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THE EQUIVALENCE OF MANN ITERATION AND ISHIKAWA
ITERATION FOR A LIPSCHITZIAN — UNIFORMLY
PSEUDOCONTRACTIVE AND ¢— UNIFORMLY ACCRETIVE MAPS

B. E. RHOADES AND STEFAN M. SOLTUZ

Abstract. We show that certain Ishikawa iteration and the corresponding Mann iteration
schemes are equivalent when applied to Lipschitzian and t—uniformly pseudocontractive or

Lipschitzian ¥— uniformly accretive maps.

1. Introduction

In previous paper [10] the authors established the equivalence of certain Mann and
Ishikawa iteration procedures for Lipschitzian strongly pseudocontractive and strongly
accretive maps. This paper is an extension of some of that work to more general classes
of maps.

Let X be a real Banach space, B a nonempty, convex subset of X, T a selfmap of B.
The Mann iteration scheme, (see [4]), we shall use is one defined by

ug € B, (1)
Unt+1 = (1 — an)up + @y Tu,, n=0,1,2,....

The Ishikawa iteration scheme is defined, (see [2]), by

x0 € B,
Tn+1 = (1 - O‘n)zn + anTyn, (2)
Yn = (1= Bn)an + BuTan, n=0,1,2,...

where {an},{8n} C (0,1) and satisty

o0 oo oo
nan;o a, =0, nlLII;O B, =0, Zlan = 00, Zlai < 00, Zlanﬁn < o0. (3)
n= n= n—

Moreover, the sequence {«a,} from (1) is the same as that in (2). For 5, =0,Vn € N we
get from (2), Mann iteration.
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The map J : X — 2% given by Jz == {f € X* : (z, f) = ||lz||*>,[|f] = ||=||},Vz €
X,is called the normalized duality mapping. The Hahn-Banach theorem assures that
Jz # 0,Vz € X.

Let ¥ := {4 | ¢ :[0,00) — [0,00) is a nondecreasing map such that ¢ (0) = 0}.

Definition 1.([5]) Let X be a real Banach space. Let B be a nonempty subset of X.
A map T : B — B is called ¥—uniformly pseudocontractive if there exists a map ¢ € ¥
and a j(x —y) € J(z — y) such that

(Ta — Ty, j(@ —y)) < o =yl = &(|l= — yll), Yo,y € B. (4)

The map S : B — B is called ¥»—uniformly accretive if there exists a map ¥ € ¥ and
a j(z —y) € J(z —y) such that

(Sz =Sy, j(z —y)) 2 ¥(lz —yl),Vz,y € B. (5)

Taking ¥(a) := ¥(a) - a,Va € [0,00), (¢ € V), we get the usual definitions of
1—strongly pseudocontractivity and ¢ —strongly accretivity. Taking ¢ (a) := v € (0, 1),
Va € [0,00), (¢ € U), we get the usual definitions of strongly pseudocontractivity and
strongly accretivity.

Let T: [2,00) — R, T(z) = (z — 2)?/ (1 +(x— 2)2) () =a?/ (1+a?),¢ € T; in
[5] was shown that T is ¢p—uniformly pseudocontractive map without being 1)—strongly
pseudocontractive. Let T : [0,00) — [0,00),T(x) = x/ (1 + ) ,%¢(a) = a®>/ (1 +a),¥ €
U; in [7] was shown that T is ¢p—strongly psudocontractive map without being strongly
pseudocontractive.

Let us denote by I the identity map.

Remark 2. (i) T is ¢—uniformly pseudocontractive if and only if S = (I —T) is
1p—uniformly accretive.

(ii) T is ¢ —strongly pseudocontractive map if and only if (I — T) is tp—strongly
accretive.

Let F(T') denote the fixed point set of T. In [10] the equivalence between the conver-
gence of Mann and Ishikawa iterations for a Lipschitzian, strongly pseudocontractive map
was proved. In this paper we show that the convergence of Mann iteration is equivalent to
the convergence of Ishikawa iteration, for Lipschitzian, 1p—uniformly pseudocontractions.
We also prove a similar result for y—uniformly accretive maps. This equivalence allows
us that in practical problem to consider only iteration (1) which is more convenient to
use. Iteration (2) will have the same behavior.

The following Lemma is from [11].

Lemma 3. Let {a,} be a nonnegative sequence satisfying

ani1 < ap + by, VYn € N. (6)



THE EQUIVALENCE OF MANN AND ISHIKAWA METHODS 237

If 307 by < 00, then lim, .o ay, exists.
The following lemma will be useful.

Lemma 4. Let ) € U, and let {u,} and {\,} be two nonnegative sequences in (0, 1)
satisfying the conditions

oo (oo} oo
Zun:oo; Zui<oo; Z)\n<oo. (7)
n=1 n=1 n=1

Let {a,} be a nonnegative sequence which satisfies the inequality

_ Y(ant1)
Gatl = <1 (1 + Y(an+1) + antr

Then lim,,_,o an = 0.

)un) an + Ap, Vn €N (8)

Proof. From (8)
ni1 < ap + An, Vn € N. (9)

Lemma 3 assures the existence of lim,_, a,. Because {a,} is bounded and ¢ € ¥
AD>0: a, <D, YneN = 9Ya,) <Y(D), ¥YneN (10)

Let A =lim, .o an,. Then A > 0. Suppose A > 0

A A
Ing: ap > Px Yn>ng = Plan) > w(i), Vn > ng. (11)
Using (10), (11) and (8),
w(%) % < ¢(an+1) An
P T3 9D) + D) = M OFela) Fam)
< ap — Gpt1 + Ap, Y > ng. (12)
It then follows that
W(5) 4 - -
2.2 S wj < g + D> A <o (13)

(1 +¢¥(D)+ D)

Contradicting the fact that Y.~ ; p1,, = oo. Thus A = 0.

2. Main Results
We are able now to prove the following result:

Theorem 5. Let X be a real Banach space, B be a nonempty, bounded, convexr and
closed subset of X, and T : B — B be a Lipschitzian, 1— uniformly pseudocontractive
map. If {an},{Bn} satisfy (3), withuy = xo € B, then the following are equivalent:
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(i) Mann iteration (1) converges (to x* € F(T)),
(ii) Ishikawa iteration (2) converges (to the same x* € F(T)).

Proof. For all z,y € X we have

(Tw =Ty, j(z - y)) < |z = ylI* = (|l - y)
lz =y = (Tz = Ty, j(x - y)) = ¥(|lz - y)
(@ —y,j(z —y)) = (Te =Ty, jx —y)) = d(lx—yl)
(I =T)x— (I =Ty, jlx—y) = ¢z -yl

(14)

Using the fact that 1 + v¢(a) + a? > a2, for all a > 0, the following inequality is

satisfied
Y(a) 2

¢(a) > Wa

Taking a := ||z — y||we obtain
(I-T)z = (I-T)y, jlz-y))

U(llz = yl)
> T — >
> P(flz—yll) = 1+ oz —yl) + [lz—y

2
=o(zy) le—yl,

2

3 llz =yl

where

T —
o) i vlle—ol)
L+ P(le—yl) + llz—yl
Hence for each x,y € X :

€[0,1), Vz,y € X.

(I-T)z — (I-T)y, jlz—y)) = o(zy) lz—yl?,

U D a0y a)~ (I-T)y—oy)y) . iz —y)) >0
From Lemma 1.1 of [3], for each z,y € X :

Fj(x) € J(2) : (y,4(2)) 20 <= |z|| < [l + ayl|, Voo > 0.
In the above equivalence set

= llz =yl

)

(I =Tz —o(z,y)z) — (I -T)y —o(z,y)y) .

Then it follows that for each x,y € X and r > 0 :

xT:
(03
Yy

e =yl <llz =y +r[((I = T)x = o(z,y)x) = (I = T)y - az,y)y)]ll

(15)

(16)

(17)
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From (1) we have, for each n € N :

Up = Unt+1 + Qn Up — o Tuy,

=Upt1 + 2an Up — ap Uy — an Tuy,

=Upt1 + 2 Uy — ap Uy — p Ty + 20y Unt1 — 2 Qp Upga

= (1 + an) Upt1 + U(xn+1aun+1) Ap Up+1 — U(xn+1aun+1) QAp Up+1
+(2apunt1 + 2antn) — @ptnp — ap Tup + Qp Upta

=14+ ap) uny1 + 0(Tnt1,Unt1) @ [(L—ap) up + an Tuy, |
— 0(Tpt1, Unt1) Qn Ung1 + ((—2an) (1 —ap) up — 2 afl Tun, + 2y Uy )
— Qp Up — O TUp + ap Upt

=(1l4an) tnt1 — 0(Tng1,Unt1) O Unt1 + Qp Ung1 — Qp Tpt1 + ap Tpga
+0(Tng1,Unt1) Qn [Un — Qp Up + apn Tuy |
+(2aiun — 2 ap, Un —2aiTun+2anun) — ap Uy — Oy Tup

=(1+an) tny1 + o [(1 = T )uppr — 0 (@Tng1, Ung1) Ung1 |+ an Tunga
—0 (Tpy1,Unt1) @2 Uy + 0 (Tpy1,Uni1) a2 Tup, + 202 u, — 202 Tu,
+0 (Tpp1, Unt1) Qn Up — 2 Qp Up + 2 Qp Uy — Qp Uy, — @ Tuy

=1+ an) tngr + an [(I=T) untr — 0(@ng1,Unt1) Unsr ] + o Tngs
+ [2 04,% Uy — 2 ai Tun — 0(Tpt1, Unt1) ai Up + 0(Tpt1,Unt1) ai Tu,, }
+0(Tng1, Unt1) Qp Up — Qp Uy — oy Tuy

=1 +an) upy1 + an [(I =T)upy1 — 0(Tnt1,Unt1) Uny |
(2= o(Ens1ytnsn) ) 02 (un — Tun)
—(1=0(®nt1,Unt1) ) @ tn + an (Tupy1 — Tuy )

=1 +an) upy1 + an [(I =T)upy1 — 0(Tnt1,Unt1) Uny |
—(1—=0(Tnt1,Unt1) ) an un
(2= 0(@ni1,Ung1) ) &2 (up — Tun) + an (Tuny1 — Tuy). (18)

Analogously, from (2) we have

Tp = Tp+1 + an Ty — oy Tyn
=1 +an) Tpy1 + an [(I =T)rps1 — 0(Tot1, Unt1)Tot |
*( 1- O—(:L'nJrlaunJrl) ) Qp T

+ (2= 0(@n41,uns1) ) of (20 = Tyn) + an (Tanr — Ty ). (19)

Hence

Ty — Un = (L + an)(Tns1 — Unt1) + an[((I = T)Tnt1 — 0(Tns1, Unt1)Tns1)
= ((I = T)unt1 — 0(Tnt1, Unt1)Un+1)] = (1 = 0(Tns1, Uns1)) o (Tn — un)
+(2 = o(zn1, un+1))ai (T — Tyn — tupn + Tuy)
+an(Trnt1 — Tyn — Ttny1 + Tup). (20)
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Using the norm and relation (20), we obtain
On
1+ o,
= ((I = T)unt1=0(Tn41, Un+1)tn41)|[| = (1 =0 (Znt1, Ung1)) O |0 —tn |

—(2—o(znt1, “n+1))0‘121 Zn — Tyn — tn + Tun ||

lzn = unll > (1 + an)|[(Tns1 — uny1) + (I = T)ns1 — 0(Tpi1, Unt1)Tny1)

—ap [ Txne1 — Tyn — Tuns1 + Tug|| -

Using (17) with

Qp
ri=
14+ ay,’
T = Tnp,
Y = Unp,

we get

20 —unll > (1 + an) [[Zat1 — tnt1ll = (1 = 0(Tng1, uny1))an [|2n — un |
—(2- U(xn+1aun+1))0‘721 lzn — Tyn — wn + Tuy ||
—an | Txns1 — TYn — Tunt1 + Tuy || - (21)

Thus we have

(14 an) [Tnt1 — upgr | L [T+ (1 = o(znt1, unt1))on] |20 — unl|
+(2 = o(znq1, un+1))ai 20 — Tyn — wn + Tuy||
+an [|[T2nt1 — Tyn — Tunt1 + Tun| - (22)

That is

L+ (1 —o(Tpy1,Uny1))om |20 — un|
n n

[#n41 = tnsa || <

1+ o,
1
+1 Ta, (2—- U(In+17“n+1))0‘% Zn — Tyn — n + Tu |
o
+ 7 +nan ITZnt1 — Tyn — Tunt1 + Tunll . (23)

Sine B is bounded and T is Lipschitzian, there exists a positive constant M such that,
for all {z,},{u,} C B,

max{{|zn ||, [|Tynll ; |unll, [Tunll} < M, for all n € N.
Hence, for each n,

1+ (1= 0(@n41, Ung1))an
14+ a,

||1'n+1 - un+1|| < ||xn - Un”
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1

13 o (2 = 0(Tnt1, untr))an4M

Qp
O Ty — Ty~ T+ T

n
1 1— 8M
o [ = olwnr, un)an [Zn — Un| + ———a2
1+a, 1+a,

«

+1 +na ITxnt1 — TYn — Ttntr + Tunll (24)

We have

1Txn41 — Tyn — Ttuni1 + Ty
<NTznpr = Tynll + [ Tunta = Tun||
S Ll[#ng1 = ynll + LlJtingr — un|
< L((I—ann + Bntn + anTyn = BuTanll) + an [Tun — un)
< L((an [[=2n + Tynll + Bn |[#n = Tanl) + an [|Tun — unl))
< L((en ([znll + ITynll) + Bn (2l + 1 Tznl)) + an ([Tunll + unl))
< L(an2M + Bo2M + 0, 2M)
=2LM(2an + Bn) — 0 as n — . (25)
Using the fact that (14+a,,) "t < 1—a,+a2, and (1+a,) ! < 1,Vn € N, substituting
(25) into (24), yields
lZn+1 — unsa|l < [(1 + (L= o(Tpt1, Unt1))om) (1 —Op + O‘i)] lzn — unl
+an2LM (20, + 3,) +8Ma?
=[1-a,+ a% + oy — a% + afL — 0(Tpg1, Unt1)an + 0(Tnta, unH)a%
—0(Tni1, Un 1)) |20 — wn|| + 8MaZ 4 an2LM (20, + 3,)
< 1= o(@ng1; ungr)an] |[2n — uall
+ap (an + (1= an) 0(@p41, Uns1)) 20 — |
+8Ma? + a,2LM (20v, + )
<1 = 0 (@nt1s tnsr)an] |2 — unll +af (1+1) [l — un|
+8Ma? + a,2LM (20u, + )
< [1=0(Zns1, Unt1)om] | Tn —un||+a24M +8Ma2 +a,2LM (20, +3,)
=[1 = o(Tni1, Uni1)n] |Tn — n|| + @2 12M + 2L M (200, + 3,)

= (1 = 0o (Tnt1; unt1)) [|2n = unll + An. (26)
Define
Hn 1= Qp,
Ay i=a2 12 M + a,2LM (200, + ) (27)

ap = ||Tn — un| -



242 B. E. RHOADES AND STEFAN M. SOLTUZ

Since {an} C (0,1), Y07 anfBy < o0 and Y o7, a2 < oo, if follows from Lemma 4 that
nlirlgo |z — un|| = 0. (28)

Suppose now that lim,, . u, = x* then
lan — 2" || < llzn = unll + lun — 27, (29)

and lim,, o ©, = z*. For the converse we suppose that lim,, . x, = z*. Relation (28)
and the following inequality

un — 2" < llzn — unll + [0 — 27| (30)
implies that lim, . u, = x*.

The above result does not completely generalize the main result from [10] because in
[10] B is not assumed to be bounded.

Theorem 6. Let K be a closed convex subset of an arbitrary Banach space X and let
T be a Lipschitzian pseudocontractive selfmap of K. Let us consider Mann iteration and
Ishikawa iteration with the same initial point and satisfying the conditions lim, _ . ay, =
limy, o0 B =0, and > 07 | o, = 00. Let z* € F(T').Then the following are equivalent:
(i) Mann iteration (1) converges to x*,
(ii) Ishikawa iteration (2) converges to x*.

3. The y)— Uniformly Accretive Case

Let S be a 1y— uniformly accretive and Lipschitzian map. Suppose that the equation
Sz = f has a solution for a given f € X. It easy to see that

Ter=x+ f— Sx,Vzx € X, (31)

is a Y—uniformly pseudocontractive and Lipschitzian map. Moreover, a fixed point for T’
is a solution of Sz = f, and conversely. Theorem 3 assures that the convergence of Mann
and Ishikawa iterations to the fixed point of T are equivalent. The map T is assumed
to be Y—uniformly pseudocontractive and Lipschitzian. A similar result holds for the
convergence of Mann and Ishikawa iterations to the solution of Sz = f. The map S is
assumed ¢— uniformly accretive. For this case we need to know that (I —S) must have
a bounded range. It is well known that if T" is bounded (I —T') could be unbounded. For
example take T : R — R with T'(x) = (1/2) cosz. From [1], (I -T)(z) = x—(1/2) cosz, is
Lipschitzian and strongly accretive. For the same {«, }, {8,} C (0,1) as in (3), iterations
(1) and (2) become

Tpe1 = (1 —an)zn + o (f + (I = S)yn),

(32)
Yn = (liﬂn)mn‘i’ﬂn(f‘i’(jis)mn)a n:0a172a-~'7
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and
Unt1 = (L —ap)un +an (f+ (I — S)up),n=0,1,2,.... (33)

We are able now to give the following result

Theorem 7. Let X be a real Banach space, B be a nonempty, bounded, conver and
closed subset of X, and S : B — B be a Lipschitzian, ¥v— uniformly accretive map, with
(I — S)(B) bounded, and suppose that there exists solutions for Sz = f. If the sequences
{an}, {Bn} satisfy condition (3), and ug = x¢ € B, then the following two assertions are
equivalent:

(i) Mann iteration (33) converges to a solution x* of Sx = f,
(i) Ishikawa iteration (32) converges to the same solution x* of Sz = f.

For the multivalued case we have

Definition 8. Let X be a real Banach space. Let B be a nonempty subset. A
map T : B — 28 is called uniformly pseudocontractive if there exists k € (0,1) and
jlx —y) € J(z — y) such that

(€= 0,5z =) < o —yl” = (|l - yll), (34)

forall z,y € B,{ € Tx,0 € Ty.
Let S : X — 2%. The map S is called uniformly accretive if there exists v € (0,1)
and j(x —y) € J(z — y) such that

(€—0,5(x—y)) = ¢z —yl), (35)
forall z,y € X, £ € Sx, 0 € Sy.

We remark that all the results from this paper hold in the multivalued case, provided
that these multivalued maps admit single valued selections.

5. Remarks on the Convergence of Mann and Ishikawa Iterations for v —
Uniformly Pseudocontractive and ©¥»— Uniformly Accretive Maps

Taking ¢(a) := ¢(a) - a, Va € [0,00) in (4) and (5) from Definition 1 we obtain the
definition of ¢ —strongly pseudocontractive and ¢—strongly accretive map, (see [8, 9]).
For all z,y € X we have

lz =yl = w(lz =yl |z = yll = (Tz — Ty, j(z - y))

lz = yl|* = (T = Ty, j(x = y)) = (e —y|) |z - y| (36)
(@ —y,j(x—y)) = (Te =Ty, j(x—y)) 2 ¢(lz —yl) [lx -y
(I=T)x—= (I =Ty, jlx—y)) = bz —yl)llz -yl



244 B. E. RHOADES AND STEFAN M. SOLTUZ

Furthermore

(I =T)x— I =T)y,j(x—y)) =¢(lz—yl) = -yl

B(lz — yl) e
= Tz~ + e —g = Y
= o(z.y) [z — ] (37)

where $(lz = yl)

_ z—y
T = T gl + e © DTSR
Hence we get Vz,y € X :
(I =T — (I~ Ty j(a— ) > ole,y) o — v,
(I -T)x—o(x,y)z)— (I -T)y—o(x,y)y),jlx—y)) >0. (38)

Observe that (37) is (15) and formula (38) is (16) but with a different o(z,y). Using
the same argument as for (15) and (16) it follows that for all ,y € X and r > 0 :

e =yl <lz—y+r[((I -T)z—o(x,y)z) = (I -Ty—olz,yyll. 39

Let us consider the case when T is y—uniformly accretive or ¥ —uniformly pseudo-
contractive map. For the convergence of Mann or Ishikawa iteration, using inequality
(17) (which is similar to (39) used in [8] and [9]), one can easily see that the proofs are
exactly the same as those in [7], [8] or [9].

Conclusion. All the results from [7], [8], [9], concerning the convergences of Mann-
Ishikawa iteration hold if we replace the “p—strongly” with “p—uniformly”.
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