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EXTREME MONOPHONIC GRAPHS AND EXTREME

GEODESIC GRAPHS

A. P. SANTHAKUMARAN AND P. TITUS

Abstract. For a connected graph G = (V ,E ) of order at least two, a chord of a path P is an

edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a

chordless path. A monophonic set of G is a set S of vertices such that every vertex of G lies

on a monophonic path joining some pair of vertices in S. The monophonic number of G

is the minimum cardinality of its monophonic sets and is denoted by m(G). A geodetic

set of G is a set S of vertices such that every vertex of G lies on a geodesic joining some pair

of vertices in S. The geodetic number of G is the minimum cardinality of its geodetic sets

and is denoted by g (G). The number of extreme vertices in G is its extreme order ex(G). A

graph G is an extreme monophonic graph if m(G) = ex(G) and an extreme geodesic graph

if g (G)= ex(G). Extreme monophonic graphs of order p with monophonic number p and

p−1 are characterized. It is shown that every pair a,b of integers with 0 ≤ a ≤ b is realized

as the extreme order and monophonic number, respectively, of some graph. For positive

integers r,d and k ≥ 3 with r < d , it is shown that there exists an extreme monophonic

graph G of monophonic radius r , monophonic diameter d , and monophonic number k.

Also, we give a characterization result for a graph G which is both extreme geodesic and

extreme monophonic.

1. Introduction

By a graph G = (V ,E ) we mean a finite undirected connected graph without loops or mul-

tiple edges. The order and size of G are denoted by p and q , respectively. For basic graph

theoretic terminology we refer to Harary [4]. For vertices x and y in a connected graph G ,

the distance d (x, y) is the length of a shortest x-y path in G . An x-y path of length d (x, y) is

called an x-y geodesic. The neighborhood of a vertex v is the set N (v) consisting of all vertices

u which are adjacent with v . A vertex v is an extreme vertex of G if the subgraph induced by

its neighbors is complete. An extreme vertex of G is also called a simplicial vertex of G . The

number of extreme vertices in G is its extreme order ex(G).
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A geodetic set of G is a set S of vertices such that every vertex of G lies on a geodesic path

joining some pair of vertices in S. The geodetic number of G is the minimum cardinality of

its geodetic sets and is denoted by g (G). A geodetic set of cardinality g (G) is called a g -set .

The geodetic number of a graph was introduced in [1, 5] and further studied in [2]. A graph

G is an extreme geodesic graph if g (G) = ex(G). Extreme geodesic graphs were introduced and

studied in [4].

A chor d of a path P is an edge joining two non-adjacent vertices of P. A path P is called a

monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set if each

vertex v of G lies on an x − y monophonic path for some x, y ∈ S. The minimum cardinality

of a monophonic set of G is the monophonic number of G and is denoted by m(G). The

monophonic number of a graph was studied in [9].

For any two vertices u and v in a connected graph G , the monophoni c di st ance dm(u, v)

from u to v is defined as the length of a longest u−v monophonic path in G . The monophoni c

eccent r i ci t y em(v) of a vertex v in G is em(v) = max {dm(v,u) : u ∈V (G)}. The monophoni c

r adi us, r adm(G) of G is r adm(G) = min {em(v) : v ∈V (G)} and the monophoni c di amet er,

di amm(G) of G is di amm(G) = max {em(v) : v ∈V (G)}. A vertex u in G is a monophonic eccen-

tric vertex of a vertex v in G if em(u) = dm(u, v). The monophonic distance was introduced in

[7] and further studied in [8].

The following theorems will be used in the sequel.

Theorem 1.1 ([2]). Each extreme vertex of a graph G belongs to every geodetic set of G.

Theorem 1.2 ([4]). Let G be a connected graph with at least three vertices. The following state-

ments are equivalent:

(i) G is a block.

(ii) Every two vertices of G lie on a common cycle.

Theorem 1.3 ([9]). Each extreme vertex of a graph G belongs to every monophonic set of G.

Theorem 1.4 ([9]). No cutvertex of a graph G belongs to any minimum monophonic set of G.

Theorem 1.5 ([9]). Let G be a connected graph with cutvertices and let S be a monophonic set

of G. If x is a cutvertex of G, then every component of G −x contains an element of S.

Theorem 1.6 ([5]). Let G be a connected graph with cutvertices and let S be a geodetic set of G.

If x is a cutvertex of G, then every component of G −x contains an element of S.
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2. Extreme monophonic graphs

Definition 2.1. A graph G is said to be an extreme monophonic graph if m(G) = ex(G).

For the graph G given in Figure 2.1, v1 and v7 are the only two extreme vertices so that

ex(G) = 2. The set S = {v1, v7} is a minimum monophonic set of G so that m(G) = ex(G) = 2.

Therefore, G is an extreme monophonic graph.
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v4 v5

v6 v7

Figure 2.1: G .

For any nontrivial tree T with k end vertices, ex(T ) = k and by Theorems 1.3 and 1.4,

m(T ) = k . Thus any nontrivial tree is an extreme monophonic graph. It is obvious that the

cycle Cp (p ≥ 4) and the complete bipartite graph Kr,s (2 ≤ r ≤ s) are not extreme monophonic

graphs. By Theorem 1.3, we see that for any connected graph G of order p , 0 ≤ ex(G)≤ m(G) ≤

p . It is an easy consequence of Theorem 1.3 that a connected graph G of order p ≥ 2 is an

extreme monophonic graph with monophonic number p if and only if G = Kp .

The following theorem gives a characterization of extreme monophonic graphs of order

p with monophonic number p −1.

Theorem 2.2. Let G be a connected graph of order p ≥ 3. Then G is an extreme monophonic

graph with m(G) = p −1 if and only if G = K1 +
⋃

m j K j , where
∑

m j ≥ 2.

Proof. Let G = K1 +
⋃

m j K j , where
∑

m j ≥ 2. Since G has exactly one cutvertex and all other

vertices are extreme, it follows from Theorems 1.3, 1.4 that m(G) = p −1. Conversely, let G be

an extreme monophonic graph with m(G) = p −1. Then there exists exactly one non-extreme

vertex, say x, in G . If p = 3, then G is a path of order 3 and hence G = K1 +
⋃

2K1. Let p ≥ 4.

We claim that x is the cutvertex of G . Otherwise, x lies on a smallest cycle, say C , of length at

least 4. Then the neighbors of x on C do not belong to a minimum monophonic set of G and

hence m(G) ≤ p −2, which is a contradiction. Hence G − x has at least two components. We

prove that each component is complete and x is adjacent to every vertex of each component.

Suppose there exists a component B , which is not complete. Let u and v be two vertices in B

such that d (u, v)≥ 2. Then by Theorem 1.2, both u and v lie on a common cycle and hence u

and v lie on a smallest cycle of length at least 4. Hence m(G) ≤ p −2, which is a contradiction.
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Thus each component of G − x is complete. Now, if x is not adjacent to some vertex of a

component, then x lies on a monophonic path of length at least 3 so that m(G) ≤ p −2, which

is a contradiction. Hence G =K1
⋃

m j K j , where K1 is the vertex x and
∑

m j ≥ 2. ���

For any connected graph G , we have 0 ≤ ex(G) ≤ m(G) and 2 ≤ m(G) ≤ p . In view of this,

we have the following realization result.

Theorem 2.3. For every pair a,b of integers with 0 ≤ a ≤ b and b ≥ 2, there exists a connected

graph G with ex(G)= a and m(G) = b.

Proof. We consider two cases, according to whether a = 0 or a ≥ 1.

Case (i) a = 0. Let F1,F2, . . . ,Fi , . . . ,Fb be such that each Fi is a copy of C4 with vertices vi ,1, vi ,2,

vi ,3, vi ,4 for i = 1,2, . . . ,b. Let G be the graph obtained by identifying the vertices vi ,1 of Fi (1 ≤

i ≤ b). The graph G is shown in Figure 2.2. Since b ≥ 2, G has the unique cutvertex, say x.

Clearly, no vertex of G is an extreme vertex and so ex(G) = 0. By Theorem 1.5, every

monophonic set of G contains at least one vertex from each component of G−x and so m(G) ≥

b. Let S = {v1,3, v2,3, v3,3, . . . , vb,3}. Since S is a monophonic set of G , it follows that m(G) = |S| =

b.
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Figure 2.3: G
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Figure 2.2: G

Case (ii) a ≥ 1. If a = b, then the complete graph G = Ka has the desired properties. If a < b,

then we construct a graph G as follows. Let F1,F2, . . . ,Fi , . . . ,Fb−a be such that each Fi is a

copy of C4 with vertices vi ,1, vi ,2, vi ,3, vi ,4 for i = 1,2, . . . ,b −a. Let K1,a be the star at x and let

U = {u1,u2, . . . ,ua} be the set of endvertices of K1,a . Let G be the graph obtained by identifying

the vertices vi ,1 of Fi (1 ≤ i ≤ b−a) and the vertex x of K1,a . The graph G is shown in Figure 2.3

and it is clear that ex(G)= a.
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By Theorems 1.3 and 1.5, every monophonic set of G contains at least one vertex from

each component of G − x so that m(G) ≥ b. Let S = {u1,u2, . . . ,ua , v1,3, v2,3, . . . , vb−a,3}. Since S

is a monophonic set of G , it follows that m(G) = b. ���

For any connected graph G , r ad (G) ≤ di am(G) ≤ 2r ad (G). Ostrand [6] showed that ev-

ery two positive integers r and d are realizable as the radius and diameter, respectively, of

some connected graph. Ostrand’s theorem can be extended to extreme monophonic graphs

so that the monophonic number can also be prescribed.

Theorem 2.4. For positive integers r,d and k ≥ 3 with r ≤ d ≤ 2r, there exists an extreme mono-

phonic graph G with r ad (G)= r, di am(G)= d and m(G) = k .

Proof. If r = 1, then d = 1 or 2. If d = 1, then letting G = Kk , it follows from Theorem 1.3 that

m(G) = k and so G is an extreme monophonic graph. Also, if d = 2, then letting G = K1,k , it

follows from Theorem 1.3 that m(G) = k and so G is an extreme monophonic graph. Now, let

r ≥ 2. We construct a graph G with the desired properties as follows:

Case 1. r = d . Let n = k +2r . Let a =

⌈

k+4
2

⌉

and b =n −

⌈

k
2

⌉

. Then it is clear that 2 < a < b < n.

Let C : x1, x2, . . . , xa , . . . , xb, . . . , xn , x1 be a cycle of order n.

Subcase (i). k is even. Let G be the graph obtained from C by joining every pair of vertices

of {x1, x2, . . . , xa } and also every pair of vertices of {xb , xb+1, . . . , xn , x1}. The graph G is shown

in Figure 2.4 for k = 6 and r = 3. Clearly, S = {x2, x3, . . . , xa−1, xb+1, xb+2, . . . , xn} is the set of all

extreme vertices of G with |S| = k . It is easily verified that the eccentricity of each vertex of G

is r so that r ad (G) = di am(G) = r . It is clear that S is the unique minimum monophonic set

of G so that m(G) = k and G is an extreme monophonic graph.
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Subcase (ii). k is odd. Let G be the graph obtained from C by joining every pair of vertices

of {x2, x3, . . . , xa }, every pair of vertices of {xb , xb+1, . . . , xn} and also adding the edge x2xn . The

graph G is shown in Figure 2.5 for k = 5 and r = 3. Then S = {x1, x3, x4, . . . , xa−1, xb+1, xb+2, . . .,

xn−1} is the set of all extreme vertices of G with |S| = k . It is clear that 1 ≤ d (x1, xi ) ≤ r

for i = 2,3, . . . ,n and d (x1, x n+1
2

) = d (x1, x n+3
2

) = r . Hence eccentricity of x1 is r . Similarly, it

can be verified that eccentricity of each of the remaining vertices is also r . Hence r ad (G) =

di am(G) = r . It is clear that S is the unique minimum monophonic set of G so that m(G) = k

and G is an extreme monophonic graph.
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Figure 2.5: G

Case 2. r < d ≤ 2r . Let Pd+1 : u1,u2, . . . ,ur ,ur+1, . . . ,ud+1 be a path of order d +1. Add k −2

new vertices v1, v2, . . . , vk−2 to Pd+1 and join each vi (1 ≤ i ≤ k −2) to ud , there by producing

the tree G of Figure 2.6. Then S = {u1,ud+1, v1, v2, . . . , vk−2} is the set of all extreme vertices of

G with |S| = k . It is clear that e(ur+1) = r,e(u1) = d and r ≤ e(x) ≤ d for all other vertices x in

G . Then r ad (G)= r and di am(G) = d . It is clear that S is the unique minimum monophonic

set of G and so m(G) = k . ���

b b b b b b bbbb bb b

b b bb b b

u1 u2 ur ur+1

ud ud+1

v1 v2 vk−2

Figure 2.6: G
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For any connected graph G , r adm(G) ≤ di amm(G). Santhakumaran and Titus [7] showed

that every two positive integers a and b with a ≤ b are realizable as the monophonic radius

and monophonic diameter, respectively, of some connected graph. This theorem can be ex-

tended to extreme monophonic graphs so that the monophonic number can also be pre-

scribed when r adm(G) < di amm(G).

Theorem 2.5. For positive integers r,d and k ≥ 3 with r < d, there exists an extreme mono-

phonic graph G with r adm(G) = r , di amm(G) = d and m(G) = k.

Proof. We prove this theorem by considering two cases.

Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, . . . , vd+2, v1 be a cycle of order d +2. Let G be the

graph obtained by adding k −2 new vertices u1,u2, . . . ,uk−2 to Cd+2 and joining each of the

vertices u1,u2, . . .uk−2, v3, v4, . . . , vd+1 to the vertex v1. The graph G is shown in Figure 2.7. It

is clear that em(v1) = 1, em(v2) = em(vd+2) = d and 2 ≤ em(x) ≤ d −1 for all other vertices x in

G . Hence r adm(G) = 1 and di amm(G) = d . Let S = {u1,u2, . . . ,uk−2, v2, vd+2} be the set of all

extreme vertices of G . By Theorem 1.3, every monophonic set of G contains S. It is clear that

S is a monophonic set of G and so ex(G) =m(G) = k .
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Case 2. r ≥ 2. Let C : v1, v2, . . . , vr+3, v1 be a cycle of order r +3 and let W =K1+Cd+2 be a wheel

with V (Cd+2) = {u1,u2, . . . ,ud+2} and let the vertex of K1 be v1. Let H be the graph obtained

from this by joining the vertices vr+1 and vr+3 of C , and also joining the vertex ud+2 with the

vertices u2 and ud of W . Now, add k −3 new vertices w1, w2, ..., wk−3 to the graph H and join

each vertex wi (1 ≤ i ≤ k −3) to the vertex v1 and obtain the graph G of Figure 2.8. It is easily

verified that r ≤ em(x) ≤ d for any vertex x in G and em(v2) = r, em(u1) = d . Then r adm(G) = r

and di amm(G) = d . Let S = {w1, w2, . . . , wk−3, vr+2,u1,ud+1} be the set of all extreme vertices

of G . By Theorem 1.3, every monophonic set of G contains S. It is clear that S is a monophonic

set of G and so ex(G) =m(G) = k . ���

Problem 2.6. For any three positive integers r,d and k ≥ 3 with r = d , does there exist an ex-

treme monophonic graph G with r adm(G) = r, di amm(G) = d and m(G) = k?

Theorem 2.7. For any three positive integers d ,k and p with 2 ≤ d < p, 2 ≤ k < p and p −d −

k +2≥ 0, there exists an extreme monophonic graph G of order p, monophonic diameter d and

m(G) = k .

Proof. Let Kp−d+1 be the complete graph with vertex set {w1, w2, . . . , wp−d−k+2,

v1, v2, . . . , vk−1}. Now, add a new vertex x to Kp−d+1 and let H be the graph obtained from

Kp−d+1 by joining x with each wi (1 ≤ i ≤ p −d − k + 2). Let P : u0,u1, . . . ,ud−2 be a path of

length d − 2. Let G be the graph obtained from H and P by identifying u0 with v1. Then

G has order p , monophonic diameter d and the graph G is shown in Figure 2.9. Let S =

{x,ud−2, v2, v3, . . . , vk−1} be the set of extreme vertices of G . It is clear that S is a monophonic

set of G and so by Theorem 1.3, m(G) = ex(G) = k . Thus G is an extreme monophonic graph

with monophonic number k . ���
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In the following theorem we construct a non-extreme monophonic graph G of order p,

monophonic diameter di amm(G) = d and monophonic number m(G) = k with data same as

in Theorem 2.7.

Theorem 2.8. For any three positive integers d ,k and p with 2≤ d < p, 2 ≤ k < p and p−d−k ≥

1, there exists a non-extreme monophonic graph G of order p, di amm(G) = d and m(G) = k .

Proof. Let W = Kp−d−k +Cd+2 be a general wheel with V (Kp−d−k ) = {v1, v2, . . . , vp−d−k } and

V (Cd+2) = {u1,u2, . . . ,ud+2}. Now, add k −2 new vertices w1, w2, . . . , wk−2 to W and join each

vertex wi (1 ≤ i ≤ k − 2) to every vertex of Kp−d−k . The graph G is shown in Figure 2.10. It

is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G and em(u1) = d . Then di amm(G) =

d . Let S = {w1, w2, . . . , wk−2} be the set of all extreme vertices of G and so ex(G) = k − 2. By

Theorem 1.3, every monophonic set of G contains S. It is clear that S is not a monophonic set

of G . Let T = S
⋃

{u2,ud+2}. It is clear that T is a minimum monophonic set of G and so m(G) =

k . Since ex(G) = k−2 6= m(G), G is a non-extreme monophonic graph with di amm(G) = d and

m(G) = k . ���
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3. Extreme monophonic graphs and extreme geodesic graphs

Since every geodetic set is a monophonic set and every extreme vertex belongs to every

geodetic set, it follows that every extreme geodesic graph is an extreme monophonic graph.

However, the converse need not be true. For the graph G given in Figure 2.1, S = {v1, v7} is a

minimum monophonic set so that m(G) = ex(G)= 2. Therefore, G is an extreme monophonic

graph. Since S is not a geodetic set, G is not an extreme geodesic graph. If m(G) = g (G) =

ex(G), then the graph G is both extreme monophonic and extreme geodesic. We observe that

if G is extreme geodesic, then it is also extreme monophonic. In view of this observation, we

have the following characterization theorem.

Theorem 3.1. A graph G is both extreme geodesic and extreme monophonic if and only if every

non-extreme vertex of G lies on an x − y geodesic for some extreme vertices x and y in G.

Proof. Let S be the set of all extreme vertices of G . If every non-extreme vertex of G lies on

an x − y geodesic for some extreme vertices x and y in G , then by Theorems 1.1 and 1.3, S is

both minimum geodetic set and minimum monophonic set of G . Hence G is both extreme

geodesic and extreme monophonic graph.

Conversely, let G be both extreme geodesic and extreme monophonic graph. Then ex(G)=

g (G) = m(G). Since ex(G) = g (G), S is the unique minimum geodetic set. Hence every non-

extreme vertex of G lies on an x − y geodesic for some vertices x, y ∈ S. ���

Theorem 3.2. For every pair a,b of integers with 2 ≤ a ≤ b ≤ 2a, there exists a connected graph

G which is neither extreme geodesic nor extreme monophonic such that m(G) = a and g (G) = b.

Proof. For each integer i with 1 ≤ i ≤ b−a, let Ci : vi ,0, vi ,1, vi ,2, vi ,3, vi ,4, vi ,0 be a cycle of order

5 and for each integer j with 1 ≤ j ≤ 2a−b, let C ′
j

: u j ,0,u j ,1,u j ,2,u j ,3,u j ,0 be a cycle of order 4.

Let G be the graph obtained by identifying vi ,0 of Ci (1 ≤ i ≤ b−a) and u j ,0 of C ′
j

(1 ≤ j ≤ 2a−b).

The graph G is shown in Figure 3.1. It is clear that no vertex of G is an extreme vertex of G . The

set M1 = {u1,2,u2,2, . . . ,u2a−b,2, v1,2, v2,2, . . . , vb−a,2} is a monophonic set of G and so by Theo-

rem 1.5, m(G) = a. Also, the set S1 = {u1,2,u2,2, . . . ,u2a−b,2, v1,2, v1,3, v2,2, v2,3, . . . , vb−a,2, vb−a,3}

is a geodetic set of G and so by Theorem 1.6, g (G) = b. Hence G is neither an extreme geodesic

nor an extreme monophonic graph. ���
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Problem 3.3. For every pair a,b of integers with 2 ≤ a ≤ b and b > 2a, does there exist a con-

nected graph G which is neither extreme geodesic nor extreme monophonic such that m(G) = a

and g (G) = b?

Theorem 3.4. For every pair a,b of integers with 2 ≤ a < b ≤ 2a, there exists a connected graph

G which is extreme monophonic but not extreme geodesic such that m(G) = a and g (G) = b.

Proof. For each integer i with 1 ≤ i ≤ b−a, let Ci : vi ,0, vi ,1, vi ,2, vi ,3, vi ,4, vi ,0 be a cycle of order

5 and for each integer j with 1 ≤ j ≤ 2a −b, let C ′
j

: u j ,0,u j ,1,u j ,2,u j ,3,u j ,0 be a cycle of order

4. Let H be the graph obtained from Ci and C ′
j

by identifying vi ,0 of each Ci (1 ≤ i ≤ b−a) and

u j ,0 of each C ′
j

(1 ≤ j ≤ 2a −b). Now, let G be the graph obtained from H by (i) joining each

u j ,1 with u j ,3(1 ≤ j ≤ 2a −b), and (ii) joining each vi ,1 with vi ,3(1 ≤ i ≤ b −a). The graph G is

shown in Figure 3.2. Let S = {u1,2,u2,2, . . . ,u2a−b,2, v1,2, v2,2, . . . , vb−a,2} be the set of all extreme

vertices of G . Since S is a monophonic set of G , it follows from Theorem 1.5 that m(G) = a. It

is clear that S is not a geodetic set of G and S1 = S ∪ {v1,3, v2,3, . . . , vb−a,3} is a geodetic set of G

and so by Theorem 1.6, g (G) = b. Hence G is an extreme monophonic graph but it is not an

extreme geodesic graph. ���

If G is an extreme monophonic graph and it is not an extreme geodesic graph, then

m(G) < g (G). This leads to the following problem.
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Figure 3.2: G

Problem 3.5. For every pair a,b of integers with 2 ≤ a < b and b > 2a, does there exist a con-

nected graph G which is extreme monophonic but not extreme geodesic such that m(G) = a and

g (G) = b?
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