}
\end{align*}
$$

Theorem 3.1. Let $f \in \mathscr{M}(\alpha, \beta)$ and the coefficients of the inverse function f^{-1} be given by (1.4), then

$$
\begin{aligned}
& \left|A_{2}\right| \leqslant \frac{2 \beta}{1+\alpha}, \quad\left|A_{3}\right| \leqslant\left\{\begin{array}{lc}
\frac{\beta}{1+2 \alpha}, & 0<\beta \leqslant \frac{(1+\alpha)^{2}}{\left(5+8 \alpha-\alpha^{2}\right)}, \\
\frac{\left(5+8 \alpha-\alpha^{2}\right) \beta^{2}}{(1+\alpha)^{2}(1+2 \alpha)}, & \frac{(1+\alpha)^{2}}{\left(5+8 \alpha-\alpha^{2}\right)} \leqslant \beta \leqslant 1,
\end{array}\right. \\
& \left|A_{4}\right| \leqslant\left\{\begin{array}{l}
\frac{2 \beta}{3(1+3 \alpha)}, 0<\beta \leqslant \Delta_{2}(\alpha), \\
\Gamma_{2}(\alpha, \beta), \quad \Delta_{2}(\alpha) \leqslant \beta \leqslant 1,
\end{array}\right.
\end{aligned}
$$

where

$$
\Delta_{2}(\alpha)=\sqrt{\frac{(1+\alpha)^{3}(1+2 \alpha)}{31+122 \alpha+87 \alpha^{2}-38 \alpha^{3}+2 \alpha^{4}}}
$$

and

$$
\Gamma_{2}(\alpha, \beta)=\frac{2 \beta\left(1+62 \beta^{2}+\alpha^{3}\left(7-76 \beta^{2}\right)+\alpha^{4}\left(2+4 \beta^{2}\right)+3 \alpha^{2}\left(3+58 \beta^{2}\right)+\alpha\left(5+244 \beta^{2}\right)\right)}{9(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} .
$$

All the inequalities are sharp.

Proof. From (2.1) and (3.1) we obtain

$$
\begin{aligned}
A_{2}= & -\frac{\beta p_{1}}{1+\alpha}, \\
A_{3}= & \frac{\beta\left(\left(1-\alpha^{2}(-1+\beta)+5 \beta+2 \alpha(1+4 \beta)\right) p_{1}^{2}-2(1+\alpha)^{2} p_{2}\right)}{4(1+\alpha)^{2}(1+2 \alpha)}, \\
A_{4}= & -\beta\left(\frac{\left(2+15 \beta+31 \beta^{2}+\alpha^{3}\left(14+24 \beta-38 \beta^{2}\right)+2 \alpha^{4}\left(2-3 \beta+\beta^{2}\right)\right) p_{1}^{3}}{18(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}\right. \\
& +\frac{\left(3 \alpha^{2}\left(6+27 \beta+29 \beta^{2}\right)+2 \alpha\left(5+33 \beta+61 \beta^{2}\right)\right) p_{1}^{3}}{18(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)} \\
& \left.+\frac{6(1+\alpha)^{2}\left(-1+2 \alpha^{2}(-1+\beta)-5 \beta-3 \alpha(1+4 \beta)\right) p_{1} p_{2}}{18(1+\alpha)^{3}(1+2 \alpha)(1+3 \alpha)}+\frac{p_{3}}{3(1+3 \alpha)}\right) .
\end{aligned}
$$

Again, the first inequality is trivial, and is sharp when $p_{1}=2$.
For A_{3} we write

$$
A_{3}=-\frac{\beta}{2(1+2 \alpha)}\left(p_{2}-\frac{\left(1+\alpha^{2}(1-\beta)+5 \beta+2 \alpha(1+4 \beta)\right)}{2(1+\alpha)^{2}} p_{1}^{2}\right)
$$

and apply Lemma 1.1 with $\mu=\frac{1+\alpha^{2}(1-\beta)+5 \beta+2 \alpha(1+4 \beta)}{(1+\alpha)^{2}}$. Then since $0 \leqslant \mu \leqslant 2$ when $0<\beta \leqslant \frac{(1+\alpha)^{2}}{\left(5+8 \alpha-\alpha^{2}\right)}$, the inequalities for $\left|A_{3}\right|$ follows at once.

The first inequality for $\left|A_{3}\right|$ is sharp when $p_{1}=0$ and $p_{2}=2$, and the second inequality is sharp when $p_{1}=p_{2}=2$.

To find the bound for the first inequality for A_{4}, we follow the same method employed in Theorem 2.1 and use Lemma 1.2 so that

$$
A_{4}=\frac{\beta}{3(1+3 \alpha)}\left(p_{3}-2 B_{2} p_{1} p_{2}+D_{2} p_{1}^{3}\right),
$$

with

$$
B_{2}=\frac{1+2 \alpha^{2}(1-\beta)+5 \beta+3 \alpha(1+4 \beta)}{2(1+\alpha)(1+2 \alpha)}
$$

and

$$
\begin{aligned}
D_{2}= & \frac{1}{6(1+\alpha)^{3}(1+2 \alpha)}\left(2+15 \beta+31 \beta^{2}+\alpha^{3}\left(14+24 \beta-38 \beta^{2}\right)\right. \\
& \left.+2 \alpha^{4}\left(2-3 \beta+\beta^{2}\right)+3 \alpha^{2}\left(6+27 \beta+29 \beta^{2}\right)+2 \alpha\left(5+33 \beta+61 \beta^{2}\right)\right) .
\end{aligned}
$$

Write $\Lambda_{2}(\alpha)=\frac{(1+\alpha)(1+2 \alpha)}{\left(5+12 \alpha-2 \alpha^{2}\right)}$. Then $0 \leqslant B_{2} \leqslant 1$ provided $0<\beta \leqslant \Lambda_{2}(\alpha)$, and $B_{2}\left(2 B_{2}-1\right) \leqslant D_{2} \leqslant$ B_{2} when $0<\beta \leqslant \Delta_{2}(\alpha)$. Then since $\Delta_{2}(\alpha)<\Lambda_{2}(\alpha)$, applying Lemma 1.2 now gives the first inequality for $\left|A_{4}\right|$.

For the second inequality we use Lemma 1.3 and write

$$
p_{3}-2 B_{2} p_{1} p_{2}+D_{2} p_{1}^{3}=p_{3}-2 B_{2} p_{1} p_{2}+B_{2} p_{1}^{3}+\left(D_{2}-B_{2}\right) p_{1}^{3} .
$$

Since $D_{2} \geqslant B_{2}$ when $\Delta_{2}(\alpha) \leqslant \beta \leqslant 1$, and $0 \leqslant B_{2} \leqslant 1$ provided $0<\beta \leqslant \Lambda_{2}(\alpha)$, the second inequality for $\left|A_{4}\right|$ follows on the interval $\Delta_{2}(\alpha) \leqslant \beta \leqslant \Lambda_{2}(\alpha)$ by applying Lemma 1.3, and noting that $\left|p_{1}\right| \leqslant 2$.

Thus it remains to establish the second inequality for $\left|A_{4}\right|$ on the interval $\Lambda_{2}(\alpha) \leqslant \beta \leqslant 1$.
We apply Lemma 1.4 as follows.
Write

$$
p_{3}-2 B_{2} p_{1} p_{2}+D_{2} p_{1}^{3}=p_{3}-(1+\mu) p_{1} p_{2}+\mu p_{1}^{3}+\left(D_{2}-\mu\right) p_{1}^{3}
$$

so that $\mu=\frac{\left(5+12 \alpha-2 \alpha^{2}\right) \beta}{(1+\alpha)(1+2 \alpha)}$.
Then $0 \leqslant \mu \leqslant 1$ is false on $\Lambda_{2}(\alpha) \leqslant \beta \leqslant 1$, and so since $D_{2} \geqslant \mu$ on $0<\beta \leqslant 1$, applying Lemma 1.4 and using the fact that $\left|p_{1}\right| \leqslant 2$, we obtain the second inequality for $\left|A_{4}\right|$ on the interval $\Lambda_{2}(\alpha) \leqslant \beta \leqslant 1$, after substituting for D_{2} and μ.

The first inequality for $\left|A_{4}\right|$ is sharp when $p_{1}=p_{2}=0$ and $p_{3}=2$, and the second inequality is sharp when $p_{1}=p_{2}=p_{3}=2$.

We note again that when $\beta=1$, the results in Theorem 3.1 correspond to the estimates found in [6], when $\alpha=0$ to those in [1], and when $\alpha=1$ to those in [12].

Theorem 3.2. Let $f \in \mathscr{M}^{*}(\gamma, \beta)$ and the coefficients of the inverse function f^{-1} be given by (1.4), then

$$
\begin{aligned}
\left|A_{2}\right| \leqslant \frac{2 \beta}{1+\gamma}, & \left|A_{3}\right| \leqslant
\end{aligned} \begin{array}{ll}
\frac{\beta}{1+2 \gamma}, & 0<\beta \leqslant \frac{(1+\gamma)^{2}}{5+7 \gamma} \\
\frac{(5+7 \gamma) \beta^{2}}{(1+\gamma)^{2}(1+2 \gamma)}, & \frac{(1+\gamma)^{2}}{5+7 \gamma} \leqslant \beta \leqslant 1
\end{array}, \begin{array}{ll}
\frac{2 \beta}{3(1+3 \gamma)}, & 0<\beta \leqslant \Delta_{2}^{*}(\gamma) \\
& \left|A_{4}\right| \leqslant \\
\Gamma_{2}^{*}(\gamma, \beta), & \Delta_{2}^{*}(\gamma) \leqslant \beta \leqslant 1
\end{array}
$$

where $\Delta_{2}^{*}(\gamma)=\sqrt{\frac{(1+\gamma)^{3}}{31+37 \gamma}}$ and

$$
\Gamma_{2}^{*}(\gamma, \beta)=\frac{2 \beta\left(1+3 \gamma^{2}+\gamma^{3}+62 \beta^{2}+\gamma\left(3+74 \beta^{2}\right)\right)}{9(1+\gamma)^{3}(1+3 \gamma)}
$$

All the inequalities are sharp.
Proof. From (2.2) and (3.1) we obtain

$$
\begin{aligned}
A_{2}= & -\frac{\beta p_{1}}{1+\gamma}, \\
A_{3}= & -\frac{\beta\left(\left(1+\gamma^{2}+5 \beta+\gamma(2+7 \beta)\right) p_{1}^{2}-2(1+\gamma)^{2} p_{2}\right)}{4(1+\gamma)^{2}(1+2 \gamma)}, \\
A_{4}= & \beta\left(\frac{\left(2+2 \gamma^{3}+15 \beta+31 \beta^{2}+3 \gamma^{2}(2+5 \beta)+\gamma\left(6+30 \beta+37 \beta^{2}\right) p_{1}^{3}\right.}{18(1+\gamma)^{3}(1+3 \gamma)}\right. \\
& \left.-\frac{(1+\gamma+5 \beta) p_{1} p_{2}}{3(1+\gamma)(1+3 \gamma)}+\frac{p_{3}}{3(1+3 \gamma)}\right) .
\end{aligned}
$$

Again, the first inequality is trivial, and is sharp when $p_{1}=2$.
For A_{3} we write

$$
A_{3}=\frac{\beta}{2(1+2 \gamma)}\left(p_{2}-\frac{\left(1+\gamma^{2}+5 \beta+\gamma(2+7 \beta)\right)}{2(1+\gamma)^{2}} p_{1}^{2}\right)
$$

Now apply Lemma 1.1 with $\mu=\frac{1+\gamma^{2}+5 \beta+\gamma(2+7 \beta)}{(1+\gamma)^{2}}$, so that $0 \leqslant \mu \leqslant 2$ provided $0<\beta \leqslant$ $\frac{(1+\gamma)^{2}}{5+7 \gamma}$ and the inequalities for $\left|A_{3}\right|$ follow as before.

The first inequality for $\left|A_{3}\right|$ is sharp when $p_{1}=0$ and $p_{2}=2$, and the second inequality is sharp when $p_{1}=p_{2}=2$.

For A_{4} we follow the same methods as previously used, and write

$$
A_{4}=\frac{\beta}{3(1+3 \gamma)}\left(p_{3}-2 B_{2}^{*} p_{1} p_{2}+D_{2}^{*} p_{1}^{3}\right)
$$

with

$$
B_{2}^{*}=\frac{1+\gamma+5 \beta}{2(1+\gamma)}
$$

and

$$
D_{2}^{*}=\frac{2+2 \gamma^{3}+15 \beta+31 \beta^{2}+3 \gamma^{2}(2+5 \beta)+\gamma\left(6+30 \beta+37 \beta^{2}\right)}{6(1+\gamma)^{3}}
$$

Write $\Lambda_{2}^{*}(\gamma)=\frac{1+\gamma}{5}$. Then $0 \leqslant B_{2}^{*} \leqslant 1$ provided $0<\beta \leqslant \Lambda_{2}^{*}(\gamma)$, and $B_{2}^{*}\left(2 B_{2}^{*}-1\right) \leqslant D_{2}^{*} \leqslant B_{2}^{*}$ when $0<\beta \leqslant \Delta_{2}^{*}(\gamma)$. Since $\Delta_{2}^{*}(\gamma)<\Lambda_{2}^{*}(\gamma)$, applying Lemma 1.2 now gives the first inequality for $\left|A_{4}\right|$.

For the second inequality we again use Lemma 1.3, and write

$$
\begin{aligned}
p_{3}-2 B_{2}^{*} p_{1} p_{2}+D_{2}^{*} p_{1}^{3} & =p_{3}-2 B_{2}^{*} p_{1} p_{2}+B_{2}^{*} p_{1}^{3} \\
& +\left(D_{2}^{*}-B_{2}^{*}\right) p_{1}^{3} .
\end{aligned}
$$

Since $D_{2}^{*} \geqslant B_{2}^{*}$ when $\Delta_{2}^{*}(\gamma) \leqslant \beta \leqslant 1$, and $0 \leqslant B_{2}^{*} \leqslant 1$ when $0<\beta \leqslant \Lambda_{2}^{*}(\gamma)$, the second inequality for $\left|A_{4}\right|$ follows on the interval $\Delta_{2}^{*}(\gamma) \beta \leqslant \Lambda_{2}^{*}(\gamma)$ on applying Lemma 1.3, and noting that $\left|p_{1}\right| \leqslant 2$.

Thus it remains to prove the second inequality on the interval $\Lambda_{2}^{*}(\gamma) \leqslant \beta \leqslant 1$.
We proceed as in the proof of Theorem 3.1, and again write

$$
p_{3}-2 B_{2}^{*} p_{1} p_{2}+D_{2}^{*} p_{1}^{3}=p_{3}-(1+\mu) p_{1} p_{2}+\mu p_{1}^{3}+\left(D_{2}^{*}-\mu\right) p_{1}^{3} .
$$

with $\mu=\frac{5 \beta}{1+\gamma}$. Since $0 \leqslant \mu \leqslant 1$ is false on the interval $\Lambda_{2}^{*}(\gamma) \leqslant \beta \leqslant 1$, applying Lemma 1.4, and substituting for D_{2}^{*} and μ, gives the inequality for $\left|A_{4}\right|$ on this interval.

The first inequality for $\left|A_{4}\right|$ is sharp when $p_{1}=p_{2}=0$ and $p_{3}=2$, and the second inequality is sharp when $p_{1}=p_{2}=p_{3}=2$.

We note that when $\beta=1$, the results in Theorem 3.2 complete the partial solution given in [5]. When $\alpha=0$, the results correspond to those [1], and when $\alpha=1$ to those in [12].

References

[1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malaysian Math. Soc., 26 (2003), 63-71.
[2] R. M. Ali and V. A. Singh, On the fourth and fifth coefficients of strongly starlike functions, Results in Mathematics, 29 (1996), 197-202.
[3] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can. J. Math., XXII (1970), 476-485.
[4] M. Darus and D. K. Thomas, α-logarithmically convex functions, Indian J. Pure. Appl. Math., 29(1998), 10491059.
[5] M. Darus and D. K. Thomas, Inverse coefficients of α-logarithmically convex functions, Jnanabha, 45, (2015), 31-36.
[6] K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Amer. Math. Soc., 80 (1974), 341-342.
[7] Z. Lewandowski, S. S. Miller and E. J. Złotkiewicz, Gamma-starlike functions, Ann. Univ. Marie-Curie Sk/lodowska, 27 (1974), 53-58.
[8] C. Löwner, Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann., 89 (1923), 103-121.
[9] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, (1990), 157-169.
[10] S. S. Miller, P. Mocanu and M. 0. Read, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37 (1973), 553-554.
[11] D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Annales Universitatis Mariae Curie - Sklodowska, X (1981), No.15, 125-141.
[12] D. K. Thomas and S. Verma, Invariance of the coefficients of strongly convex functions, Bull. Australian Math, Soc., (2016), doi.10.1017/S0004972716000976..
[13] P. Todorov, Explicit formulas for the coefficients of α convex functions, $\alpha \geqslant 0$, Can.J. Math., XXXIX (1987), 769-783.

Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
E-mail: d.k.thomas@swansea.ac.uk

