This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst 🔍

COEFFICIENTS OF STRONGLY ALPHA-CONVEX AND STRONGLY GAMMA STARLIKE FUNCTIONS

D. K. THOMAS

Abstract. Let the function *f* be analytic in $\mathbb{D} = \{z : |z| < 1\}$ and be given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. For $0 < \beta \le 1$, denote by $\mathscr{C}(\beta)$ and $\mathscr{S}^*(\beta)$ the classes of strongly convex functions and strongly starlike functions respectively. For $0 \le \alpha \le 1$, $0 < \beta \le 1$ and $0 \le \gamma \le 1$, let $\mathscr{M}(\alpha, \beta)$ be the class of strongly alpha-convex functions defined by

$$\left| \arg \left[(1-\alpha) \frac{zf'(z)}{f(z)} \right) + \alpha (1 + \frac{zf''(z)}{f'(z)}) \right] \right| < \frac{\pi\beta}{2},$$

and $\mathcal{M}^*(\gamma,\beta)$ the class of strongly gamma starlike functions defined by

$$\left| \arg\left[\left(\frac{zf'(z)}{f(z)} \right)^{1-\gamma} \left(1 + \frac{zf''(z)}{f'(z)} \right)^{\gamma} \right] \right| < \frac{\pi\beta}{2}.$$

We give sharp bounds for the initial coefficients of $f \in \mathcal{M}(\alpha, \beta)$ and $f \in \mathcal{M}^*(\gamma, \beta)$, and for the initial coefficients of the inverse function f^{-1} of $f \in \mathcal{M}(\alpha, \beta)$ and $f \in \mathcal{M}^*(\gamma, \beta)$. These results generalise, improve and unify known coefficient inequalities for $\mathscr{C}(\beta)$ and $\mathscr{S}^*(\beta)$.

1. Introduction

Let \mathscr{A} be the class of analytic normalized functions f, defined in the unit disk $\mathbb{D} = \{z : |z| < 1\}$ given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

and let \mathscr{S} be the subset of \mathscr{A} consisting of functions which are univalent in \mathbb{D} .

Suppose that $f \in \mathcal{A}$. Then f is respectively strongly starlike, or strongly convex of order β in \mathbb{D} if, and only if, for $0 < \beta \le 1$,

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{\pi\beta}{2}, \quad \text{or} \quad \left|\arg(1+\frac{zf''(z)}{f'(z)})\right| < \frac{\pi\beta}{2}.$$

Received January 28, 2015, accepted October 4, 2016.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.

Key words and phrases. Univalent functions, coefficients, α -convex functions, strongly gamma starlike functions, inverse coefficients.

We denote these classes by $\mathscr{S}^*(\beta)$ and $\mathscr{C}(\beta)$ respectively, noting that $\mathscr{S}^*(1)$ is the class of starlike functions, and $\mathscr{C}(1)$ the class of convex functions, so that both $\mathscr{S}^*(\beta)$ and $\mathscr{C}(\beta)$ are subsets of \mathscr{S} .

For any real number α , denote by $\mathcal{M}(\alpha)$ the class of alpha-convex, or so-called Ma-Minda functions [9] defined for $z \in \mathbb{D}$ by the relationship

$$Re\left[(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha(1+\frac{zf''(z)}{f'(z)})\right] > 0.$$

Thus $\mathcal{M}(0)$ gives the starlike functions, and $\mathcal{M}(1)$ the convex functions.

It was shown in [10] that for all real α , the class $\mathcal{M}(\alpha)$ forms a subset of the starlike functions, and is therefore a subset of \mathscr{S} . Finding sharp bounds for all coefficients of $f \in \mathcal{M}(\alpha)$ has received much attention, see e.g. [6, 11, 13], however a complete solution appears still to be an open problem.

Similarly, for $\gamma \ge 0$, denote by $\mathcal{M}^*(\gamma)$ the class of gamma starlike functions, (see e.e. [4, 5, 7]) defined for $z \in \mathbb{D}$ by the relationship

$$Re\left[\left(\frac{zf'(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{zf''(z)}{f'(z)}\right)^{\gamma}\right]>0,$$

so that again $\mathcal{M}^*(0)$ gives the starlike functions, and $\mathcal{M}^*(1)$ the convex functions. It was shown in [7] (and elsewhere), that for $\gamma \ge 0$, $\mathcal{M}^*(\gamma) \subset \mathcal{S}^*(1)$. However since the definition of functions in $\mathcal{M}^*(\gamma)$ requires dealing with powers, relatively little is known about the coefficients of functions in $\mathcal{M}^*(\gamma)$.

In the interests of unifying known results for $f \in \mathscr{S}^*(\beta)$ and $f \in \mathscr{C}(\beta)$, we will assume throughout this paper that $0 \le \alpha \le 1$, and $0 \le \gamma \le 1$. We also remark that for α and γ outside [0, 1], the methods used in this paper give incomplete results.

Preliminaries

Strongly Alpha-Convex Functions of Order β

Let *f* be analytic in \mathbb{D} and be given by (1.1). For $0 \le \alpha \le 1$ and $0 < \beta \le 1$, we say that *f* is strongly alpha-convex of order β in \mathbb{D} if, and only if,

$$\left| \arg \left[(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha (1 + \frac{zf''(z)}{f'(z)}) \right] \right| < \frac{\pi\beta}{2}.$$
 (1.2)

We denote this class of functions by $\mathcal{M}(\alpha,\beta)$, so that $\mathcal{M}(0,\beta) = \mathcal{S}^*(\beta)$ and $\mathcal{M}(1,\beta) = \mathcal{C}(\beta)$. Also since $\mathcal{M}(\alpha) \subset \mathcal{S}^*(1)$, then so must $\mathcal{M}(\alpha,\beta) \subset \mathcal{S}^*(1)$ for $0 \le \alpha \le 1$ and $0 < \beta \le 1$.

Strongly Gamma Starlike Functions of Order β

Let *f* be analytic in \mathbb{D} and be given by (1.1). For $0 \le \gamma \le 1$ and $0 < \beta \le 1$, we say that *f* is strongly gamma starlike of order β in \mathbb{D} if, and only if,

$$\left| \arg\left[\left(\frac{zf'(z)}{f(z)} \right)^{1-\gamma} \left(1 + \frac{zf''(z)}{f'(z)} \right)^{\gamma} \right] \right| < \frac{\pi\beta}{2}.$$

$$(1.3)$$

We denote this class of functions by $\mathcal{M}^*(\gamma, \beta)$, so that again $\mathcal{M}^*(0, \beta) = \mathcal{S}^*(\beta)$ and $\mathcal{M}^*(1, \beta) = \mathcal{C}(\beta)$. As was pointed out above, since $\mathcal{M}^*(\gamma) \subset \mathcal{S}^*(1)$, it follows that $\mathcal{M}^*(\gamma, \beta) \subset \mathcal{S}^*(1)$ for $0 \leq \gamma \leq 1$ and $0 < \beta \leq 1$.

An early paper of Brannan, Clunie and Kirwan [3] established sharp upper bounds for $|a_2|$ and $|a_3|$ when $f \in \mathscr{S}^*(\beta)$, and more recently Ali and Singh [2] obtained sharp upper bounds for $|a_4|$. Since $f \in \mathscr{C}(\beta)$ if, and only if, $zf' \in \mathscr{S}^*(\beta)$, these results provide immediate sharp upper bounds for these coefficients when $f \in \mathscr{C}(\beta)$. Since the analysis necessitates the use of powers, finding bounds for the remaining coefficients appears difficult.

In Theorems 2.1 and 2.2, we give sharp bounds for $|a_2|$, $|a_3|$ and $|a_4|$ for $f \in \mathcal{M}(\alpha, \beta)$ and for $f \in \mathcal{M}^*(\gamma, \beta)$, thus unifying and generalising the above results.

For any univalent function f, there exists an inverse function f^{-1} defined on some disc $|\omega| < r_0(f)$, with Taylor expansion

$$f^{-1}(\omega) = \omega + A_2 \omega^2 + A_3 \omega^3 + A_4 \omega^4 + \cdots.$$
 (1.4)

A classical theorem of Löwner [8] established sharp upper bounds for the modulus of the inverse coefficients A_n for all $n \ge 2$ when $f \in \mathcal{S}$, which in particular solves the problem for functions in $\mathcal{S}^*(1)$.

For $\mathscr{S}^*(\beta)$ and $\mathscr{C}(\beta)$ with $0 < \beta < 1$, the problem of finding bounds for the inverse coefficients again seems far from simple, the only sharp results to date being those found for $f \in \mathscr{S}^*(\beta)$ by Ali [1] for $|A_n|$ when n = 2,3 and 4, and in a recent paper [12], similar sharp bounds for the inverse coefficients of functions in $\mathscr{C}(\beta)$.

In Theorems 3.1 and 3.2, we will find sharp bounds for the initial coefficients of the inverse function f^{-1} of functions in $\mathcal{M}(\alpha, \beta)$ and $\mathcal{M}^*(\gamma, \beta)$, again unifying the above results.

Lemmas

Denote by \mathscr{P} , the class of functions p satisfying Re p(z) > 0 for $z \in \mathbb{D}$, with Taylor series

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n.$$

We shall use the following [1].

Lemma 1.1. If $p \in \mathcal{P}$, then $|p_n| \leq 2$ for $n \geq 1$, and

$$\left| p_2 - \frac{\mu}{2} p_1^2 \right| \le \max\{2, 2|\mu - 1|\} = \begin{cases} 2, & 0 \le \mu \le 2, \\ 2|\mu - 1|, & elsewhere. \end{cases}$$

Lemma 1.2. Let $p \in \mathcal{P}$. If $0 \le B \le 1$ and $B(2B-1) \le D \le B$, then

$$|p_3 - 2Bp_1p_2 + Dp_1^3| \le 2$$

Lemma 1.3. *If* $p \in \mathcal{P}$ *, and* $0 \le B \le 1$ *, then*

$$|p_3 - 2Bp_1p_2 + Bp_1^3| \le 2.$$

Lemma 1.4. *If* $p \in \mathcal{P}$ *, then*

$$\left| p_3 - (1+\mu)p_1p_2 + \mu p_1^3 \right| \le \max\{2, \ 2|2\mu - 1|\} = \begin{cases} 2, & 0 \le \mu \le 1, \\ 2|2\mu - 1|, \ elsewhere. \end{cases}$$

In the following, the methods of proof develop those employed in [1, 2], and in the interests of brevity, we omit much of the elementary algebra.

Main Results

2. Coefficients of functions in $\mathcal{M}(\alpha, \beta)$ and $\mathcal{M}^*(\gamma, \beta)$

Theorem 2.1. Let $f \in \mathcal{M}(\alpha, \beta)$ and be given by (1.1), then

$$|a_{2}| \leq \frac{2\beta}{1+\alpha}, \qquad |a_{3}| \leq \begin{cases} \frac{\beta}{1+2\alpha}, & 0 < \beta \leq \frac{(1+\alpha)^{2}}{(3+8\alpha+\alpha^{2})}, \\ \frac{(3+8\alpha+\alpha^{2})\beta^{2}}{(1+\alpha)^{2}(1+2\alpha)}, \frac{(1+\alpha)^{2}}{(3+8\alpha+\alpha^{2})} \leq \beta \leq 1, \\ |a_{4}| \leq \begin{cases} \frac{2\beta}{3(1+3\alpha)}, & 0 < \beta \leq \Delta_{1}(\alpha), \\ \Gamma_{1}(\alpha,\beta), & \Delta_{1}(\alpha) \leq \beta \leq 1, \end{cases}$$

where $\Delta_1(\alpha) = \sqrt{\frac{2(1+\alpha)^3(1+2\alpha)}{17+109\alpha+219\alpha^2+59\alpha^3+4\alpha^4}}$ and $\Gamma_1(\alpha,\beta) = \frac{2\beta(1+17\beta^2+2\alpha^4(1+2\beta^2)+\alpha^3(7+59\beta^2)+3\alpha^2(3+73\beta^2)+\alpha(5+109\beta^2))}{9(1+\alpha)^3(1+2\alpha)(1+3\alpha)}.$

All the inequalities are sharp.

Proof. From (1.2) we can write

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha(1+\frac{zf''(z)}{f'(z)}) = p(z)^{\beta},$$

and so equating coefficients we obtain

$$a_{2} = \frac{\beta p_{1}}{1 + \alpha},$$

$$a_{3} = \frac{\beta((-1 + \alpha^{2}(-1 + \beta) + 3\beta + \alpha(-2 + 8\beta))p_{1}^{2} + 2(1 + \alpha)^{2}p_{2})}{4(1 + \alpha)^{2}(1 + 2\alpha)},$$

$$a_{4} = \frac{\beta(4 - 15\beta + 17\beta^{2} + 4\alpha^{4}(2 - 3\beta + \beta^{2}) + \alpha^{3}(28 - 87\beta + 59\beta^{2}))p_{1}^{3}}{36(1 + \alpha)^{3}(1 + 2\alpha)(1 + 3\alpha)}$$

$$+ \frac{\beta(3\alpha^{2}(12 - 51\beta + 73\beta^{2}) + \alpha(20 - 93\beta + 109\beta^{2}))p_{1}^{3}}{36(1 + \alpha)^{3}(1 + 2\alpha)(1 + 3\alpha)}$$

$$+ \frac{6\beta(1 + \alpha)^{2}(-2 + 4\alpha^{2}(-1 + \beta) + 5\beta + 3\alpha(-2 + 7\beta))p_{1}p_{2}}{36(1 + \alpha)^{3}(1 + 2\alpha)(1 + 3\alpha)}$$

$$+ \frac{12\beta(1 + \alpha)^{3}(1 + 2\alpha)p_{3}}{36(1 + \alpha)^{3}(1 + 2\alpha)(1 + 3\alpha)}.$$
(2.1)

Since $|p_1| \le 2$, the first inequality follows at once, and is sharp when $p_1 = 2$.

Next note that the coefficient of p_1^2 in the expression for a_3 in (2.1) is positive provided $\frac{(1+\alpha)^2}{(3+8\alpha+\alpha^2)} \le \beta \le 1$, and so the second inequality for $|a_3|$ in Theorem 2.1 follows since $|p_1| \le 2$ and $|p_2| \le 2$.

For the first inequality we apply Lemma 1.1. Write

$$a_{3} = \frac{\beta}{2(1+2\alpha)} \left(p_{2} - \frac{\mu}{2} p_{1}^{2} \right),$$
$$\mu = \frac{1 + \alpha^{2}(1-\beta) - 3\beta + 2\alpha(1-4\beta)}{(1+\alpha)^{2}},$$

with

so that $0 \le \mu \le 2$ provided $0 < \beta \le \frac{(1+\alpha)^2}{(3+8\alpha+\alpha^2)}$. The inequality now follows on applying Lemma 1.1.

The first inequality for $|a_3|$ is sharp when $p_1 = 0$ and $p_2 = 2$, and the second inequality is sharp when $p_1 = p_2 = 2$.

For a_4 , first write $\Lambda_1(\alpha) = \frac{2(1+\alpha)(1+2\alpha)}{(1+4\alpha)(5+\alpha)}$, and note that the coefficients of p_1 , p_2 and p_1^3 are positive when $\Lambda_1(\alpha) \le \beta \le 1$. So using $|p_n| \le 2$ for n = 1, 2 and 3, gives the second inequality for $|a_4|$ when $\Lambda_1(\alpha) \le \beta \le 1$.

Next write

$$a_4 = \frac{\beta}{3(1+3\alpha)} \Big(p_3 - 2B_1 p_1 p_2 + D_1 p_1^3 \Big),$$

with

$$B_1 = \frac{2 + 4\alpha^2 (1 - \beta) - 5\beta + 3\alpha (2 - 7\beta)}{4(1 + \alpha)(1 + 2\alpha)}$$

and

$$\begin{split} D_1 &= \frac{1}{12(1+\alpha)^3(1+2\alpha)} \Big(4 - 15\beta + 17\beta^2 + 4\alpha^4(2-3\beta+\beta^2) \\ &+ \alpha^3(28 - 87\beta + 59\beta^2) + 3\alpha^2(12 - 51\beta + 73\beta^2) \\ &+ \alpha(20 - 93\beta + 109\beta^2) \Big). \end{split}$$

Then $0 \le B_1 \le 1$ if $0 < \beta \le \Lambda_1(\alpha)$, and $B_1(2B_1 - 1) \le D_1 \le B_1$ when $0 < \beta \le \Delta_1(\alpha)$. Since $\Delta_1(\alpha) < \Lambda_1(\alpha)$, applying Lemma 1.2 now gives the first inequality for $|a_4|$.

Thus it remains to prove the second inequality on the interval $\Delta_1(\alpha) \le \beta \le \Lambda_1(\alpha)$.

We use Lemma 1.3, and the inequality $|p_1| \le 2$, noting that $0 \le B_1 \le 1$ and $D_1 - B_1 \ge 0$, when $\Delta_1(\alpha) \le \beta \le \Lambda_1(\alpha)$ to obtain

$$|p_3 - 2B_1p_1p_2 + D_1p_1^3| = |p_3 - 2B_1p_1p_2 + B_1p_1^3 + (D_1 - B_1)p_1^3|$$

$$\leq 2 + 8(D_1 - B_1),$$

from which the result follows.

The first inequality for $|a_4|$ is sharp when $p_1 = p_2 = 0$ and $p_3 = 2$, and the second inequality is sharp when $p_1 = p_2 = p_3 = 2$.

We note at this point that when $\beta = 1$, the results in Theorem 2.1 correspond to the estimates found in [6], when $\alpha = 0$ to those in [2, 3], and when $\alpha = 1$ to those in [12].

Theorem 2.2. Let $f \in \mathcal{M}^*(\gamma, \beta)$ and be given by (1.1), then

$$\begin{split} |a_2| &\leq \frac{2\beta}{1+\gamma}, \qquad |a_3| \leq \begin{cases} \frac{\beta}{1+2\gamma}, \qquad 0 < \beta \leq \frac{(1+\gamma)^2}{3(1+3\gamma)}, \\ \frac{3\beta^2(1+3\gamma)}{(1+\gamma)^2(1+2\gamma)}, \frac{(1+\gamma)^2}{3(1+3\gamma)} \leq \beta \leq 1, \\ |a_4| &\leq \begin{cases} \frac{2\beta}{3(1+3\gamma)}, \ 0 < \beta \leq \Delta_1^*(\gamma), \\ \Gamma_1^*(\gamma, \beta), \quad \Delta_1^*(\gamma) \leq \beta \leq 1, \end{cases} \end{split}$$

22

where
$$\Delta_1^*(\gamma) = \sqrt{\frac{2(1+5\gamma+9\gamma^2+7\gamma^3+2\gamma^4)}{17+108\gamma+283\gamma^2}} and$$

 $\Gamma_1^*(\gamma,\beta) = \frac{2\beta(1+7\gamma^3+2\gamma^4+17\beta^2+\gamma(5+108\beta^2)+\gamma^2(9+283\beta^2))}{9(1+\gamma)^3(1+2\gamma)(1+3\gamma)}.$

All the inequalities are sharp.

Proof. From (1.3) we can write

$$\Big(\frac{zf'(z)}{f(z)}\Big)^{1-\gamma}\Big(1+\frac{zf''(z)}{f'(z)}\Big)^{\gamma}=p(z)^{\beta}.$$

Equating coefficients gives

$$a_{2} = \frac{\beta p_{1}}{1 + \gamma},$$

$$a_{3} = \frac{\beta(-(1 + \gamma^{2} + \gamma(2 - 9\beta) - 3\beta)p_{1}^{2} + 2(1 + \gamma)^{2}p_{2})}{4(1 + \gamma)^{2}(1 + 2\gamma)},$$

$$a_{4} = \frac{\beta(4 + 8\gamma^{4} + \gamma^{3}(28 - 75\beta) - 15\beta + 17\beta^{2})p_{1}^{3}}{36(1 + \gamma)^{3}(1 + 2\gamma)(1 + 3\gamma)}$$

$$+ \frac{\beta(\gamma(20 - 105\beta + 108\beta^{2}) + \gamma^{2}(36 - 165\beta + 283\beta^{2}))p_{1}^{3}}{36(1 + \gamma)^{3}(1 + 2\gamma)(1 + 3\gamma)}$$

$$- \frac{6\beta(1 + \gamma)^{2}(2 + 4\gamma^{2} + \gamma(6 - 25\beta) - 5\beta)p_{1}p_{2}}{36(1 + \gamma)^{3}(1 + 2\gamma)(1 + 3\gamma)}$$

$$+ \frac{12\beta(1 + \gamma)^{3}(1 + 2\gamma)p_{3}}{36(1 + \gamma)^{3}(1 + 2\gamma)(1 + 3\gamma)}.$$
(2.2)

Since $|p_1| \le 2$, the first inequality is trivial, and is sharp when $p_1 = 2$.

For a_3 we use Lemma 1.1 as follows.

Write

$$a_{3} = \frac{\beta}{2(1+2\gamma)} \Big(p_{2} - \frac{(1+\gamma^{2}+\gamma(2-9\beta)-3\beta)}{2(1+\gamma)^{2}} p_{1}^{2} \Big).$$

Taking $\mu = \frac{1 + \gamma^2 + \gamma(2 - 9\beta) - 3\beta}{(1 + \gamma)^2}$, we note that $0 \le \mu \le 2$ when $0 < \beta \le \frac{(1 + \gamma)^2}{3(1 + 3\gamma)}$, and so the first inequality for $|a_3|$ follows. Applying Lemma 1.1 when μ lies outside [0,2] gives the second inequality.

The first inequality for $|a_3|$ is sharp when $p_1 = 0$ and $p_2 = 2$, and the second inequality is sharp when $p_1 = p_2 = 2$.

For the first inequality for a_4 we again use Lemma 1.2. Write

$$a_4 = \frac{\beta}{3(1+3\gamma)} \Big(p_3 - 2B_1^* p_1 p_2 + D_1^* p_1^3 \Big),$$

where

$$B_1^* = \frac{2 + 4\gamma^2 + \gamma(6 - 25\beta)) - 5\beta}{4(1 + \gamma)(1 + 2\gamma)}$$

and

$$\begin{split} D_1^* &= \frac{1}{12(1+\gamma)^3(1+2\gamma)} \Big(4+8\gamma^4+\gamma^3(28-75\beta)-15\beta+17\beta^2 \\ &+\gamma(20-105\beta+108\beta^2)+\gamma^2(36-165\beta+283\beta^2) \Big). \end{split}$$

Write $\Lambda_1^*(\gamma) = \frac{2(1+\gamma)(1+2\gamma)}{5(1+5\gamma)}$. Then $0 \le B_1^* \le 1$ when $0 < \beta \le \Lambda_1^*(\gamma)$, and $B_1^*(2B_1^*-1) \le D_1^* \le B_1^*$ when $0 < \beta \le \Delta_1^*(\gamma)$.

Since $\Delta_1^*(\gamma) < \Lambda_1^*(\gamma)$, applying Lemma 1.2 now gives the first inequality for $|a_4|$ on the interval $0 \le \beta \le \Delta_1^*(\gamma)$.

Since $-2B_1^*$ and D_1^* are positive when $\Lambda_1^*(\gamma) \leq \beta \leq 1$ and $\Delta_1^*(\gamma) \leq \beta \leq 1$, the second inequality for $|a_4|$ now follows (on using the inequalities $|p_n| \leq 2$ for n = 1, 2 and 3) provided $\Lambda_1^*(\gamma) \leq \beta \leq 1$, and noting that $\Delta_1^*(\gamma) \leq \Lambda_1^*(\gamma)$.

Thus it remains to prove the second inequality for $|a_4|$ on the interval $\Delta_1^*(\gamma) \le \beta \le \Lambda_1^*(\gamma)$.

Since $0 \leq B_1^* \leq 1$ when $0 < \beta \leq \Lambda_1^*(\gamma)$, and $D_1^* \geq B_1^*$ when $\Delta_1^*(\gamma) \leq \beta \leq 1$,

$$|p_3 - 2B_1^* p_1 p_2 + D_1^* p_1^3| = |p_3 - 2B_1^* p_1 p_2 + B_1^* p_1^3 + (D_1^* - B_1^*) p_1^3|$$

$$\leq 2 + 8(D_1^* - B_1^*),$$

when $\Delta_1^*(\gamma) \leq \beta \leq \Lambda_1^*(\gamma)$, which on substituting for D_1^* and B_1^* , and using Lemma 1.3, proves the inequality for $|a_4|$ on the interval $\Delta_1^*(\gamma) \leq \beta \leq \Lambda_1^*(\gamma)$.

The first inequality for $|a_4|$ is sharp when $p_1 = p_2 = 0$ and $p_3 = 2$, and the second inequality is sharp when $p_1 = p_2 = p_3 = 2$.

We note at this point that when $\beta = 1$, the results in Theorem 2.2 complete the partial solution given in [4]. When $\alpha = 0$ the results correspond to those in [2, 3], and when $\alpha = 1$ to those in [12].

24

3. Inverse coefficients of functions in $\mathcal{M}(\alpha, \beta)$ and $\mathcal{M}^*(\gamma, \beta)$

First note that since $f(f^{-1}(\omega)) = \omega$, comparing coefficients in (1.1) and (1.4) gives

$$A_{2} = -a_{2},$$

$$A_{3} = 2a_{2}^{2} - a_{3},$$

$$A_{4} = -5a_{2}^{3} + 5a_{2}a_{3} - a_{4}.$$
(3.1)

Theorem 3.1. Let $f \in \mathcal{M}(\alpha, \beta)$ and the coefficients of the inverse function f^{-1} be given by (1.4), *then*

$$\begin{split} |A_2| &\leq \frac{2\beta}{1+\alpha}, \qquad |A_3| \leq \begin{cases} \frac{\beta}{1+2\alpha}, & 0 < \beta \leq \frac{(1+\alpha)^2}{(5+8\alpha-\alpha^2)}, \\ \frac{(5+8\alpha-\alpha^2)\beta^2}{(1+\alpha)^2(1+2\alpha)}, \frac{(1+\alpha)^2}{(5+8\alpha-\alpha^2)} \leq \beta \leq 1, \\ |A_4| &\leq \begin{cases} \frac{2\beta}{3(1+3\alpha)}, & 0 < \beta \leq \Delta_2(\alpha), \\ \Gamma_2(\alpha,\beta), & \Delta_2(\alpha) \leq \beta \leq 1, \end{cases} \end{split}$$

where

$$\Delta_{2}(\alpha) = \sqrt{\frac{(1+\alpha)^{3}(1+2\alpha)}{31+122\alpha+87\alpha^{2}-38\alpha^{3}+2\alpha^{4}}}$$

and

$$\Gamma_2(\alpha,\beta) = \frac{2\beta(1+62\beta^2+\alpha^3(7-76\beta^2)+\alpha^4(2+4\beta^2)+3\alpha^2(3+58\beta^2)+\alpha(5+244\beta^2))}{9(1+\alpha)^3(1+2\alpha)(1+3\alpha)}.$$

All the inequalities are sharp.

Proof. From (2.1) and (3.1) we obtain

$$\begin{split} A_2 &= -\frac{\beta p_1}{1+\alpha}, \\ A_3 &= \frac{\beta ((1-\alpha^2 (-1+\beta)+5\beta+2\alpha (1+4\beta))p_1^2-2(1+\alpha)^2 p_2)}{4(1+\alpha)^2(1+2\alpha)}, \\ A_4 &= -\beta \Big(\frac{(2+15\beta+31\beta^2+\alpha^3(14+24\beta-38\beta^2)+2\alpha^4(2-3\beta+\beta^2))p_1^3}{18(1+\alpha)^3(1+2\alpha)(1+3\alpha)} \\ &+ \frac{(3\alpha^2 (6+27\beta+29\beta^2)+2\alpha (5+33\beta+61\beta^2))p_1^3}{18(1+\alpha)^3(1+2\alpha)(1+3\alpha)} \\ &+ \frac{6(1+\alpha)^2 (-1+2\alpha^2 (-1+\beta)-5\beta-3\alpha (1+4\beta))p_1p_2}{18(1+\alpha)^3(1+2\alpha)(1+3\alpha)} + \frac{p_3}{3(1+3\alpha)}\Big). \end{split}$$

Again, the first inequality is trivial, and is sharp when $p_1 = 2$.

For A_3 we write

$$A_{3} = -\frac{\beta}{2(1+2\alpha)} \Big(p_{2} - \frac{(1+\alpha^{2}(1-\beta)+5\beta+2\alpha(1+4\beta))}{2(1+\alpha)^{2}} p_{1}^{2} \Big),$$

and apply Lemma 1.1 with $\mu = \frac{1 + \alpha^2 (1 - \beta) + 5\beta + 2\alpha (1 + 4\beta)}{(1 + \alpha)^2}$. Then since $0 \le \mu \le 2$ when $0 < \beta \le \frac{(1 + \alpha)^2}{(5 + 8\alpha - \alpha^2)}$, the inequalities for $|A_3|$ follows at once.

The first inequality for $|A_3|$ is sharp when $p_1 = 0$ and $p_2 = 2$, and the second inequality is sharp when $p_1 = p_2 = 2$.

To find the bound for the first inequality for A_4 , we follow the same method employed in Theorem 2.1 and use Lemma 1.2 so that

$$A_4 = \frac{\beta}{3(1+3\alpha)} \Big(p_3 - 2B_2 p_1 p_2 + D_2 p_1^3 \Big),$$

with

$$B_2 = \frac{1 + 2\alpha^2 (1 - \beta) + 5\beta + 3\alpha (1 + 4\beta)}{2(1 + \alpha)(1 + 2\alpha)}$$

and

$$D_{2} = \frac{1}{6(1+\alpha)^{3}(1+2\alpha)} \Big(2+15\beta+31\beta^{2}+\alpha^{3}(14+24\beta-38\beta^{2}) +2\alpha^{4}(2-3\beta+\beta^{2})+3\alpha^{2}(6+27\beta+29\beta^{2})+2\alpha(5+33\beta+61\beta^{2}) \Big).$$

Write $\Lambda_2(\alpha) = \frac{(1+\alpha)(1+2\alpha)}{(5+12\alpha-2\alpha^2)}$. Then $0 \le B_2 \le 1$ provided $0 < \beta \le \Lambda_2(\alpha)$, and $B_2(2B_2-1) \le D_2 \le B_2$ when $0 < \beta \le \Delta_2(\alpha)$. Then since $\Delta_2(\alpha) < \Lambda_2(\alpha)$, applying Lemma 1.2 now gives the first inequality for $|A_4|$.

For the second inequality we use Lemma 1.3 and write

$$p_3 - 2B_2p_1p_2 + D_2p_1^3 = p_3 - 2B_2p_1p_2 + B_2p_1^3 + (D_2 - B_2)p_1^3$$

Since $D_2 \ge B_2$ when $\Delta_2(\alpha) \le \beta \le 1$, and $0 \le B_2 \le 1$ provided $0 < \beta \le \Lambda_2(\alpha)$, the second inequality for $|A_4|$ follows on the interval $\Delta_2(\alpha) \le \beta \le \Lambda_2(\alpha)$ by applying Lemma 1.3, and noting that $|p_1| \le 2$.

Thus it remains to establish the second inequality for $|A_4|$ on the interval $\Lambda_2(\alpha) \le \beta \le 1$.

We apply Lemma 1.4 as follows.

Write

$$p_3 - 2B_2p_1p_2 + D_2p_1^3 = p_3 - (1 + \mu)p_1p_2 + \mu p_1^3 + (D_2 - \mu)p_1^3.$$

so that $\mu = \frac{(5+12\alpha - 2\alpha^2)\beta}{(1+\alpha)(1+2\alpha)}$.

Then $0 \le \mu \le 1$ is false on $\Lambda_2(\alpha) \le \beta \le 1$, and so since $D_2 \ge \mu$ on $0 < \beta \le 1$, applying Lemma 1.4 and using the fact that $|p_1| \le 2$, we obtain the second inequality for $|A_4|$ on the interval $\Lambda_2(\alpha) \le \beta \le 1$, after substituting for D_2 and μ .

The first inequality for $|A_4|$ is sharp when $p_1 = p_2 = 0$ and $p_3 = 2$, and the second inequality is sharp when $p_1 = p_2 = p_3 = 2$.

We note again that when $\beta = 1$, the results in Theorem 3.1 correspond to the estimates found in [6], when $\alpha = 0$ to those in [1], and when $\alpha = 1$ to those in [12].

Theorem 3.2. Let $f \in \mathcal{M}^*(\gamma, \beta)$ and the coefficients of the inverse function f^{-1} be given by (1.4), *then*

$$|A_2| \leq \frac{2\beta}{1+\gamma}, \qquad |A_3| \leq \begin{cases} \frac{\beta}{1+2\gamma}, \qquad 0 < \beta \leq \frac{(1+\gamma)^2}{5+7\gamma}, \\\\ \frac{(5+7\gamma)\beta^2}{(1+\gamma)^2(1+2\gamma)}, \frac{(1+\gamma)^2}{5+7\gamma} \leq \beta \leq 1, \end{cases}$$
$$|A_4| \leq \begin{cases} \frac{2\beta}{3(1+3\gamma)}, \ 0 < \beta \leq \Delta_2^*(\gamma), \\\\ \Gamma_2^*(\gamma,\beta), \quad \Delta_2^*(\gamma) \leq \beta \leq 1, \end{cases}$$

where $\Delta_{2}^{*}(\gamma) = \sqrt{\frac{(1+\gamma)^{3}}{31+37\gamma}}$ and $\Gamma_{2}^{*}(\gamma,\beta) = \frac{2\beta(1+3\gamma^{2}+\gamma^{3}+62\beta^{2}+\gamma(3+74\beta^{2}))}{9(1+\gamma)^{3}(1+3\gamma)}.$

All the inequalities are sharp.

Proof. From (2.2) and (3.1) we obtain

$$\begin{split} A_2 &= -\frac{\beta p_1}{1+\gamma}, \\ A_3 &= -\frac{\beta((1+\gamma^2+5\beta+\gamma(2+7\beta))p_1^2-2(1+\gamma)^2p_2)}{4(1+\gamma)^2(1+2\gamma)}, \\ A_4 &= \beta \Big(\frac{(2+2\gamma^3+15\beta+31\beta^2+3\gamma^2(2+5\beta)+\gamma(6+30\beta+37\beta^2)p_1^3}{18(1+\gamma)^3(1+3\gamma)} \\ &\quad -\frac{(1+\gamma+5\beta)p_1p_2}{3(1+\gamma)(1+3\gamma)} + \frac{p_3}{3(1+3\gamma)}\Big). \end{split}$$

Again, the first inequality is trivial, and is sharp when $p_1 = 2$.

For A_3 we write

$$A_3 = \frac{\beta}{2(1+2\gamma)} \left(p_2 - \frac{(1+\gamma^2+5\beta+\gamma(2+7\beta))}{2(1+\gamma)^2} p_1^2 \right)$$

Now apply Lemma 1.1 with $\mu = \frac{1 + \gamma^2 + 5\beta + \gamma(2 + 7\beta)}{(1 + \gamma)^2}$, so that $0 \le \mu \le 2$ provided $0 < \beta \le \frac{(1 + \gamma)^2}{5 + 7\gamma}$ and the inequalities for $|A_3|$ follow as before.

The first inequality for $|A_3|$ is sharp when $p_1 = 0$ and $p_2 = 2$, and the second inequality is sharp when $p_1 = p_2 = 2$.

For A_4 we follow the same methods as previously used, and write

$$A_4 = \frac{\beta}{3(1+3\gamma)} \Big(p_3 - 2B_2^* p_1 p_2 + D_2^* p_1^3 \Big),$$

with

$$B_2^* = \frac{1+\gamma+5\beta}{2(1+\gamma)},$$

and

$$D_2^* = \frac{2 + 2\gamma^3 + 15\beta + 31\beta^2 + 3\gamma^2(2 + 5\beta) + \gamma(6 + 30\beta + 37\beta^2)}{6(1 + \gamma)^3}.$$

Write $\Lambda_2^*(\gamma) = \frac{1+\gamma}{5}$. Then $0 \le B_2^* \le 1$ provided $0 < \beta \le \Lambda_2^*(\gamma)$, and $B_2^*(2B_2^* - 1) \le D_2^* \le B_2^*$ when $0 < \beta \le \Delta_2^*(\gamma)$. Since $\Delta_2^*(\gamma) < \Lambda_2^*(\gamma)$, applying Lemma 1.2 now gives the first inequality for $|A_4|$.

For the second inequality we again use Lemma 1.3, and write

$$p_3 - 2B_2^* p_1 p_2 + D_2^* p_1^3 = p_3 - 2B_2^* p_1 p_2 + B_2^* p_1^3 + (D_2^* - B_2^*) p_1^3.$$

Since $D_2^* \ge B_2^*$ when $\Delta_2^*(\gamma) \le \beta \le 1$, and $0 \le B_2^* \le 1$ when $0 < \beta \le \Lambda_2^*(\gamma)$, the second inequality for $|A_4|$ follows on the interval $\Delta_2^*(\gamma)\beta \le \Lambda_2^*(\gamma)$ on applying Lemma 1.3, and noting that $|p_1| \le 2$.

Thus it remains to prove the second inequality on the interval $\Lambda_2^*(\gamma) \le \beta \le 1$.

We proceed as in the proof of Theorem 3.1, and again write

$$p_3 - 2B_2^* p_1 p_2 + D_2^* p_1^3 = p_3 - (1+\mu) p_1 p_2 + \mu p_1^3 + (D_2^* - \mu) p_1^3$$

with $\mu = \frac{5\beta}{1+\gamma}$. Since $0 \le \mu \le 1$ is false on the interval $\Lambda_2^*(\gamma) \le \beta \le 1$, applying Lemma 1.4, and substituting for D_2^* and μ , gives the inequality for $|A_4|$ on this interval.

The first inequality for $|A_4|$ is sharp when $p_1 = p_2 = 0$ and $p_3 = 2$, and the second inequality is sharp when $p_1 = p_2 = p_3 = 2$.

We note that when $\beta = 1$, the results in Theorem 3.2 complete the partial solution given in [5]. When $\alpha = 0$, the results correspond to those [1], and when $\alpha = 1$ to those in [12].

References

- [1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malaysian Math. Soc., 26 (2003), 63–71.
- [2] R. M. Ali and V. A. Singh, *On the fourth and fifth coefficients of strongly starlike functions*, Results in Mathematics, **29** (1996), 197–202.
- [3] D. A. Brannan, J. Clunie and W. E. Kirwan, *Coefficient estimates for a class of starlike functions*, Can. J. Math., XXII (1970), 476–485.
- [4] M. Darus and D. K. Thomas, *α-logarithmically convex functions*, Indian J. Pure. Appl. Math., 29(1998), 1049–1059.
- [5] M. Darus and D. K. Thomas, *Inverse coefficients of* α *-logarithmically convex functions, Jnanabha*, **45**, (2015), 31–36.
- [6] K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Amer. Math. Soc., 80 (1974), 341–342.
- [7] Z. Lewandowski, S. S. Miller and E. J. Złotkiewicz, Gamma-starlike functions, Ann. Univ. Marie-Curie Sk/lodowska, 27 (1974), 53–58.
- [8] C. Löwner, Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann., 89 (1923), 103–121.
- [9] W. Ma and D. Minda, *A unified treatment of some special classes of univalent functions*, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, (1990), 157–169.
- [10] S. S. Miller, P. Mocanu and M. 0. Read, *All α-convex functions are univalent and starlike*, Proc. Amer. Math. Soc., **37** (1973), 553–554.
- [11] D. V. Prokhorov and J. Szynal, *Inverse coefficients for* (α, β) *-convex functions*, Annales Universitatis Mariae Curie Sklodowska, X (1981), No.15, 125–141.
- [12] D. K. Thomas and S. Verma, *Invariance of the coefficients of strongly convex functions, Bull. Australian Math, Soc.*, (2016), doi.10.1017/S0004972716000976..
- [13] P. Todorov, *Explicit formulas for the coefficients of* α *convex functions*, $\alpha \ge 0$, Can.J. Math., **XXXIX** (1987), 769–783.

Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.

E-mail: d.k.thomas@swansea.ac.uk