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EULER-CESÀRO DIFFERENCE SPACES OF BOUNDED, CONVERGENT
AND NULL SEQUENCES

FEYZI BAŞAR AND NAIM L. BRAHA

Abstract. In this paper, we introduce the spaces ℓ̆∞, c̆ and c̆0 of Euler-Cesàro bounded,
convergent and null difference sequences and prove that the inclusions ℓ∞ ⊂ ℓ̆∞, c ⊂ c̆

and c0 ⊂ c̆0 strictly hold. We show that the spaces c̆0 and c̆ turn out to be the separable BK
spaces such that c̆ does not possess any of the following: AK property and monotonicity.
We determine the alpha-, beta- and gamma-duals of the new spaces and characterize the
matrix classes (c̆ : ℓ∞), (c̆ : c) and (c̆ : c0).

1. Introduction

By N and C, we denote the sets of all natural and complex numbers, respectively. Let ω be

the vector space of all complex sequences. Any vector subspace of ω is called a sequence space.

By ℓ∞, c , c0 and ℓp ; we denote the classes of all bounded, convergent, null and p-absolutely

summable sequences, as usual; respectively. Moreover, we write bs, cs and cs0 to denote the

spaces of all bounded, convergent and null series, respectively.

A sequence (yn)∞n=0 in a normed space X is called a Schauder basis for X if for every x ∈ X

there is a unique sequence (αn)∞n=0 of scalars such that x =
∑∞

n=0αn yn , i.e.,
∥∥x −

∑n
k=0αn yn

∥∥→

0, as n → ∞. The alpha-, beta- and gamma-duals λα, λβ and λγ of a sequence space λ are

respectively defined by

λα := {a = (ak )∈ω : ax = (ak xk ) ∈ ℓ1 for all x = (xk ) ∈λ} ,

λβ := {a = (ak )∈ω : ax = (ak xk ) ∈ cs for all x = (xk ) ∈λ} ,

λγ := {a = (ak )∈ω : ax = (ak xk ) ∈ bs for all x = (xk ) ∈λ} .

Also, we use the conventions that e = (1,1,1, . . .) and e (k) is the sequence whose only non-zero

term is 1 in the k th place for each k ∈N.
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Let λ and µ be two sequence spaces, and A = (ank ) be an infinite matrix of complex

numbers ank , where n,k ∈ N. Then, we say that A defines a matrix transformation from λ

into µ and we denote it by writing A :λ→µ, if for every sequence x = (xk ) ∈λ the A-transform

Ax = {(Ax)n } of x is in µ; where

(Ax)n =

∞∑

k=0

ank xk for each n ∈N. (1.1)

By (λ : µ), we denote the class of all matrices A such that A : λ→ µ. Thus, A ∈ (λ : µ) if and

only if the series on the right side of (1.1) converges for each n ∈N, i.e., An ∈ λβ for all n ∈N

and every x ∈ λ, and we have Ax ∈ µ for all x ∈ λ, where An denotes the sequence in the n-th

row of A.

The matrix domain λA of an infinite matrix A in a sequence space λ is defined by

λA := {x = (xk ) ∈ω : Ax ∈λ} (1.2)

which is a sequence space. By using the matrix domain of a triangle matrix, so many sequence

spaces have recently been defined by several authors, see for instance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15]. In the literature, the matrix domain λ∆ is called the difference sequence space

whenever λ is a normed or a paranormed sequence space, where ∆ denotes the backward

difference matrix ∆= (∆nk ) and ∆
′ = (∆′

nk
) denotes the transpose of the matrix ∆, the forward

difference matrix, which are defined by

∆nk =

{
(−1)n−k , n −1 ≤ k ≤ n,

0 , 0 ≤ k < n −1 or k > n,

∆
′
nk =

{
(−1)n−k , n ≤ k ≤ n +1,

0 , 0 ≤ k < n or k > n +1

for all k ,n ∈ N; respectively. The notion of difference sequence spaces was introduced by

Kızmaz [16], who defined the sequence spaces

X (∆) :=
{

x = (xk )∈ω : ∆′x = (xk −xk+1) ∈ X
}

for X ∈ {ℓ∞,c ,c0}. The difference space bvp, consisting of all sequences x = (xk ) such that

∆x = (xk − xk−1) is in the sequence space ℓp , was studied in the case 0 < p < 1 by Altay and

Başar [4] and in the case 1 ≤ p ≤∞ by Başar and Altay [17], and Çolak et al. [5]. Kirişçi and

Başar [18] have introduced and studied the generalized difference sequence space

X̂ := {x = (xk )∈ω : B (r, s)x ∈ X } ,

where X denotes any of the spaces ℓ∞, c , c0 and ℓp with 1 ≤ p <∞, and B (r, s)x = (sxk−1+r xk )

with r, s ∈ R \ {0}. Following Kirişçi and Başar [4], Sönmez [19] have been examined the se-

quence space X (B ) as the set of all sequences whose B (r, s, t )-transforms are in the space
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X ∈ {ℓ∞,c ,c0,ℓp }, where B (r, s, t ) denotes the triple band matrix B (r, s, t ) = {bnk (r, s, t )} de-

fined by

bnk (r, s, t )=





r , n = k

s , n = k +1

t , n = k +2

0 , otherwise

for all k ,n ∈N and r, s, t ∈R\ {0}. Also in [6, 7, 8, 9, 10, 11], certain difference sequence spaces

are studied. Quite recently, Başar has studied the space ℓ̃p of p-absolutely B̃-summable se-

quences, in [12].

In this paper, as a natural continuation of Başar [12], we introduce the spaces ℓ̆∞, c̆ and

c̆0 of Euler-Cesàro bounded, convergent and null difference sequences by using the composi-

tion of the Euler mean E1 and Cesàro mean C1 of order one with backward difference operator

∆. The rest of this paper is organized, as follows: In Section 2, we give some required notations

and basic concepts. In Section 3, we introduce the sequence spaces ℓ̆∞, c̆ and c̆0, and estab-

lish some inclusion relations. Also, we construct the bases of the spaces c̆ and c̆0. In Section

4, the alpha-, beta-, gamma-duals of the spaces ℓ̆∞, c̆ and c̆0 are determined and the classes

(c̆ : ℓ∞), (c̆ : c) and (c̆ : c0) of matrix transformations are characterized. In the final section of

the paper, we give a table for the literature related to the domain of certain triangle matrices

on the spaces c0, c and ℓ∞, and record some further suggestions.

2. Preliminaries

A B-space is a complete normed space. A topological sequence space in which all coordi-

nate functionals πk with πk (x) = xk , are continuous is called a K -space. A BK -space is defined

as a K -space which is also a B-space, that is, a BK -space is a Banach space with continuous

coordinates. For example, the space ℓp is BK -space with ‖x‖p =
(∑

∞
k=0 |xk |

p
)1/p and c0, c and

ℓ∞ are BK -spaces with ‖x‖∞ = supk∈N |xk |, where 1 ≤ p <∞. The sequence space X is said to

be solid (cf. [20, p. 48]) if and only if

X̃ := {(uk )∈ω : ∃(xk ) ∈ X such that |uk | ≤ |xk | for all k ∈N} ⊂ X .

Let us define the Euler mean E1 = (enk ) of order one and Cesàro mean C1 = (cnk ) of order

one by

enk :=





(n
k

)

2n
, 0 ≤ k ≤ n,

0 , k >n,
cnk :=





1

n +1
, 0 ≤ k ≤ n,

0 , k > n,

for all k ,n ∈N. Their inverses E−1
1 = (gnk ) and C−1

1 = (hnk ) are given by

gnk :=

{(n
k

)
(−1)n−k 2k , 0 ≤ k ≤ n,

0 , k >n,
hnk :=

{
(−1)n−k (k +1) , n −1 ≤ k ≤n,

0 , 0 ≤ k ≤ n −2 or k > n
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for all k ,n ∈N. We define the matrix B̃ = (b̃nk ) by the composition of the matrices E1, C1 and

∆ as

b̃nk :=





(n
k

)

2n(k +1)
, 0 ≤ k ≤n,

0 , k > n

(2.1)

for all k ,n ∈N.

3. The Euler-Cesàro difference spaces of null, convergent and bounded sequences

In this section, we define the spaces c̆0, c̆ and ℓ̆∞ of Euler-Cesàro null, Euler-Cesàro con-

vergent and Euler-Cesàro bounded difference sequences. Also, we present some inclusion

theorems and construct the Schauder bases of the spaces c̆0 and c̆ .

Now, we introduce the spaces c̆0, c̆ and ℓ̆∞ of Euler-Cesàro null, Euler-Cesàro conver-

gent and Euler-Cesàro bounded difference sequences as the set of all sequences whose B̃-

transforms are in the spaces c0, c and ℓ∞, respectively, i.e.,

c̆0 :=

{
x = (xn) ∈ω : lim

n→∞

n∑

k=0

(n
k

)

2n(k +1)
xk = 0

}
,

c̆ :=

{
x = (xn) ∈ω : ∃l ∈C such that lim

n→∞

n∑

k=0

(n
k

)

2n(k +1)
xk = l

}
,

ℓ̆∞ :=

{
x = (xn) ∈ω : sup

n∈N

∣∣∣∣∣
n∑

k=0

(n
k

)

2n(k +1)
xk

∣∣∣∣∣<∞

}
.

With the notation of (1.2), the spaces c̆0, c̆ and ℓ̆∞ can be redefined as follows:

c̆0 = (c0)B̃ , c̆ = cB̃ and ℓ̆∞ = (ℓ∞)B̃ .

Define the sequence y = (yn) by the B̃-transform of a sequence x = (xk ), i.e.,

yn = (B̃ x)n =

n∑

k=0

(n
k

)

2n (k +1)
xk for each n ∈N. (3.1)

Throughout the text, we suppose that the sequences x = (xk ) and y = (yk ) are connected with

the relation (3.1). One can obtain by a straightforward calculation from (3.1) that

xn = (B̃−1 y)n =

n∑

k=0

n∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)yk for each n ∈N. (3.2)

The relation (3.2) gives that the inverse B̃−1 = (dnk ) of B̃ in (2.1) is defined by

dnk :=

{∑n
j=k

( j
k

)
(−1) j−k 2k (2 j −k +1) , 0 ≤ k ≤ n,

0 , k > n
(3.3)

for all k ,n ∈N. Here and after, by λ we denote any of the sets c̆0, c̆ and ℓ̆∞.
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Theorem 3.1. The set λ is a linear space with the co-ordinatewise addition and scalar multi-

plication which is the BK-space with the norm ‖x‖λ = ‖B̃ x‖∞.

Proof. Proof of the first part of the theorem is a routine verification and so, we omit the detail.

Since c0, c and ℓ∞ are the BK -spaces with respect to their usual sup-norm and B̃ is a triangle

matrix, Theorem 4.3.2 of Wilansky [21, p. 61] gives the fact that c̆0, c̆ and ℓ̆∞ are the BK -spaces.

This completes the proof. ���

Remark 3.2. One can easily check that the absolute property does not hold on the space λ,

that is ‖x‖λ 6= ‖|x|‖λ for at least one sequence in the space λ, and this says that λ is a sequence

space of non-absolute type, where |x| = (|xk |).

Throughout the text µ denotes any of the spaces c0, c or ℓ∞. With the notation of (3.1),

since the transformation T defined from λ to µ by x 7→ y = T x is a linear bijection, we have

the following:

Corollary 3.3. The sequence space λ is linearly norm isomorphic to the space µ.

Now, we give some inclusion relations concerning with the spaces λ and µ.

Theorem 3.4. The inclusion µ⊂λ strictly holds.

Proof. Let x = (xk )∈ µ. Then, since it is immediate that

‖x‖λ =‖B̃ x‖∞ = sup
n∈N

∣∣∣∣∣
n∑

k=0

(n
k

)

2n(k +1)
xk

∣∣∣∣∣

≤ ‖x‖∞ sup
n∈N

n∑

k=0

(n
k

)

2n(k +1)

= ‖x‖∞ sup
n∈N

2n+1 −1

2n (n +1)
<∞,

the inclusion µ ⊂ λ holds. Now, consider the sequences u = (uk ) = {[1+ (−1)k+1]/2}k∈N and

v = (vk ) = (k +1)k∈N. Thus, we obtain for all n ∈N that

(B̃u)n =
1

2n

n∑

k=0

(n
k

)
[1+ (−1)k+1]

2(k +1)

=
1

2n+1

[
n∑

k=0

(n
k

)

k +1
+

n∑

k=0

(n
k

)
(−1)k+1

k +1

]

=
1

2n+1

(
2n+1 −1

n +1
+

n

n +1
−1

)

(B̃ v)n =
1

2n

n∑

k=0

(n
k

)
(k +1)

k +1
= 1.



410 FEYZI BAŞAR AND NAIM L. BRAHA

Therefore, since B̃u ∈ c0, u ∈ c̆0 while u ∉ c0 and B̃ v ∈ c ⊂ ℓ∞, v is both in c̆ and hence in

ℓ̆∞ but v does not neither in c nor in ℓ∞. This shows that the inclusions c0 ⊂ c̆0, c ⊂ c̆ and

ℓ∞ ⊂ ℓ̆∞ are strict. ���

One can see from Theorem 2.3 of Jarrah and Malkowsky [22] that the domain νT of an

infinite matrix T = (tnk ) in a normed sequence space ν has a basis if and only if ν has a basis,

if T is a triangle. As an immediate consequence of this fact, we have the following:

Corollary 3.5. Let αn = (B̃ x)n for all n ∈N. Define the sequence
{
u(n)

}
=

{
u(n)

k

}
k∈N

in the space

c̆0 by

u(n)
k

=





n∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1) , 0≤ k ≤n,

0 , k > n

(3.4)

for every fixed n ∈N. Then, the following statements hold:

(a) The sequence
{
u(n)

}
n∈N is a basis for the space c̆0 and any x ∈ c̆0 has a unique representation

of the form x =
∑∞

n=0αn u(n).

(b) The set
{

e,u(n)
}

is a basis for the space c̆ and any x ∈ c̆ has a unique representation of the

form x = l e +
∑

∞
n=0(αn − l )u(n), where l = lim

k→∞
(B̃ x)k .

Since the sequence spaces c̆0 and c̆ have Schauder bases, Corollary 3.5 directly gives the

following:

Corollary 3.6. The sequence spaces c̆0 and c̆ are separable.

Theorem 3.7. The sequence space c̆ has not the AK property.

Proof. Let x = (1,2,3,4, . . . ,n, . . .) ∈ c̆. Then, the nth section x[n] of x is x[n] = (1,2, . . . ,n,0,0, . . .).

Therefore, we have

∥∥x −x[n]
∥∥

c̆ = sup
k≥n

1

2k

∣∣∣∣∣
k∑

j=0

(
k

j

)
1

j +1
[( j +1)−0]

∣∣∣∣∣= sup
k≥n

1

2k
·2k

= 1. ���

In the sequel, we mention some concepts (see [23]) related to the sequence spaces.

A sequence space λ is said to be symmetric if xσ(n) ∈ λ whenever x ∈ ν, where σ is any

permutation in N. A sequence algebra ν (see Maddox [24, p. 153]) is a linear space together

with an internal operation of multiplication of elements of ν such that

x y ∈ ν, x(y z)= (x y)z, x(y + z)= x y +xz, (x + y)z = xz + y z

and

α(x y) = x(αy) for all scalars α.

Now, we show some of the above properties for the sequence space c̆ .
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Theorem 3.8. The sequence space c̆ is not monotone nor sequence algebra.

Proof. To prove the first part, we consider the sequences x = (xn) = (n + 1)n∈N ∈ c̆ and y =

(yn) = {(n + 1)2}n∈N. After some calculations it follows that y ∉ c̆ which proves that c̆ is not

monotone. To prove that c̆ is not convergence-free we define the sequences: x = (xn) = (n +

1) = (yn) = y . Then, x = y ∈ c̆ , but x y = (12,22,32, . . .) ∉ c̆. Really after some calculations, we get

that

lim
n→∞

1

2n

n∑

k=0

(
n

k

)
1

k +1
(k +1)2

= lim
n→∞

[
1

2n

n∑

k=0

(
n

k

)
k +

1

2n

n∑

k=0

(
n

k

)]

= lim
n→∞

(
n ·2n−1

2n
+1

)
=∞.

Hence, x y ∉ c̆ . ���

4. The alpha-, beta- and gamma-duals of the spaces ℓ̆∞, c̆ and c̆0

In this section, we determine the alpha-, beta- and gamma-duals of the spaces ℓ̆∞, c̆ and

c̆0 of Euler-Cesàro bounded, convergent and null difference sequences.

Now, we start with the following lemma due to Steieglitz and Tietz [25] which is needed

in proving our theorems. Here and after, we denote the collection of all finite subsets of N by

F .

Lemma 4.1. Let A = (ank ) be an infinite matrix over the complex field. Then, the following

statements hold:

(a) A ∈ (c0 : ℓ1) = (c : ℓ1) = (ℓ∞ : ℓ1) if and only if

sup
K∈F

∞∑

n=0

∣∣∣∣∣
∑

k∈K

ank

∣∣∣∣∣<∞. (4.1)

(b) A ∈ (c0 : ℓ∞) = (c : ℓ∞) = (ℓ∞ : ℓ∞) if and only if

sup
n∈N

∞∑

k=0

|ank | <∞. (4.2)

(c) A ∈ (c : c) if and only if (4.2) holds, and

∃(αk ) ∈ω such that lim
n→∞

ank =αk for all k ∈N,

∃α ∈C such that lim
n→∞

∞∑

k=0

ank =α.
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Theorem 4.2. The alpha-dual of the spaces ℓ̆∞, c̆ and c̆0 is the set

d1 :=

{
a = (an) ∈ω : sup

K∈F

∞∑

n=0

∣∣∣∣∣
∑

k∈K

n∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)an

∣∣∣∣∣<∞

}
.

Proof. Let us define the matrix M = (mnk ) via a = (an) ∈ω by

mnk =

{∑n
j=k

( j
k

)
(−1) j−k 2k (2 j −k +1)an , 0 ≤ k ≤n,

0 , k > n

for all k ,n ∈N. Since the relation (3.2) holds, one can immediately derive that

an xn =

n∑

k=0

n∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)an yk = (M y)n (4.3)

for all n ∈N. Therefore, we conclude by (4.3) that a = (an) ∈λα if and only if M ∈ (µ : ℓ1). Then,

we derive by Part (a) of Lemma 4.1 that

sup
K∈F

∞∑

n=0

∣∣∣∣∣
∑

k∈K

n∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)an

∣∣∣∣∣<∞

which leads to the desired result that λα = d1. ���

Theorem 4.3. Define the set d2 by

d2 =

{
a = (ai ) ∈ω :

(
n∑

k=0

n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai

)
∈ c

}
. (4.4)

Then, (c̆)β = d2.

Proof. Define the triangles ∆−1 = S = (snk ) and B (a)= (bnk ) by

snk =

{
1 , 0 ≤ k ≤ n,

0 , k >n,
bnk =

{
andnk , 0≤ k ≤n,

0 , k > n

for all k ,n ∈N; where a = (an) ∈ω and dnk is defined as in (3.3). Let Ã = (ãnk ) be the compo-

sition of the matrices S and B (a), i.e.,

ãnk =





n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai , 0 ≤ k ≤ n

0 , k >n

for all k ,n ∈N. Therefore, we have by the relation (4.3) that

n∑

k=0

ak xk =

n∑

k=0

n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai yk (4.5)
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for all n ∈N. Then, (4.5) leads that ax ∈ cs whenever x ∈ c̆ if and only if Ã ∈ (c : c). This means

that a ∈ [c̆]β if and only if Ã ∈ (c : c). Hence, we have by Part (c) of Lemma 4.1 that the following

conditions are satisfied:

sup
n∈N

n∑

k=0

|ãnk | = sup
n∈N

n∑

k=0

∣∣∣∣∣
n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai

∣∣∣∣∣<∞,

∃(αk ) ∈ω such that lim
n→∞

ãnk = lim
n→∞

n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai =αk

∃α∈C such that lim
n→∞

n∑

k=0

ãnk = lim
n→∞

n∑

k=0

n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai =α

which give that {
n∑

k=0

n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ai

}

n∈N

∈ c.

That is to say that the beta dual of the space c̆ is the set d2. ���

Theorem 4.4. (c̆0)γ = (c̆)γ = (ℓ̆∞)γ = d2, where the set d2 is defined by (4.4).

Proof. This is similar to the proof of Theorem 4.3 with Part (b) instead of Part (c) of Lemma

4.1. So, we omit the detail. ���

5. Matrix transformations related to the sequence space c̆

In this section, we characterize some matrix classes from the space c̆ into the classical

sequence spaces ℓ∞, c and c0.

Theorem 5.1. A = (ank ) ∈ (c̆ : ℓ∞) if and only if

An ∈ c̆β for each n ∈N, (5.1)

sup
n∈N

∞∑

k=0

∣∣∣∣∣
∞∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani

∣∣∣∣∣<∞. (5.2)

Proof. Suppose that A = (ank ) ∈ (c̆ : ℓ∞) and x = (xk ) ∈ c̆ . Since Ax exists and belongs to the

space ℓ∞, the necessity of the condition (5.1) is obvious.

Consider the following equality derived from the mt h partial sum of the series
∑

∞
k=0 ank xk :

m∑

k=0

ank xk =

m∑

k=0

m∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani yk (5.3)

for all m,n ∈N. Therefore, by letting m →∞ in the equality (5.3) it is immediate that

∞∑

k=0

ank xk =

∞∑

k=0

∞∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani yk (5.4)
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for all n ∈N. Now, define the matrix F = ( fnk ) by

fnk :=
∞∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani (5.5)

for all k ,n ∈ N. Then, Ax = F y which gives that F ∈ (c : ℓ∞). Then, F satisfies the condition

(4.2) which is equivalent to (5.2).

Conversely, suppose that the conditions (5.1) and (5.2) hold, and take x = (xk ) ∈ c̆ . Then,

(5.1) implies the existence of Ax and since the spaces c̆ and c are isomorphic we have y ∈ c .

Therefore, (5.4) gives with (5.2) that

‖Ax‖∞ = sup
n∈N

∣∣∣∣∣
∞∑

k=0
ank xk

∣∣∣∣∣

≤ sup
n∈N

∞∑

k=0

∣∣∣∣∣
n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani yk

∣∣∣∣∣

≤ ‖y‖∞

[
sup
n∈N

∞∑

k=0

∣∣∣∣∣
n∑

i=k

i∑

j=k

(
j

k

)
(−1) j−k 2k (2 j −k +1)ani

∣∣∣∣∣

]
<∞.

Hence, A ∈ (c̆ : ℓ∞).

This completes the proof. ���

Theorem 5.2. A = (ank ) ∈ (c̆ : c) if and only if the conditions (5.1) and (5.2) hold, and

∃βk ∈C such that lim
n→∞

fnk =βk for all k ∈N, (5.6)

∃β ∈C such that lim
n→∞

∞∑

k=0

fnk =β, (5.7)

where fnk is defined by (5.5) as in the proof of Theorem 5.1.

Proof. Suppose that the conditions (5.1), (5.2), (5.6) and (5.7) hold, and take any x = (xk ) ∈ c̆.

The condition (5.1) implies the existence of A-transform of x. Then, one can derive by using

the hypothesis (5.2) that
m∑

k=0

|βk | ≤ sup
n∈N

∞∑

k=0

| fnk | <∞

for all m ∈ N. Hence, (βk ) ∈ ℓ1 which implies that (βk yk ) ∈ ℓ1. Therefore, by taking in mind

the relation (5.4) we derive for all n ∈N that

∞∑

k=0
ank xk =

∞∑

k=0
( fnk −βk )yk +

∞∑

k=0
βk yk .

Then, we have by letting n →∞ that

lim
n→∞

(Ax)n =

∞∑

k=0

βk yk . (5.8)
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Since (βk yk ) ∈ ℓ1, (5.8) gives that Ax ∈ c , that is, A ∈ (c̆ : c).

Conversely, suppose that A = (ank ) ∈ (c̆ : c) and take x ∈ c̆. Since the inclusion relation

c ⊂ ℓ∞ holds, the necessity of the conditions (5.1) and (5.2) follows from Theorem 5.1.

Now, consider the convergent sequences u = (uk ) =
{

u(n)
k

}
k∈N

defined by (3.4) and x =

(xk ) =
{∑k

j=0 (−1)k− j Dk− j T j

}
. Since A-transforms of u and x exist, and belong to the space c

by the hypothesis, one can see that Au =

{∑∞

j=k
(−1) j−k D j−k Tk an j

}
n∈N

∈ c and Ax =
(∑∞

k=0 fnk

)
n∈N

∈ c which show the necessity of the conditions (5.6) and (5.7), respectively.

This completes the proof. ���

Corollary 5.3. A = (ank ) ∈ (c̆ : c0) if and only if (5.1), (5.2) hold, and (5.6) also holds withβk = 0

for all k ∈N.

Now, we can give the theorem characterizing the class of matrix transformations from a

given sequence space ν to the Nörlund space λ.

Theorem 5.4. Suppose that ν be any given sequence space and the infinite matrices A = (ank )

and D̃ = (d̃nk ) are connected with the relation d̆nk =
∑n

j=0

∑n
i=0

(n
i

)
ai k/[2n (i+1)] for all k ,n ∈N.

Then, A ∈ (ν : λ) if and only if D̃ ∈ (ν : µ).

Proof. Let x = (xk )∈ ν. Consider the following equality

m∑

k=0

d̃nk xk =

m∑

k=0

n∑

j=0

1

2n

n∑

i=0

(
n

i

)
1

i +1
ai k xk

=

n∑

j=0

(
n

j

)
1

2n

n∑

i=0

(
n

i

)
1

i +1

m∑

k=0
ai k xk for all m,n ∈N. (5.9)

Then, by letting m →∞ in (5.9) it is immediate that (D̃x)n = {B̃ (Ax)}n for all n ∈N. Therefore,

one can easily see that D̃x ∈ µ if and only if Ax ∈λ. This completes the proof. ���

By combining Theorems 5.1, 5.2, 5.4 and Corollary 5.3, the following results are derived

on the characterization of some matrix classes:

Corollary 5.5. Let L = (lnk ) be an infinite matrix over the complex field. Then, the following

statements hold:

(i) L ∈ (c̆ : bs) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk =
∑n

j=0 l j k

for all k ,n ∈N.

(ii) L ∈ (c̆ : bv∞) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk = lnk −

ln−1,k for all k ,n ∈N and bv∞ denotes the space of all sequences x = (xk ) such that (xk −

xk−1) ∈ ℓ∞, (cf. Başar and Altay [4]).



416 FEYZI BAŞAR AND NAIM L. BRAHA

(iii) L ∈ (c̆ : X∞) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk =
∑n

j=0 l j k/(n +1) for all k ,n ∈ N and X∞ denotes the space of all sequences x = (xk ) such

that
{∑n

k=0 xk /(n +1)
}
∈ ℓ∞, (cf. Ng and Lee [26]).

(iv) L ∈ (c̆ : r
q
∞) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk =

∑n
j=0

q j l j k/Qn for all k ,n ∈ N and r
q
∞ denotes the space of all sequences x = (xk ) such that

(∑n
k=0 qk xk /Qn

)
∈ ℓ∞, (cf. Altay and Başar [28]).

(v) L ∈ (c̆ : ar
∞) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk =

∑n
j=0(1+

r j )l j k /(1+n) for all k ,n ∈N and ar
∞ denotes the space of all sequences x = (xk ) such that

{∑n
k=0(1+ r k )xk /(1+n)

}
∈ ℓ∞, (cf. Aydın and Başar [13]).

(vi) L ∈ (c̆ : er
∞) if and only if (5.1) and (5.2) hold with rnk instead of ank , where rnk =

∑n
j=0(n

j

)
(1− r )n− j r j l j k for all k ,n ∈N and er

∞ denotes the space of all sequences x = (xk ) such

that
{∑n

k=0

(n
k

)
(1− r )n−k r k xk

}
∈ ℓ∞, (cf. Altay et al. [30]).

Corollary 5.6. Let L = (lnk ) be an infinite matrix over the complex field. Then, the following

statements hold:

(i) L ∈ (c̆ : cs) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk =
∑n

j=0 l j k for all k ,n ∈N.

(ii) L ∈ (c̆ : c(∆)) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk = lnk − ln−1,k for all k ,n ∈N and c(∆) denotes the space of all sequences x = (xk ) such

that (xk −xk−1) ∈ c, (cf. Başar [14]).

(iii) L ∈ (c̆ : c̃) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk =
∑n

j=0 l j k/(n+1) for all k ,n ∈N and c̆ denotes the space of all sequences x = (xk ) such

that
{∑n

k=0 xk /(n +1)
}
∈ c, (cf. Şengönül and Başar [27]).

(iv) L ∈ (c̆ : r
q
c ) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk =
∑n

j=0 q j l j k/Qn for all k ,n ∈ N and r
q
c denotes the space of all sequences x = (xk )

such that
(∑n

k=0 qk xk /Qn

)
∈ c, (cf. Altay and Başar [28]).

(v) L ∈ (c̆ : ar
c ) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk =
∑n

j=0(1+ r j )l j k /(1+n) for all k ,n ∈ N and ar
c denotes the space of all sequences

x = (xk ) such that
{∑n

k=0(1+ r k )xk /(1+n)
}
∈ c, (cf. Aydın and Başar [29]).

(vi) L ∈ (c̆ : er
c ) if and only if (5.1), (5.2), (5.6) and (5.7) hold with rnk instead of ank , where

rnk =
∑n

j=0

(n
j

)
(1− r )n− j r j l j k for all k ,n ∈ N and er

c denotes the space of all sequences

x = (xk ) such that
{∑n

k=0

(n
k

)
(1− r )n−k r k xk

}
∈ c, (cf. Altay and Başar [31]).

Corollary 5.7. Let L = (lnk ) be an infinite matrix over the complex field. Then, the following

statements hold:
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(i) L ∈ (c̆ : cs0) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with

rnk instead of ank , where cs0 denotes the space of all series converging to zero and rnk =
∑n

j=0 l j k for all k ,n ∈N.

(ii) L ∈ (c̆ : c0(∆)) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with

rnk instead of ank , where rnk = lnk − ln−1,k for all k ,n ∈N and c0(∆) denotes the space of

all sequences x = (xk ) such that (xk −xk−1) ∈ c0, (cf. Başar [14]).

(iii) L ∈ (c̆ : c̃0) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with rnk

instead of ank , where rnk =
∑n

j=0 l j k/(n +1) for all k ,n ∈N and c̆0 denotes the space of all

sequences x = (xk ) such that
{∑n

k=0 xk /(n +1)
}
∈ c0, (cf. Şengönül and Başar [27]).

(iv) L ∈ (c̆ : r
q

0 ) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with rnk

instead of ank , where rnk =
∑n

j=0 q j l j k /Qn for all k ,n ∈N and r
q

0 denotes the space of all

sequences x = (xk ) such that
(∑n

k=0 qk xk /Qn

)
∈ c0, (cf. Altay and Başar [28]).

(v) L ∈ (c̆ : ar
0) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with

rnk instead of ank , where rnk =
∑n

j=0(1+ r j )l j k/(1+n) for all k ,n ∈ N and ar
0 denotes

the space of all sequences x = (xk ) such that
{∑n

k=0(1+ r k )xk /(1+n)
}
∈ c0, (cf. Aydın and

Başar [29]).

(vi) L ∈ (c̆ : er
0) if and only if the conditions (5.1), (5.2) and (5.6) of Corollary 5.3 hold with

rnk instead of ank , where rnk =
∑n

j=0

(n
j

)
(1− r )n− j r j l j k for all k ,n ∈ N and er

0 denotes

the space of all sequences x = (xk ) such that
{∑n

k=0

(n
k

)
(1− r )n−k r k xk

}
∈ c0, (cf. Altay and

Başar [31]).

6. Conclusion

To review the concerning literature about the domain of the infinite matrix A in the se-

quence spaces c0, c and ℓ∞, the following table may be useful:
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Table 5.1: The domain of some triangle matrices in the classical sequence spaces c0, c and
ℓ∞.

A λ λA refer to:
∆ c0, c and ℓ∞ c0(∆), c(∆) and ℓ∞(∆) [16]
R t c0, c and ℓ∞ r t

0 , r t
c and r t

∞ [17, 28]
B (r, s) c0, c and ℓ∞ ĉ0, ĉ and ℓ̂∞ [18]

B (r, s, t ) c0, c and ℓ∞ c0(B ), c(B ) and ℓ∞(B ) [19]
C1 c0, c and ℓ∞ c̃0, c̃ and X∞ [27, 26]
Ar c0 and c ar

0 and ar
c [29]

E r c0, c and ℓ∞ er
0, er

c and er
∞ [31, 30]

∆
2 c0 and c c0(∆2) and c(∆2) [32]

u∆
2 c0 and c c0(u;∆2) and c(u;∆2) [33]

∆
m c0 and c c0(∆m) and c(∆m) [34, 35]

R q c0 and c (N , q)0 and (N , q) [36]
∆

(m) c0 and c c0(∆(m)) and c(∆(m)) [37]
G(u, v) c0, c and ℓ∞ c0(u, v), c(u, v) and ℓ∞(u, v) [38]

Λ c0 and c cλ0 and cλ [39]
B (r̃ , s̃) c0, c and ℓ∞ c̃0, c̃ and ℓ̃∞ [40]

Aλ c0 and c Aλ(c0) and Aλ(c) [41]
F̂ c0 and c c0(F̂ ) and c(F̂ ) [42]

N t c0, c and ℓ∞ c0(N t ), c(N t ) and Xa(p) [43, 44]

In 1978, the domain of Cesàro matrix C1 of order one in the classical sequence spaces

ℓ∞ and ℓp were introduced by Ng and Lee [26], where 1 ≤ p <∞. Following Ng and Lee [26],

Şengönül and Başar [27] have studied the domain of Cesàro matrix C1 of order one in the

classical sequence spaces c0 and c . In 1978, the domain of Nörlund matrix N t in the classical

sequence spaces ℓ∞ and ℓp were introduced by Wang [44], where 1 ≤ p <∞. Quite recently,

Başar [12] has investigated the domain ℓ̃p of the matrix B̃ in the space ℓp with 1 ≤ p <∞. As a

natural continuation of Başar [12], we have worked on the domains ℓ̆∞, c̆ and c̆0 of the matrix

B̃ in the classical sequence spaces ℓ∞, c and c0.

Although the matrix transformations from the domain of certain triangles in the classi-

cal sequence spaces into the classical sequence spaces have been characterized, the matrix

transformations from the domain of Nörlund matrix in the space of convergent sequences

into some classical sequence spaces have not been characterized, until now. So, combining

Theorems 5.1, 5.2, 5.4 and Corollary 5.3 has a special importance for this type studies, in fu-

ture.

Finally, we note that in spite of the domain ℓ̃p of the composite matrix B̃ in the space ℓp

have investigated by Başar [12] in the case 1 ≤ p <∞, investigation of the space ℓ̃p remains

open in the case 0< p < 1.
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