DOUBLE TRIGONOMETRIC SERIES WITH COEFFICIENTS OF BOUNDED VARIATION OF HIGHER ORDER

KULWINDER KAUR, S. S. BHATIA AND BABU RAM

Abstract

In this paper the following convergence properties are established for the rectangular partial sums of the double trigonometric series, whose coefficients form a null sequence of bounded variation of order $(p, 0),(0, p)$ and (p, p), for some $p \geq 1$: (a) pointwise convergence; (b) uniform convergence; (c) L^{r}-integrability and L^{r}-metric convergence for $0<r<\frac{1}{p}$. Our results extend those of Chen [2, 4, 5] and Móricz [7, 8, 9] and Stanojevic [10].

1. Introduction

We consider the double trigonometric series

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_{j k} e^{i(j x+k y)} \tag{1.1}
\end{equation*}
$$

on two-dimensional torus $T^{2}=\{(x, y) ; 0 \leq x, y<2 \pi\}$.
The rectangular partial sums $S_{m n}(f ; x, y)$ and the Cesàro means $\sigma_{m n}(x, y)$ of the series (1.1) are defined as

$$
\begin{aligned}
S_{m n}(f, x, y) & =\sum_{|j| \leq m} \sum_{|k| \leq n} c_{j k} e^{i(j x+k y)}, \\
\sigma_{m n}(f, x, y) & =\frac{1}{(m+1)(n+1)} \sum_{j=0}^{m} \sum_{k=0}^{n} S_{j k}(x, y)
\end{aligned}
$$

where $m, n \geq 0$. If $\left\{c_{j k}\right\}$ are the Fourier coefficients of some $f \in L^{1}\left(T^{2}\right)$, then the symbols $S_{m n}(f)$ and $S_{m n}(f, x, y)$ will have the same meaning as $S_{m n}(f)$.

Similarly $\sigma_{m n}(f)=\sigma_{m n}(f, x, y)=\sigma_{m n}$.
Let the coefficients $\left\{c_{j k}\right\}$ satisfies the following conditions for some positive integer $p:$

$$
\begin{equation*}
c_{j k} \rightarrow 0 \quad \text { as } \quad \max \{|j|,|k|\} \rightarrow \infty \tag{1.2}
\end{equation*}
$$

Received April 21, 2003.
2000 Mathematics Subject Classification. 42A20, 42A32.
Key words and phrases. Rectangular partial sums, Cesàro means, sequence of bounded variation, pointwise convergence, uniform convergence, L^{r}-integrability, L^{r}-metric convergence.

$$
\begin{align*}
& \lim _{|k| \rightarrow \infty} \sum_{j=-\infty}^{\infty}\left|\Delta_{p 0} c_{j k}\right|=0 \tag{1.3}\\
& \lim _{|j| \rightarrow \infty} \sum_{k=-\infty}^{\infty}\left|\Delta_{0 p} c_{j k}\right|=0 \tag{1.4}\\
& \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty}\left|\Delta_{p p} c_{j k}\right|<\infty \tag{1.5}
\end{align*}
$$

The finite order differences $\Delta_{p p} c_{j k}$ are defined by

$$
\begin{array}{ll}
\Delta_{00} c_{j k}=c_{j k} \\
\Delta_{p q} c_{j k}=\Delta_{p-1, q} c_{j k}-\Delta_{p-1, q} C_{\tau(j), k} & (p \geq 1) \\
\Delta_{p q} c_{j k}=\Delta_{p, q-1} c_{j k}-\Delta_{p, q-1} C_{j, \tau(k)} & (q \geq 1)
\end{array}
$$

Here the function $\tau(j)$ is defined by $\tau(j)=j+1$ for $j \geq 1$, and $\tau(j)=j-1$ for $j \leq-1$.

We mention that a double induction argument gives

$$
\Delta_{p q} c_{j k}=\sum_{s=0}^{p} \sum_{t=0}^{q}(-1)^{s+t}\binom{p}{s}\binom{q}{t} c_{j+s, k+t}
$$

Conditions (1.3)-(1.5) are known as conditions of bounded variation of order ($p, 0$), $(0, p)$ and (p, p) respectively. For $p=1$, conditons (1.3) and (1.4) are excessive, as they can be derived from (1.2) and (1.5). Obviously, conditions (1.3)-(1.5) generalize the concept of monotone sequences.

The pointwise convergence of the series (1.1) is usually defined in Pring-sheim's sense ([11], vol. 2, Ch. 17). This means that we form the rectangular partial sums

$$
S_{M N}(x, y)=\sum_{j=-M}^{M} \sum_{k=-N}^{N} c_{j k} e^{i(j x+k y)} \quad(M, N \geq 0)
$$

and then let both M and N tend to ∞, independently of one another, and assign the limit $f(x, y)$ (if exists) to series (1.1) as its sum. For $E \subset T^{2}$, we say $S_{m n}$ that converges uniformly on E to $f(x, y)$ if $S_{m n}(f) \rightarrow f(x, y)$ uniformly on E as $\min (m, n) \rightarrow \infty$.

We shall study the convergence of the series (1.1) in $L^{r}\left(T^{2}\right)$-norm. Thus we agree in the notation defined by

$$
\|g\|_{r}=\left[\int_{0}^{2 \pi} \int_{0}^{2 \pi}|g(x, y)|^{r} d x d y\right]^{1 / r}
$$

In this paper the following convergence properties are established for the rectangular partial sums of the double trigonometric series, whose coefficients form a null sequence
of bounded variation of order $(p, 0),(0, p)$ and (p, p), for some $p, q \geq 1$:

$$
\begin{align*}
& S_{m n}(x, y) \text { converges pointwise to } f(x, y) \text { for every }(x, y) \in T^{2}, \tag{1.6}\\
& S_{m n}(x, y) \text { converges uniformly to } f(x, y) \text { on } T^{2}, \tag{1.7}\\
& f \in L^{r}\left(T^{2}\right) \text { uniformly, and }\left\|S_{m n}(f)-f\right\|_{r}=o(1) \text { as } \min (m, n) \rightarrow \infty \tag{1.8}
\end{align*}
$$

These problems have been investigated by a number of authors $[2,4,5,6,7,8,9,10]$ for single and higher dimensions. Our goal is to extend the above results from $p=1$ to general cases for double trigonometric series.

In the sequel we set $\lambda_{n}=[\lambda n]$ where n is positive integer, $\lambda>1$ is a real number, and [.] means the greatest integeral part.

2. Lemmas

The following Lemmas will be useful for the proof of our result:
Lemma 2.1. For $M_{1}<M_{2}, N_{1}<N_{2}$, we prove the following Lemma:

$$
\begin{aligned}
& w^{p} w^{\prime p} \sum_{j=M_{1}}^{M_{2}} \sum_{k=N_{1}}^{N_{2}} c_{j k} e^{i(j x+k y)} \\
= & \sum_{j=M_{1}}^{M_{2}} \sum_{k=N_{1}}^{N_{2}} \Delta_{p p} c_{j k} e^{i(j x+k y)} \\
& +\sum_{j=M_{1}}^{M_{2}} \sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{p t} c_{j, N_{2}+1} e^{i\left(j x+N_{2} y\right)}-\sum_{j=M_{1}}^{M_{2}} \sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{p t} c_{j, N_{1}} e^{i\left(j x+\left(N_{1}-1\right) y\right)} \\
& +\sum_{k=N_{1}}^{N_{2}} \sum_{s=0}^{p-1} w^{\prime p-1-s} \Delta_{s p} c_{M_{2}+1, k} e^{i\left(M_{2} x+k y\right)}-\sum_{k=N_{1}}^{N_{2}} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{M_{1}, k} e^{i\left(\left(M_{1}-1\right) x+k y\right)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{M_{2}+1, N_{2}+1} e^{i\left(M_{2} x+N_{2} y\right)} \\
& -\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{M_{1}, N_{2+1}} e^{i\left(\left(M_{1}-1\right) x+N_{2} y\right)} \\
& -\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{M_{2}+1, N_{1}} e^{i\left(M_{2} x+\left(N_{1}-1\right) y\right)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{M_{1}, N_{1}} e^{i\left(\left(M_{1}-1\right) x+\left(N_{1}-1\right) y\right)}
\end{aligned}
$$

where $w(x)=w=\left(1-e^{-i x}\right), w^{\prime}(y)=w^{\prime}=\left(1-e^{-i y}\right)$ and

$$
|w|=2 \sin \frac{x}{2}, \quad|w|=2 \sin \frac{y}{2} \quad \text { for } \quad 0 \leq x, y<2 \pi
$$

The corresponding result for one dimension case is:

$$
\begin{aligned}
w^{p} \sum_{j=M_{1}}^{M_{2}} c_{j k} e^{i j x}= & \sum_{j=M_{1}}^{M_{2}} \Delta^{p} c_{j} e^{i j x}+\sum_{s=0}^{p-1} w^{p-1-s} \Delta^{s} c_{M_{2}+1} e^{i M_{2} x} \\
& -\sum_{s=0}^{p-1} w^{p-1-s} \Delta^{s} c_{M_{1}} e^{i\left(M_{1}-1\right) x}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& w^{p} w^{\prime p} \sum_{j=M_{1}}^{M_{2}} \sum_{k=N_{1}}^{N_{2}} c_{j k} e^{i(j x+k y)} \\
= & w^{\prime p} \sum_{k=N_{1}}^{N_{2}} e^{i k y}\left[w^{p} \sum_{j=M_{1}}^{M_{2}} c_{j k} e^{i k x}\right] \\
= & w^{\prime p} \sum_{k=N_{1}}^{N_{2}} e^{i k y}\left[\sum_{j=M_{1}}^{M_{2}} \Delta_{p 0} c_{j k} e^{i j x}+\sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s 0} c_{M_{2}+1, k} e^{i M_{2} x}\right. \\
& \left.\quad-\sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s 0} c_{M_{1}, k} e^{i\left(M_{1}-1\right) x}\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{j=M_{1}}^{M_{2}}\left[w^{\prime p} \sum_{k=N_{1}}^{N_{2}} \Delta_{p 0} c_{j k} e^{i k y}\right] e^{i j x} \\
& =\sum_{j=M_{1}}^{M_{2}}\left[\sum_{k=N_{1}}^{N_{2}} \Delta_{p p} c_{j k} e^{i k y}+\sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{p t} c_{j, N_{2}+1} e^{i N_{2} y}\right. \\
& \left.-\sum_{t=0}^{p-1} w^{p-1-t} \Delta_{p t} c_{j, N_{1}} e^{i\left(N_{1}-1\right) y}\right] e^{i j x} \\
& =\sum_{j=M_{1}}^{M_{2}} \sum_{k=N_{1}}^{N_{2}} \Delta_{p p} c_{j k} e^{i(j k+k y)}+\sum_{j=M_{1}}^{M_{2}} \sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{p t} c_{j, N_{2}+1} e^{i\left(j x+N_{2} y\right)} \\
& -\sum_{j=M_{1}}^{M_{2}} \sum_{s=0}^{P-1} w^{\prime p-1-s} \Delta_{p t} c_{j, N_{1}, k} e^{i\left(j x+\left(N_{1}-1\right) y\right)}
\end{aligned}
$$

Also

$$
\begin{aligned}
& \sum_{s=0}^{p-1} w^{p-1-s}\left[w^{\prime p} \sum_{k=N_{1}}^{N_{2}} \Delta_{s 0} c_{M_{2}+1, k} e^{i k y}\right] e^{i M_{2} x} \\
= & \sum_{s=0}^{p-1} w^{p-1-s}\left[\sum_{k=N_{1}}^{N_{2}} \Delta_{s p} c_{M_{2}+1, k} e^{i k y}+\sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{s t} c_{M_{2}+1, N_{2}+1} e^{i N_{2} y}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{s t} c_{M_{2}+1, N_{1}} e^{i\left(N_{1}-1\right) y}\right] e^{i M_{2} x} \\
= & \sum_{k=N_{1}}^{N_{2}} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{M_{2}+1, k} e^{i\left(M_{2} x+k y\right)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{M_{2}+1, N_{2}+1} e^{i\left(M_{2} x+N_{2} y\right)} \\
& -\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-s} \Delta_{s t} c_{M_{2}+1, N_{1}} e^{i\left(M_{2} x+\left(N_{1}-1\right) y\right)}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \sum_{s=0}^{p-1} w^{p-1-s}\left[w^{\prime p} \sum_{k=N_{1}}^{N_{2}} \Delta_{s 0} c_{M_{1}, k} e^{i k y}\right] e^{i M_{2} x} \\
= & \sum_{s=0}^{p-1} w^{p-1-s}\left[\sum_{k=N_{1}}^{N_{2}} \Delta_{s p} c_{M, k} e^{i k y}+\sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{s t} c_{M_{1}, N_{2}+1} e^{i N_{2} y}\right. \\
& \left.-\sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{s t} c_{M_{1}, N_{1}} e^{i\left(N_{1}-1\right) y}\right] e^{i M_{2} x} \\
= & \sum_{k=N_{1}}^{N_{2}} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{M_{1}, k} e^{i\left(\left(M_{1}-1\right) x+k y\right)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{M_{1}, N_{2}+1} e^{i\left(\left(M_{1}-1\right) x+N_{2} y\right)} \\
& -\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-s} \Delta_{s t} c_{M_{1}, N_{1}} e^{i\left(\left(M_{1}-1\right) x+\left(N_{1}-1\right) y\right)}
\end{aligned}
$$

Combining all above, we have the required result.
Lemma 2.2. [3] For $m, n \geq 0$ and $\lambda>1$, the following representation holds:

$$
\begin{aligned}
S_{m n}-\sigma_{m n}= & \frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{\lambda_{m}, \lambda_{n}}-\sigma_{\lambda_{m}, n}-\sigma_{m, \lambda_{n}}+\sigma_{m n}\right)+\frac{\lambda_{m}+1}{\lambda_{m}-m}\left(\sigma_{\lambda_{m}, n}-\sigma_{m n}\right) \\
& +\frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{m, \lambda_{n}}-\sigma_{m n}\right)-\Sigma_{10}^{\lambda}(m, n ; x, y)-\Sigma_{01}^{\lambda}(m, n ; x, y)-\Sigma_{11}^{\lambda}(m, n ; x, y)
\end{aligned}
$$

where

$$
\Sigma_{01}^{\lambda}(m, n ; x, y)=\sum_{|j| \leq m} \sum_{|k|=n+1}^{\lambda_{n}} \frac{\lambda_{n}+1-|k|}{\lambda_{n}-m} c_{j k} e^{i(j x+k y)}
$$

$$
\begin{aligned}
& \Sigma_{10}^{\lambda}(m, n ; x, y)=\sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} c_{j k} e^{i(j x+k y)} \\
& \Sigma_{11}^{\lambda}(m, n ; x, y)=\sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k|=n+1}^{\lambda_{n}} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \frac{\lambda_{n}+1-|k|}{\lambda_{n}-n} c_{j k} e^{i(j x+k y)}
\end{aligned}
$$

3. Main Results

We will prove the following results:
Theorem 3.1. Let $\left\{c_{j k}\right\}_{|j|,|k|<\infty}$ satisfies the conditions (1.2)-(1.5) for some $p \geq 1$. Then the series (1.1)
(i) converges pointwise to some function $f(x, y)$ for every $(x, y) \in T^{2}$.
(ii) converges in the $L^{r}\left(T^{2}\right)$-metric to f for all $0<r<1 / p$.

Theorem 3.2. (i) Let $E \subset T^{2}$. Assume that the following conditions are satisfied:

$$
\begin{align*}
& \lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{10}^{\lambda}(m, n ; x, y)\right|\right)=0 \tag{3.1}\\
& \lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{01}^{\lambda}(m, n ; x, y)\right|\right)=0 \tag{3.2}
\end{align*}
$$

If $\sigma_{m n}(x, y)$ converges uniformly on E to $f(x, y)$, then so does $S_{m n}$.
(ii) Assume that the following conditions are satisfied for some $r<1$:

$$
\begin{align*}
& \lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\left\|\Sigma_{10}^{\lambda}(m, n ; x, y)\right\|_{r}\right)=0 \tag{3.3}\\
& \lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\left\|\Sigma_{01}^{\lambda}(m, n ; x, y)\right\|_{r}\right)=0 \tag{3.4}
\end{align*}
$$

If $\left\|\sigma_{m n}-f\right\|_{r} \rightarrow 0$ unrestrictedly, then $\left\|S_{m n}-f\right\|_{r} \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.
Here the limit superior of a double sequence $\left\{d_{j k}:-\infty<j, k<\infty\right\}$ of extended real numbers is known as

$$
\lim _{m, n \rightarrow \infty} \sup d_{m n}=\inf _{m, n \geq 1}\left(\sup d_{j k}\right)=\lim _{m, n \rightarrow \infty}\left(\sup _{j \geq m, k \geq n} d_{j k}\right)
$$

Proof of Theorem 3.2. We have

$$
\begin{aligned}
\Sigma_{11}^{\lambda}(m, n ; x, y) & =\frac{1}{\lambda_{m}-m} \sum_{u=m+1}^{\lambda_{m}}\left(\Sigma_{01}^{\lambda}(u, n ; x, y)-\Sigma_{01}^{\lambda}(m, n ; x, y)\right) \\
& =\frac{1}{\lambda_{n}-n} \sum_{v=n+1}^{\lambda_{n}}\left(\Sigma_{10}^{\lambda}(m, v ; x, y)-\Sigma_{01}^{\lambda}(m, n ; x, y)\right)
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|\Sigma_{11}^{\lambda}(m, n ; x, y)\right| \leq 2 \sup _{m \leq u \leq \lambda_{m}}\left(\left|\Sigma_{01}^{\lambda}(u, n ; x, y)\right|\right) 2 \sup _{n \leq u \leq \lambda_{n}}\left(\left|\Sigma_{10}^{\lambda}(m, v ; x, y)\right|\right) \tag{3.5}
\end{equation*}
$$

Using the above relation, we find that (3.1) implies that

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{11}^{\lambda}(m, n ; x, y)\right|\right)=0, \tag{3.6}
\end{equation*}
$$

Assume that $\sigma_{m n}(x, y)$ converges uniformly on E to $f(x, y)$. Then by Lemma 2.2 , we get

$$
\begin{aligned}
& \lim _{m, n \rightarrow \infty} \sup \left(\left|\sup _{(x, y) \in E} S_{m n}(x, y)-\sigma_{m n}(x, y)\right|\right) \\
\leq & \lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{10}^{\lambda}(m, n ; x, y)\right|\right)+\lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{01}^{\lambda}(m, n ; x, y)\right|\right) \\
& +\lim _{m, n \rightarrow \infty} \sup \left(\sup _{(x, y) \in E}\left|\Sigma_{11}^{\lambda}(m, n ; x, y)\right|\right)
\end{aligned}
$$

After taking $\lambda \downarrow 1$ the first part of Theorem 3.2 follows from (3.1)-(3.2) and (3.6). For (ii), by (3.5) we have

$$
\begin{aligned}
\left\|\Sigma_{11}^{\lambda}(m, n ; x, y)\right\|_{r} & =\frac{1}{\lambda_{m}-m} \sum_{u=m+1}^{\lambda_{m}}\left(\left\|\Sigma_{01}^{\lambda}(u, n ; x, y)\right\|_{r}+\left\|\Sigma_{01}^{\lambda}(m, n ; x, y)\right\|_{r}\right) \\
& \leq 2\left(\sup _{m \leq u \leq \lambda_{m}}\left(\left\|\Sigma_{01}^{\lambda}(u, n ; x, y)\right\|_{r}\right)\right)
\end{aligned}
$$

Thus, (3.4) implies

$$
\lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left\|\Sigma_{11}^{\lambda}(m, n ; x, y)\right\|_{r}=0 .
$$

Therefore the result of Theorem 3.2 follows.
The following result follows from Theorem 3.2.
Theorem 3.3. Assume that conditions (1.2)-(1.4) are satisfied for some $p \geq 1$.

$$
\begin{align*}
& \lim _{\lambda \downarrow 1} \lim _{n \rightarrow \infty} \sup \sum_{j=-\infty}^{\infty} \sum_{|k|=n+1}^{\lambda_{n}} \frac{\lambda_{n}+1-|k|}{\lambda_{n}-n}\left|\Delta_{p p} c_{j k}\right|=0, \tag{3.7}\\
& \lim _{\lambda \downarrow 1} \lim _{m \rightarrow \infty} \sup \sum_{|j|=m+1}^{\lambda_{m}} \sum_{k=-\infty}^{\infty} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m}\left|\Delta_{p p} c_{j k}\right|=0, \tag{3.8}
\end{align*}
$$

Then the following statements are true.
(i) If $\sigma_{m n}(x, y)$ converges uniformly on E to $f(x, y)$ then so does $S_{m n}$.
(ii) If $\left\|\sigma_{m n}-f\right\|_{r} \rightarrow 0$ unrestrictedly for some r with $0<r<1 / p$, then

$$
\left\|S_{m n}-f\right\|_{r} \rightarrow 0 \quad \text { as } \quad \min (m, n) \rightarrow \infty
$$

Obviously, condition (1.5) implies any of the conditions (3.7)-(3.8). These conditions have appeared in many places and were originally taken into consideration in the development of the point-wise convergence of single and double trigonometric series $[2,4$, 5].

Proof of Theorem 3.1. Setting $M_{1}=-m, M_{2}=m, N_{1}=-n$ and $N_{2}=n$ in Lemma 2.1, we have

$$
\begin{aligned}
S_{m n}= & \sum_{|j| \leq m} \sum_{|k| \leq n} c_{j k} e^{i(j x+k y)} \\
= & \frac{1}{w^{p} w^{\prime p}}\left[\sum_{|j| \leq m} \sum_{|k| \leq n} \Delta_{p p} c_{j k} e^{i(j x+k y)}+\sum_{|j| \leq m} \sum_{t=0}^{p-1} w^{\prime^{p-1-t}} \Delta_{p t} c_{j, \tau(n)} e^{i(j x+n y)}\right. \\
& -\sum_{|j| \leq m} \sum_{t=0}^{p-1} w^{\prime^{p-1-t}} \Delta_{p t} c_{j,-n} e^{i(j x+(-n-1) y)}+\sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{\tau(m), k} e^{i(m x+k y)} \\
& -\sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{-m, k} e^{i((-m-1) x+k y)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{\tau(m), \tau(n)} e^{i(m x+n y)} \\
& p-1 p-1 \\
& \sum_{s=0}^{p-0} \sum_{t=0}^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{-m, \tau(n)} e^{i((-m-1) x+n y)} \\
& +\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{\tau(m),-n} e^{i(m x+(-n-1) y)} \\
& \left.\sum_{s=1}^{p-1} \sum_{t=0}^{p} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{-m,-n} e^{i((-m-1) x+(-n-1) y)}\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
& \quad\left|\sum_{|j| \leq m} \sum_{t=0}^{p-1} w^{\prime^{p-1-t}} \Delta_{p t} c_{j, \tau(n)} e^{i(j x+n y)}+\sum_{|j| \leq m} \sum_{t=0}^{p-1} w^{\prime p-1-t} \Delta_{p t} c_{j,-n} e^{i(j x+(-n-1) y)}\right| \\
& \leq 2^{p-1} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\left|\Delta_{p t} c_{j, \tau(k)}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =2^{p-1} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{|j| \leq m|k|=n+v+1} \sum_{p 0}\left|\Delta_{p 0} c_{j k}\right| \\
& \leq C_{p} \sup _{n<|k| \leq n+p} \sum_{|j| \leq m}\left|\Delta_{p 0} c_{j k}\right|
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
&\left|\sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-t} \Delta_{s p} c_{\tau(m), k} e^{i(m x+k y)}+\sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{-m, k} e^{i((-m+1) x+k y)}\right| \\
& \leq 2^{p-1} \sum_{s=0}^{p-1} \sum_{|j|=m}^{t} \sum_{|k| \leq n}\left|\Delta_{s p} c_{\tau(j), k}\right| \\
& \leq 2^{p-1} \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u} \sum_{|j|=m+u+1} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right| \\
& \leq C_{p} \sup _{m<|j| \leq m+p} \sum_{|k| \leq n}\left|\Delta_{p 0} c_{j k}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& \mid \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{\tau(m), \tau(n)} e^{i(m x+n y)} \\
& \quad-\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{p^{p-1-t}} \Delta_{s t} c_{-m, \tau(n)} e^{i((-m-1) x+n y)} \\
& \quad-\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{p^{p-1-t}} \Delta_{s t} c_{\tau(m),-n} e^{i((m x+)(-n-1) y)} \\
& \quad+\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{-m,-n} e^{i((-m-1)+(-n-1) y)} \mid \\
& \leq 4^{p-1} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{t}\binom{s}{u}\binom{t}{v} \sum_{|j|=m+u+1|k|=n+v+1}\left|\Delta_{00} c_{j k}\right| \\
& \leq C_{p} \sup _{|j|>m,|k|>n}\left|C_{j k}\right|
\end{aligned}
$$

where C_{p} is an absolute constant not necessarily the same at each occurrence.
Making use of (1.2)-(1.5), we can see that each term on the right-hand side tends to zero as $\min (|m|,|n|) \rightarrow \infty$. Thus, the sum $f(x, y)$ of the series (1.1) exists for all $0<x$, $y \leq 2 \pi$.

For the proof of part (ii),
Let $R_{m n}$ consist of all (j, k) with $|j|>m$ or $|k|>n$.

$$
\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f(x, y)-S_{m n}(x, y)\right|^{r} d x d y\right)^{1 / r}
$$

$$
\begin{aligned}
= & \frac{1}{w^{p} w^{\prime p}}\left[\sum_{R_{m n}}\left|\Delta_{p p} c_{j k}\right|\right]+2^{p-1}\left(\sum_{|j| \leq m} \sum_{t=0}^{p-1}\left|\Delta_{p t} c_{j, \tau(n)}\right|+\left|\Delta_{p t} c_{j,-n}\right|\right) \\
& +2^{p-1}\left(\sum_{|k| \leq n} \sum_{s=0}^{p-1}\left|\Delta_{s p} c_{\tau(m), k}\right|+\left|\Delta_{s p} c_{-m, k}\right|\right) \\
& +4^{p-1}\left(\sum_{s=0}^{p-1} \sum_{t=0}^{p-1}\left(\left|\Delta_{s t} c_{\tau(m), \tau(n)}\right|+\left|\Delta_{s t} c_{-m, \tau(n)}\right|+\left|\Delta_{s t} c_{\tau(m),-n}\right|+\left|\Delta_{s t} c_{-m,-n}\right|\right)\right.
\end{aligned}
$$

Since for $p r<1$

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|w(x) w^{\prime}(y)\right|^{p r}} d x d y \leq K, \quad \text { where } K \text { is an absolute constant. }
$$

Therefore

$$
\begin{aligned}
&\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f(x, y)-S_{m n}(x, y)\right|^{r} d x d y\right)^{1 / r} \\
& \leq K\left(\sum_{R_{m n}}\left|\Delta_{p q} c_{j k}\right|\right)+C_{p}\left(\sup _{n<|k| \leq m+p} \sum_{|j| \leq m}\left|\Delta_{p 0} c_{j k}\right|\right) \\
&+C_{p}\left(\sup _{m<|j| \leq m+p} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right|\right)+C_{p}\left(\sup _{|j|>m,|k|>n}\left|c_{j k}\right|\right) \\
& \rightarrow 0 \quad \text { as } \quad \min (m, n) \rightarrow \infty \quad \text { by }(1.2)-(1.5) .
\end{aligned}
$$

This concludes the proof of Theorem 3.1.
Proof of Theorem 3.3. Using summation by parts, we have

$$
\begin{aligned}
\Sigma_{10}^{\lambda}(m, n ; x, y)= & \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} c_{j k} e^{i(j x+k y)} \\
= & \frac{1}{w^{p} w^{\prime p}}\left[\sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p p} c_{j k} e^{i(j x+k y)}\right. \\
& +\frac{1}{\lambda_{m}-m} \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{\tau(j), k} e^{i(j x+k y)} \\
& -\sum_{|j|=m} \sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{\tau(j), k} e^{i(j x+k y)} \\
& -\sum_{|j|=m+1}^{\lambda_{m}} \sum_{t=0}^{p-1} w^{\prime^{p-1-t}} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p t} c_{j, \tau(n)} e^{i(j x+n y)}
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{|j|=m+1}^{\lambda_{m}} \sum_{t=0}^{p-1} w^{\prime p-1-t} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p t} c_{j,-n} e^{i(j x+(-n-1) y)} \\
& -\sum_{|j|=m} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{\tau(j), \tau(n)} e^{i(j x+n y)} \\
& +\sum_{|j|=m} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{\tau(j),-n} e^{i(j x+(-n-1) y)} \\
& -\frac{1}{\lambda_{m}-m} \sum_{|j|=m+1} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{\tau(j), \tau(n)} e^{i(j x+n y)} \\
& \left.-\frac{1}{\lambda_{m}-m} \sum_{|j|=m+1} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime p-1-t} \Delta_{s t} c_{\tau(j),-n} e^{i(j x+(-n-1) y)}\right] \\
& =\frac{1}{w^{p} w^{\prime p}}\left[I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}+I_{9}\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p p} c_{j k} e^{i(j x+k y)}\right| \\
& \leq \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m}\left|\Delta_{p p} c_{j k}\right| \\
\left|I_{2}\right| & =\left|\frac{1}{\lambda_{m}-m} \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \sum_{s=0}^{p-1} w^{p-1-s} \Delta_{s p} c_{\tau(j), k} e^{i(j x+k y)}\right| \\
& \leq 2^{p-1} \sup _{m<|j| \leq \lambda_{m}} \sum_{s=0}^{p-1} \sum_{|k| \leq n}\left|\Delta_{s p} c_{\tau(j), k}\right| \\
& \leq 2^{p-1} \sup _{m<|j| \leq \lambda_{m}} \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u} \sum_{|j|=m+u+1} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right| \\
& \leq C_{p}\left(\sup _{m<|j| \leq \lambda_{m}+p} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right|\right) .
\end{aligned}
$$

Similarly

$$
\left|I_{3}\right| \leq C_{p}\left(\sup _{m<|j| \leq m+p} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right|\right)
$$

$$
\begin{aligned}
\left|I_{4}+I_{5}\right|= & \left\lvert\, \sum_{|j|=m+1}^{\lambda_{m}} \sum_{t=0}^{p-1} w^{\prime p-1-t} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p t} c_{j, \tau(n)} e^{i(j x+n y)}\right. \\
& \left.-\sum_{|j|=m+1}^{\lambda_{m}} \sum_{t=0}^{p-1} w^{p^{p-1-t}} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p t} c_{j,-n} e^{i(j x+(-n-1) y)} \right\rvert\, \\
\leq & 2^{p-1} \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k|=n} \sum_{t=0}^{p-1} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m} \Delta_{p t} c_{j, \tau(k)} \\
\leq & C_{p} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k|=n+v+1}\left|\Delta_{p 0} c_{j k}\right| \\
\leq & C_{p}\left(\sup _{n<|k| \leq n+p} \sum_{|j|=m+1}^{\lambda_{m}}\left|\Delta_{p 0} c_{j k}\right|\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{4}+I_{5}\right|= & \sum_{|j|=m} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{p^{p-1-t}} \Delta_{s t} c_{\tau(j), \tau(n)} e^{i(j x+n y)} \\
& -\sum_{|j|=m} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} w^{p-1-s} w^{\prime^{p-1-t}} \Delta_{s t} c_{\tau(j),-n} e^{i(j x+(-n-1) y)} \\
\leq & 4^{p-1} \sup _{|j|=m} \sum_{|k|=n} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1}\left|\Delta_{s t} c_{\tau(j), \tau(k)}\right| \\
\leq & C_{p}\left(\sup _{|j| \geq m,|k| \geq n}\left|c_{j k}\right|\right) .
\end{aligned}
$$

Similarly

$$
\left|I_{8}+I_{9}\right| \leq C_{p}\left(\sup _{|j| \geq m,|k| \geq n}\left|c_{j k}\right|\right)
$$

Combining these with (1.2)-(1.4) and (3.8), we get (3.1).
Similarly (1.2)-(1.4) and (3.7), results in (3.2).
Thus, (i) follows from (i) of Theorem 3.2.

For proof of (ii)

Assume that $\left\|\sigma_{m n}-f\right\|_{r} \rightarrow 0$ unrestrictedly for some r with $0<r<\frac{1}{p}$, we have

$$
\left\|S_{m n}-f\right\|_{r}^{r} \leq\left\|S_{m n}-\sigma_{m n}\right\|_{r}^{r}+\left\|\sigma_{m n}-f\right\|_{r}^{r}
$$

So it is sufficient to show that

$$
\left\|S_{m n}-\sigma_{m n}\right\|_{r}^{r} \rightarrow 0 \quad \text { as } \quad \min (m, n) \rightarrow \infty
$$

By Lemma 2.2, we have

$$
\begin{aligned}
\left\|S_{m n}-\sigma_{m n}\right\|_{r}^{r} \leq & \left(\frac{\lambda_{m}+1}{\lambda_{m}-m}\right)^{r}\left(\frac{\lambda_{n}+1}{\lambda_{n}-n}\right)^{r}\left\|\sigma_{\lambda_{m}, \lambda_{n}}-\sigma_{\lambda_{m}, n}-\sigma_{m, \lambda_{n}}+\sigma_{m n}\right\|_{r}^{r} \\
& +\left(\frac{\lambda_{m}+1}{\lambda_{m}-m}\right)^{r}\left\|\sigma_{\lambda_{m}, n}-\sigma_{m n}\right\|_{r}^{r}+\left(\frac{\lambda_{n}+1}{\lambda_{n}-n}\right)^{r}\left\|\sigma_{m, \lambda_{n}}-\sigma_{m n}\right\|_{r}^{r} \\
& +\left\|\Sigma_{10}^{\lambda}(m, n ; x, y)\right\|_{r}^{r}+\left\|\Sigma_{01}^{\lambda}(m, n ; x, y)\right\|_{r}^{r}+\left\|\Sigma_{11}^{\lambda}(m, n ; x, y)\right\|_{r}^{r}
\end{aligned}
$$

By hypothesis the first three terms of the above inequality tend to zero as $\min (m, n) \rightarrow$ ∞. We have

$$
\begin{aligned}
\left\|\Sigma_{10}^{\lambda}(m, n ; x, y)\right\|_{r}^{r} \leq & \left(\sum_{|j|=m+1}^{\lambda_{m}} \sum_{|k| \leq n} \frac{\lambda_{m}+1-|j|}{\lambda_{m}-m}\left|\Delta_{p p} c_{j k}\right|\right)^{r} \\
& +C_{p}\left(\sup _{n<|k| \leq n+p} \sum_{|j|=m+1}^{\lambda_{m}}\left|\Delta_{p 0} c_{j k}\right|\right)^{r} \\
& +C_{p}\left(\sup _{m<|j| \leq m+p} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j k}\right|\right)^{r} \\
& +C_{p}\left(\sup _{m<|j| \leq \lambda_{m}+p} \sum_{|k| \leq n}\left|\Delta_{0 p} c_{j, k}\right|\right)^{r}+2 C_{p}\left(\sup _{|j| \geq m,|k| \geq n}\left|c_{j k}\right|\right)^{r}
\end{aligned}
$$

By (1.2)-(1.4) and (3.8), we conclude that

$$
\lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\|\left.\Sigma_{10}^{\lambda}(m, n ; x, y)\right|_{r}\right)
$$

Similarly conditions (1.2)-(1.4) and (3.7),

$$
\lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\left\|\Sigma_{01}^{\lambda}(m, n ; x, y)\right\|_{r}\right)
$$

By (1.2)-(1.4) and (3.5), we infer that

$$
\lim _{\lambda \downarrow 1} \lim _{m, n \rightarrow \infty} \sup \left(\left\|\Sigma_{11}^{\lambda}(m, n ; x, y)\right\|_{r}\right)
$$

Therefore

$$
\left\|S_{m n}-\sigma_{m n}\right\|_{r}^{r} \rightarrow 0 \quad \text { as } \quad \min (m, n) \rightarrow \infty
$$

Hence we have the desired result.

References

[1] N. K. Bary, A Treatise on Trigonometic Series, Vol I and Vol II, Pregamon Press, London, 1964.
[2] C. P. Chen, Pointwise convergence of trigonometric series, J. Austral. Math. Soc. (Series A) $\mathbf{4 3}(1987)$, 291-300.
[3] C. P. Chen and Y. W. Chauang, L^{1}-convergence of double Fourier series, Chinese Journal of Math. 19(1991), 391-410.
[4] C. P. Chen and P. H. Hsieh, Pointwise convergence of double trigonometric series, J. Math. Anal. Appl. 2(1993), 582-599.
[5] C. P. Chen, H. C. Wu and F. Móricz, Pointwise convergence of multiple trigonometric series, J. Math. Anal. Appl. 185(1994), 629-646.
[6] C. P. Chen, Integrability and L^{1}-convergence of multiple trigonometric series, Bull. Aust. Math. Soc. 49(1994), 333-339.
[7] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Amer. Math. Soc. 2(1988), 633-640.
[8] F. Móricz, Integrability of double trigonometric series with special coefficients, Analysis Mathematica 16(1990), 39-56.
[9] F. Móricz, On the integrability and L^{1}-convergence of double trigonometric series, Studia Math. 98(1991), 203-225.
[10] V. B. Stanojević, On a theorem of P. L. Uljanov, Proc. Amer. Math. Soc. 90(1984), 370-372.
[11] A. Zygmund, Trigonometric Series, Cambridge University Press, 1959.

School of Mathematics and Computer Applications, Thapar Institute of Engineering and Technology, Post Box No. 32, Patiala (Pb.)-147004, India.

Department of Mathematics, Maharshi Dyanand University, Rohtak, India.
E-mail: mathkk@hotmail.com

