APPROXIMATE FIXED POINTS ON ALMOST CONVEX SETS

J. E. C. LOPE, R. M. REY, M. ROQUE AND P. W. SY

Abstract. In this paper, we deduce a maximal element theorem on multimaps and an approximate fixed point theorem on almost convex sets. This generalizes the well-known Himmelberg fixed point theorem and also unifies recent results of Park and Tan [14] and Sy and Park [16].

The celebrated Knaster-Kuratowski-Mazurkiewicz (simply KKM) principle is a versatile tool to obtain fixed point theorems on convex subsets of topological vector spaces. For examples, Park and Tan ([13], [14]) gave simple proofs of the generalizations of fixed point theorems due to Schauder, Tychonoff, and Himmelberg by applying the KKM principle directly.

In an earlier work of Sy and Park [16], the KKM principle is applied to obtain a new non-compact version of the Fan-Browder fixed point theorem, from which an approximate fixed point theorem is deduced. In this paper, we follow the method of [16] and obtain a maximal element theorem and an approximate fixed point theorem which unify those in Park and Tan ([13], [14]) and Sy and Park [16].

A multimap (or simply, a map) $F: X \multimap Y$ is a function from a set X into the power set 2^Y of a set Y; that is, a function with the values $F(x) \subset Y$ for $x \in X$ and the fibers $F^-(y) := \{x \in X : y \in F(x)\}$ for $y \in Y$. For $A \subset X$, let $F(A) := \bigcup \{F(x) : x \in A\}$.

For a set D, let $\langle D \rangle$ denote the set of nonempty finite subsets of D.

Let X be a subset of a vector space and D a nonempty subset of X. We call (X, D) a convex space if $coD \subset X$ and X has a topology that induces the Euclidean topology on the convex hulls of any $N \in \langle D \rangle$; see [5], [6]. If X = D is convex, then X = (X, X) becomes a convex space in the sense of Lassonde [4]. If X is compact, then the convex space (X, D) is said to be compact. Every nonempty convex subset X of a topological vector space is a convex space with respect to any nonempty subset D of X, and the converse is known to be not true.

The following version of the Knaster-Kuratowski-Mazurkiewicz (simply, KKM) theorem for convex spaces is known.

Theorem 1. Let (X,D) be a convex space and $F:D \rightarrow X$ a multimap such that

(1) F(z) is open [resp. closed] for each $z \in D$; and

Received March 14, 2003.

2000 Mathematics Subject Classification. 47H04, 47H10, 52H07, 54C60, 54H25.

Key words and phrases. KKM maps, almost convex spaces, the Himmelberg fixed point theorem.

(2) F is a KKM map (that is, $coN \subset F(N)$ for each $N \in \langle D \rangle$).

Then $\{F(z)\}_{z\in D}$ has the finite intersection property. (More precisely, for any $N\in \langle D\rangle$, we have $\operatorname{co} N\cap [\bigcap_{z\in N} F(z)]\neq \emptyset$.)

The closed version is essentially due to Fan [1] and the open version is motivated from the works of Kim [3] and Shih-Tan [15], who showed that the original KKM theorem holds for open valued KKM maps on a simplex. Later, Lassonde [5] showed that the closed and open versions of Theorem 1 can be derived from each other. More general versions of Theorem 1 were recently known; for example, see Park ([10] - [12]).

From Theorem 1, Sy and Park [16] obtained the following.

Theorem 2. Let (X, D) be a convex space and $P: X \multimap D$ a multimap. If there exist $z_1, z_2, \ldots, z_n \in D$ and nonempty open [resp. closed] subsets $G_i \subset P^-(z_i)$ for each $i = 1, 2, \ldots, n$ such that $co\{z_1, z_2, \ldots, z_n\} \subset \bigcup_{i=1}^n G_i$, then the map $coP: X \multimap X$ has a fixed point $x_0 \in X$ (that is, $x_0 \in coP(x_0)$).

From Theorem 2, we have the following.

Theorem 3. Let (X, D) be a compact convex space and $P: X \multimap D$ a map such that

- (1) $x \notin co P(x)$ for all $x \in X$; and
- (2) $P^-(y)$ is open for all $y \in D$.

Then there exists an $\overline{x} \in X$ such that $P(\overline{x}) = \emptyset$.

Proof. Suppose $P(x) \neq \emptyset$ for all $x \in X$. Then $X = \bigcup_{y \in D} P^{-}(y)$. Since X is compact, $X = \bigcup_{y \in N} P^{-}(y)$ for some $N \in \langle D \rangle$. Then by Theorem 2, co P has a fixed point, which contradicts (1).

For X = D, Theorem 3 reduces to theorems of Toussaint [17] and Yannelis and Prabhakar [18] on the existence of maximal elements.

A nonempty subset Y of a topological vector space E is said to be *almost convex* if for any neighborhood V of the origin O in E and for any finite set $\{y_1, y_2, \ldots, y_n\} \subset Y$, there exists a finite set $\{z_1, z_2, \ldots, z_n\} \subset Y$ such that, for each $i \in \{1, 2, \ldots, n\}$, we have $z_i - y_i \in V$ and $\operatorname{co}\{z_1, z_2, \ldots, z_n\} \subset Y$; see [2].

From Theorem 2, we deduce the following approximate fixed point theorem.

Theorem 4. Let X be a subset of a topological vector space E and Y an almost convex dense subset of X. Let $F: X \multimap X$ be a lower [resp. upper] semi-continuous map such that (1) F has nonempty values, (2) F(y) is convex for all $y \in Y$, and (3) F(X) is totally bounded. Then for every open [resp. closed] convex neighborhood V of the origin O of E, there exists a point $x_V \in Y$ such that

$$F(x_V) \cap (x_V + V) \neq \emptyset.$$

Proof. Let V be the given symmetric neighborhood of O in E. Then there exists a neighborhood U of O such that $U + U \subset V$. Since F(X) is totally bounded in X, there

exists a finite subset $\{x_1, x_2, \ldots, x_n\} \subset F(X)$ such that $F(X) \subset \bigcup_{i=1}^n (x_i + U)$. Moreover, since Y is almost convex and dense in X, there exists a finite subset $D := \{y_1, y_2, \ldots, y_n\}$ of Y such that $x_i - y_i \in U$ for each $i \in \{1, 2, \ldots, n\}$ and $Z := \operatorname{co}\{y_1, y_2, \ldots, y_n\} \subset Y$.

Since $x_i + U = y_i + (x_i - y_i) + U \subset y_i + U + U \subset y_i + V$, we have $F(Z) \subset F(X) \subset \bigcup_{i=1}^n (y_i + V)$. Define a map $P: Z \multimap D$ by $P(z) := (F(z) - V) \cap D$ for $z \in Z$. Then each P(z) is nonempty. Note that for each $y \in D$, we have

$$P^{-}(y) = \{z \in Z : y \in P(z)\}$$

$$= \{z \in Z : y \in (F(z) - V) \cap D\}$$

$$= \{z \in Z : F(z) \cap (y + V) \neq \emptyset\}.$$

If F is lower semi-continuous and V is open, then each $P^-(y)$ is open in Z. If F is upper semi-continuous and V is closed, then each $P^-(y)$ is closed in Z.

Note that for each $z \in Z$, we have a $y \in D$ such that $z \in P^-(y)$. Therefore, $Z \subset Y = \bigcup_{y \in D} P^-(y)$. Hence, by Theorem 2, $\operatorname{co} P : Z \multimap Z$ has a fixed point $x_V \in Z \subset Y$, that is, $x_V \in \operatorname{co} P(x_V)$. Since $x_V \in Z \subset Y$, $F(x_V)$ is convex and hence, $x_V \in \operatorname{co} P(x_V) \subset \operatorname{co}[(F(x_V) - V) \cap D] \subset (F(x_V) - V) \cap Z$, which readily implies $F(x_V) \cap (x_V + V) \neq \emptyset$.

If X = Y is almost convex, then Theorem 4 improves Theorem 5 obtained in Sy and Park [16].

We now deduce the following result due to Park and Tan [14].

Theorem 5. (Park and Tan [14], Theorem 1) Let X be a subset of a locally convex Hausdorff topological vector space E and Y an almost convex dense subset of X. Let $T: X \multimap X$ be a compact upper semi-continuous multimap with nonempty closed values such that T(y) is convex for all $y \in Y$. Then T has a fixed point $x_0 \in X$; that is, $x_0 \in T(x_0)$.

Proof. For each neighborhood V of O, there exist $x_V, y_V \in X$ such that $y_V \in T(x_V)$ and $y_V \in x_V + V$. Since T(X) is relatively compact, we may assume that the net $\{y_V\}$ converges to some $x_0 \in X$. Since E is Hausdorff, the net $\{x_V\}$ also converges to x_0 . Because T is upper semi-continuous with closed values, the graph of T is closed in $X \times T(X)$ and hence we have $x_0 \in T(x_0)$. This proves the theorem.

In particular, for X = Y, we obtain

Theorem 6. (Park and Tan [14], Theorem 2) Let X be an almost convex subset of a locally convex Hausdorff topological vector space. Then any compact upper semicontinuous multimap $T: X \multimap X$ with nonempty closed convex values has a fixed point in X.

If X itself is convex, Theorem 6 reduces to the Himmelberg fixed point theorem. From Theorem 4 or from Theorem 5, we obtain **Theorem 7.** (Park and Tan [13], Theorem 1) Let X be an almost convex subset of a locally convex Hausdorff topological vector space E and $f: X \multimap X$ a compact continuous map. Then f has a fixed point.

Further, from the lower semi-continuous case of Theorem 4, we deduce the following.

Theorem 8. Let X be a subset of a topological vector space and Y an almost convex dense subset of X. Let $F: X \multimap X$ be a multimap such that

- (1) F(x) is nonempty for each $x \in X$;
- (2) F(y) is convex for each $y \in Y$;
- (3) $F^-(z)$ is open for each $z \in X$; and
- (4) F(X) is totally bounded.

Then for any convex neighborhood V of O in E, there exists a point $x_V \in X$ such that $F(x_V) \cap (x_V + V) \neq \emptyset$.

Proof. Simply F is lower semi-continuous.

If X = Y is convex, then Theorem 8 reduces to Sy and Park ([16], Theorem 7).

References

- Ky Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142(1961), 305-310.
- [2] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38(1972), 205-207.
- [3] W. K. Kim, Some applications of the Kakutani fixed point theorem, J. Math. Anal. Appl. 121(1987), 119-122.
- [4] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
- [5] M. Lassonde, Sur le principe KKM, C. R. Acad. Sci. Paris, Série I, **310**(1990), 573-576.
- [6] Sehie Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. **31**(1994), 493-519.
- [7] Sehie Park, Remarks on a fixed point problem of Ben-El-Mechaiekh, in: Nonlinear Analysis and Convex Analysis (Proc. NACA'98, Niigata, Japan, Jul. 28-31, 1998), pp. 79-86, World Sicentific, Singapore, 1999.
- [8] Sehie Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187-222.
- [9] Sehie Park, The Knaster-Kuratowski-Mazurkiewicz theorem and almost fixed points, Topological Methods in Nonlinear Anal., J. of the Julius Schauder Center, 16(2000), 195-200.
- [10] Sehie Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7(2000), 1-28.
- [11] Sehie Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5(2000), 67-79.
- [12] Sehie Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48(2002), 869-879.

- [13] Sehie Park and Do Hong Tan, Remark on the Schauder-Tychonoff fixed point theorem, Vietnam J. Math. 28(2000), 51-64.
- [14] Sehie Park and Do Hong Tan, Remark on Himmelberg-Idzik's fixed point theorem, Acta Math. Viet. 25(2000), 285-289.
- [15] M.-H. Shih and K.-K. Tan, Covering theorems of convex sets related to fixed point theorems, in: Nonlinear and Convex Analysis (Proc. in Honor of Ky Fan), pp. 235-244, Marcel Dekker, Inc., New York-Basel, 1987.
- [16] Polly W. Sy and Sehie Park, The KKM maps and fixed point theorems in convex spaces, Tamkang J. **34**, 2003.
- [17] S. Toussaint, On the existence of equilibria in economies with infinitely many commodities and without ordered preferences, J. Econ. Th. 33 (1984), 98-115.
- [18] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econ. 12 (1983), 233-235.

Department of Mathematics, College of Science, University of the Philippines, Diliman, Quezon City, Philippines.

E-mail: pweesy@i-manila.com.ph