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HADAMARD’S INEQUALITY ON A TRIANGLE AND ON A POLYGON

YIN CHEN

Abstract. In this paper, some inequalities of Hadamard’s type for a convex function of double

variable defined on a triangle and on a regular polygon are proved. As a consequence, Hadamard’s

inequality on a disk is also given.

1. Introduction

Let f be a convex function defined on [a, b]. Then the following double inequality

f

(

a + b

2

)

≤
1

b − a

∫ b

a

f(x)dx ≤
f(a) + f(b)

2
(1)

is called in the literature Hadamard’s inequality.
Let us have a closer look at the second inequality. It states in fact that the average

of a convex function on [a, b] is less than or equal to the average of its values at the end
points of [a, b].

We now consider a convex function on a triangle of R2. It is natural to ask if the
average of the convex function on the triangle is less than or equal to the average of all
the values of the function at the vertices. Recall that a function f defined on a convex
planar domain D is said to be convex if it satisfies the following inequality

f(λ1x1 + λ2x2, λ1y1 + λ2y2) ≤ λ1f(x1, y1) + λ2f(x2, y2)

for any (x1, y1), (x2, y2) ∈ D and for any nonnegative constants λ1 and λ2 where λ1+λ2 =
1. Note that a convex function f(x, y) of double variables is convex in both x and y.

We will show that in fact the second inequality of (1) is also true for a convex function
on a triangle, but not for a polygon in general.

2. Hadamard’s Inequality on a Triangle

To establish the Hadamard’s inequality on a triangle, we first need some lemmas.
The following easy lemma shows that the composite function of a convex function and
an affine transformation is also convex.
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Lemma 2.1. If f(x, y) is a convex function on D, then the function f(ax + by +

m, cx + dy + n) is convex on D′, where D and D′ are convex domains such that D =

{(ax + by + m, cx + dy + n) : (x, y) ∈ D′}.

Proof. Directly verify the function f(ax + by + m, cx + dy + n) according to the

definition of two-dimensional convexity of function.

The next lemma is just a special case of Theorem 2.4.

Lemma 2.2. Let f(x, y) be a convex function on the triangle ∆0 enclosed by x = 0,

y = 0 and x + y = 1. Then

2

∫ ∫

∆0

f(x, y)dxdy ≤
f(0, 0) + f(0, 1) + f(1, 0)

3
. (2)

Proof. f(x, y) being convex function on ∆0 implies that the following inequalities

hold for any x between 0 and 1

f(x, 0) ≤ xf(1, 0) + (1 − x)f(0, 0) (3)

and

f(x, 1 − x) ≤ xf(1, 0) + (1 − x)f(0, 1). (4)

Since f is convex on y, it follows from (1) that

∫ 1−x

0

f(x, y)dy ≤ (1 − x) ·
f(x, 0) + f(x, 1 − x)

2
. (5)

Therefore by (3), (4) and (5), we have

2

∫ ∫

∆0

f(x, y)dxdy = 2

∫ 1

0

∫ 1−x

0

f(x, y)dydx

≤

∫ 1

0

(1 − x)[f(x, 0) + f(x, 1 − x)]dx

≤

∫ 1

0

[2(1 − x)xf(1, 0) + (1 − x)2f(0, 0) + (1 − x)2f(0, 1)]dx

≤
f(0, 0) + f(0, 1) + f(1, 0)

3
.

This proves Lemma 2.2.

The following lemma gives a formula for calculating the area of a triangle if the

equations of its three sides are given.
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Lemma 2.3. Let ∆ be a triangle enclosed by the following three lines

li : cix + diy − mi = 0 for i = 1, 2, 3.

Then the area A(∆) of the triangle ∆ is given by

A(∆) =
1

2

∣

∣

∣

∣

∣

∣

c1 d1 m1

c2 d2 m2

c3 d3 m3

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣

c1 d1

c2 d2

∣

∣

∣

∣

·

∣

∣

∣

∣

c2 d2

c3 d3

∣

∣

∣

∣

·

∣

∣

∣

∣

c3 d3

c1 d1

∣

∣

∣

∣

∣

∣

∣

∣

. (6)

Proof. We first change the variables x, y to X , Y by an affine transformation

X = k(c1x + d1y − m1), (7)

Y = l(c2x + d2y − m2) (8)

where k, l are two constants to be determined such that the equation

X + Y − 1 = s(c3x + d3y − m3) (9)

holds for some constant s 6= 0. In fact, an elementary calculation shows that

k =
c3d2 − c2d3

A
, l =

c1d3 − c3d1

A
and s =

c1d2 − c2d1

A

where

A =

∣

∣

∣

∣

∣

∣

c1 d1 m1

c2 d2 m2

c3 d3 m3

∣

∣

∣

∣

∣

∣

.

It is clear that A 6= 0, since otherwise all the three lines meet at the same point. Under
this affine transformation, l1, l2 and l3 become X = 0, Y = 0 and X +Y = 1 respectively
by (7), (8) and (9), hence ∆ becomes now ∆0. It is easy to find the jacobian of this
transformation

|J | =

∣

∣

∣

∣

∂(x, y)

∂(X, Y )

∣

∣

∣

∣

=
A2

|c1d2 − c2d1| · |c2d3 − c3d2| · |c3d1 − c1d3|
. (10)

It follows that

A(∆) =

∫ ∫

∆

dxdy

=

∫ ∫

∆0

|J |dXdY

= |J |

∫ 1

0

∫ 1−X

0

dY dX

=
1

2
|J |,
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which is indeed (6).

We are now ready to give the Hadamard’s inequality on a triangle.

Theorem 2.4. Let f(x, y) be a convex function on a triangle ∆ with the vertices

(a1, b1), (a2, b2) and (a3, b3). Then

1

A(∆)

∫ ∫

∆

f(x, y)dxdy ≤
f(a1, b1) + f(a2, b2) + f(a3, b3)

3
, (11)

where A(∆) is the area of the triangle ∆.

Proof. Suppose that cix+ diy−mi = 0 (i = 1, 2, 3) is the equation of the side line li
of the triangle ∆ which does not meet the vertex (ai, bi). We do an affine transformation

as in the proof of Lemma 2.3 to change the variables x, y to X , Y . Under this change

of variable, l1, l2 and l3 become X = 0, Y = 0 and X + Y = 1 respectively. The three

vertices become now (1, 0), (0, 1) and (0, 0).

Set

F (X, Y ) = f

(

(X

k
+ m1)d2 − (Y

l
+ m2)d1

c1d2 − c2d1
,
−(X

k
+ m1)c2 + (Y

l
+ m2)c1

c1d2 − c2d1

)

.

It follows by Lemma 2.1 that F (X, Y ) is convex on ∆0 since f(x, y) is covnex on ∆.

Hence by Lemma 2.3 and then by Lemma 2.2, we have

1

A(∆)

∫ ∫

∆

f(x, y)dxdy =
2

|J |

∫ ∫

∆0

F (X, Y )|J |dXdY

= 2

∫ ∫

∆0

F (X, Y )dXdY

≤
F (0, 0) + F (1, 0) + F (0, 1)

3

=
f(a1, b1) + f(a2, b2) + f(a3, b3)

3
.

This completes the proof.

3. Hadamard’s Inequality on a Polygon

In Section 2, we show that the average of a convex function on an arbitrary triangle

is less than or equal to the average of its values at the vertices. Is this true for a convex

function on a convex polygon? Unfortunately, it is quite not the case in general.

Let us consider an example. Let D be a quadrilateral enclosed by x = 0, y = 0, y = 1

and x + y = 2, and let f(x, y) = x. Then f is convex on D. But it is easy to show
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that 1
A(D)

∫∫

D
f(x, y)dxdy = 7

9 which is greater than the average of the values at all four

vertices 3
4 .

The above example shows that even for a convex quadrilateral, Hadamard’s inequality

does not hold in general. However for the more regular quadrilaterals, we do have the

Hadamard’s inequality.

Theorem 3.1. Let D be a parallelogram and f(x, y) be convex on D, then

f(a, b) ≤
1

A(D)

∫ ∫

D

f(x, y)dxdy ≤

∑4
i=1 f(ai, bi)

4
(12)

where (a, b) is the centre of D, (ai, bi) (i = 1, 2, 3, 4) are the vertices and A(D) is the

area of D.

Proof. Without loss of generality, we can assume that a = 0, b = 0. Since a

parallelogram is symmetric about its centre, letting u = −x, v = −y, we will have

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D

f(−u,−v)dudv =

∫ ∫

D

f(−x,−y)dxdy.

Hence

∫ ∫

D

f(x, y)dxdy =
1

2





∫ ∫

D

f(x, y)dxdy +

∫ ∫

D

f(−x,−y)dxdy





=

∫ ∫

D

1

2
[f(x, y) + f(−x,−y)]dxdy

≥

∫ ∫

D

f(0, 0)dxdy = f(0, 0)A(D).

This proves the first inequality of (12).

To prove the second inequality, let us first split the parallelogram into two triangles

with the same area by one diagonal. On each triangle, make use of Theorem 2.4, then

add the two integrals. We have thus 2
A(D)

∫∫

D
f(x, y) is less than or equal to a sum of

six terms of the values at the vertices over 3. Do the same about the other diagonal,

then we have 2
A(D)

∫∫

D
f(x, y) is less than or equal to a sum of six terms (they may be

different from the previous six terms!) of the values at the vertices over 3. Now add both

sides of these two inequalities. The left side now becomes 4
A(D)

∫∫

D
f(x, y)dxdy and the

right side is a sum of 12 terms of values over 3. Note that in the right side, the value

of f at each vertex appears exactly three times, thus the right side becomes the sum of

the values of f at all the four vertices. Dividing both sides by 4 gives the second part of

(12).



252 YIN CHEN

We will now extend (12) to a regular polygon. First we need the following Jensen’s
inequality.

Lemma 3.2. If f(x, y) is convex on a convex domain D, then for any positive

integer n and any points (x1, y1), (x2, y2), . . . , (xn, yn) ∈ D, we have

f

(∑n

k=1 xk

n
,

∑n

k=1 yk

n

)

≤

n
∑

k=1

f(xk, yk)

n
. (13)

Proof. Use mathematical induction. See also ([3], page 89).

The following lemma is about two easy trigonometric identities. They can be proved
also by Euler’s formula.

Lemma 3.3. If n is any positive integer greater than 1, then

n−1
∑

k=0

cos
2kπ

n
=

n−1
∑

k=0

sin
2kπ

n
= 0. (14)

Proof. Note that

sin
π

n

n−1
∑

k=0

cos
2kπ

n
=

n−1
∑

k=0

sin
π

n
· cos

2kπ

n

=

n−1
∑

k=0

(

sin
(2k + 1)π

n
− sin

(2k − 1)π

n

)

= sin
(2n − 1)π

n
− sin

(−π)

n
= 0.

It follows that
∑n−1

k=0 cos 2kπ

n
= 0, since sin π

n
6= 0.

Similarly
∑n−1

k=0 sin 2kπ

n
= 0.

We now give the Hadamard’s inequality on a regular polygon.

Theorem 3.4. Let n be a positive integer greater than 2. Let D be a regular n-gon

and f(x, y) be a convex function on D. Then

f(a, b) ≤
1

A(D)

∫ ∫

D

f(x, y)dxdy ≤

∑n

k=1 f(ak, bk)

n
(15)

where (a, b) is the centre of D, (ak, bk) (k = 1, 2, . . . , n) are the vertices and A(D) is the

area of D.

Proof. Without loss of generality, we may assume that the centre (a, b) is (0, 0),
since otherwise we only need to do a translation. Note that D being a regular n-gon
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implies that the image of D under the rotation of an angle 2kπ

n
with respect to the origin

is still D for any integer k : k = 0, 1, 2, 3, . . . , n − 1. For the sake of simplicity, we set

αk = cos
2kπ

n
and βk = sin

2kπ

n
.

A rotation is an affine transformation. The jacobian is 1. Hence
∫ ∫

D

f(x, y)dxdy =

∫ ∫

D

f(αkx − βky, βkx + αky)dxdy. (16)

It follows from (16) that

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D

1

n

n−1
∑

k=0

f(αkx − βky, βkx + αky)dxdy

≥

∫ ∫

D

f

(

1

n

n−1
∑

k=0

(αkx − βky),
1

n

n−1
∑

k=0

(βkx + αky)

)

dxdy

=

∫ ∫

D

f(0, 0)dxdy

= A(D)f(0, 0),

where the inequality holds because of Lemma 3.2, and the second equality because of

Lemma 3.3. We thus prove the first part of (15).
To prove the second inequality of (15), we draw n segments between the centre (0, 0)

and each vertex. Now D is seperated by n similar triangles and each has the area A(D)
n

.
On each triangle, we apply Theorem 2.4 and we have n inequalities. The left side of each
inequality is a product of n

A(D) and an integral of f over a triangle and the right side is

one third of a sum of the values of f at two vertices and at (0, 0). We add all n integrals
in the left side and all the terms in the right side. We have

n

A(D)

∫ ∫

D

f(x, y)dxdy ≤
nf(0, 0) + 2

∑n

k=1 f(ak, bk)

3
.

But by the first inequality of (15)

f(0, 0) ≤
1

A(D)

∫ ∫

D

f(x, y)dxdy

and the above inequality, we have then

2n

3A(D)

∫ ∫

D

f(x, y)dxdy ≤
2
∑n

k=1 f(ak, bk)

3
.
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Dividing both sides by 2n

3 gives the second part of (15).

If n is larger and larger, the polygons become closer and closer to a disk. We have

thus the following Hadamard’s inequality on a disk. This inequality can be found also

in [2]. For an improved inequality, see [1].

Theorem 3.5. If f is a convex function on a disk D centred at (a, b), then

f(0, 0) ≤
1

A(D)

∫ ∫

D

f(x, y)dxdy ≤
1

l(C)

∫

C

f(x, y)ds, (17)

where C is the boundary of D and l(C) the length of C.

Proof. We may assume that the centre of the disk is (0, 0). Let the radius of D be

R. Then D = {(x, y) : x2 + y2 ≤ R2} and C = {(x, y) : x2 + y2 = R2}. Let Dn be a
regular n-gon embedded in D. Then by (15), we have

f(a, b) ≤
1

A(Dn)

∫ ∫

Dn

f(x, y)dxdy ≤

∑n

k=1 f(ak, bk)

n
. (18)

Let x = R cos θ, y = R sin θ, then

∑n

k=1 f(ak, bk)

n
=

1

2π

n
∑

k=1

f(R cos θk, R sin θk)
2π

n

→
1

2π

∫ 2π

0

f(R cos θ, R sin θ)dθ (if n → ∞)

=
1

2πR

∫

C

f(x, y)ds.

It is easy to see that A(Dn) → A(D) and
∫∫

Dn

f(x, y)dxdy →
∫∫

D
f(x, y)dxdy as

n → ∞. Therefore letting n → ∞ in (18), we have (17).
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