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THE MODULUS OF OPERATORS ON GROUP ALGEBRAS

ALI. GHAFFARI

Abstract. Let G be a locally compact group. In this paper, we study the modulus of right

multipliers on second dual of group algebras and modulus of operators on L∞(G) which commute

with convolutions.

1. Preliminaries and Notations

Let G be a locally compact group. For f ∈ L∞(G) and µ ∈ L1(G), let the functional

fµ ∈ L∞(G) be defined by 〈fµ, ν〉 = 〈f, µ ∗ ν〉 where ν ∈ L1(G). Also for F ∈ L1(G)∗∗,

let Ff ∈ L∞(G) be defined by 〈Ff, µ〉 = 〈F, fµ〉. Finally for F , G ∈ L1(G)∗∗, let FG ∈

L1(G)∗∗ be defined by 〈FG, f〉 = 〈F,Gf〉. We know that L1(G)∗∗ with the first Arens

product defined as above is a Banach algebra. Also, we can define the first Arens product

on LUC(G)∗ by symmetry. Of course, it is well known that LUC(G) = L∞(G)L1(G)

and RUC(G) = L1(G)L∞(G). If π : L1(G)∗∗ → LUC(G)∗ is the adjoint of embedding

of LUC(G) in L∞(G), then for F , G ∈ L1(G)∗∗ and f ∈ L∞(G), we have FG = Fπ(G)

and Ff = π(F )f [6].

For a Banach lattice X and an operator T on X , the modulus |T | of T is defined by

|T |(x) = sup{|T (y)|; |y| ≤ x} for all x ≥ 0, provided that the supremum exists ([1], [3]).

Most of our notation in this paper is taken from ([3], [6]).

We say that a bounded linear map T : L∞(G) → L∞(G) commutes with convolutions

if T (fµ) = T (f)µ, for f ∈ L∞(G) and µ ∈ L1(G). Lau and Pym in [6] have studied the

operators on L∞(G) which commute with convolutions. Ghahramani and Lau studied

the modulus of left multipliers on L1(G)∗∗ [3]. We prove, among other things, that if

n = ΓE(µ) = weak*-limit eα ∗ µ [2] where µ ∈ M(G) and E is a weak*-limit of (eα)

((eα) is a bounded approximate identity in L1(G)), then |ρn|(ν) = ν|n| for all ν ∈ L1(G)

(see below). Moreover, we know that if T is an operator on L∞(G) which commute with

convolutions, then there exists n ∈ L1(G)∗∗ (or n ∈ LUC(G)∗) such that T = Tn where

Tn is defined by Tn(f) = nf for all f ∈ L∞(G) [6]. We show that if µ ∈ M(G) and

E is a weak*-limit of a bounded approximate identity in L1(G), then |Tn| = T|n| where

n = ΓE(µ).

Finally, we recall that for µ ∈ M(G) the functional µ : LUC(G) → C given by

〈µ, fν〉 = 〈f, ν ∗ µ〉 is a member of LUC(G)∗.
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2. The Modulus of Operators

Let H be a topologically left invariant subspace of L∞(G), i.e. fµ ∈ H for all f ∈ H
and µ ∈ L1(G). We define M(L∞(G), H) = {T, T : L∞(G) → H is a bounded linear
map and T (fµ) = T (f)µ for f ∈ L∞(G), µ ∈ L1(G)}. It is known that M(L∞(G), H)
can be identified with a subspace of LUC(G)∗ [6]. Lau and Pym have characterized
M(L∞(G), LUC(G)) and M(L∞(G), C(G)) [6]. For the subspace H = {f ∈ L∞(G) :
x → δxf is weak continuous and for all F ∈ L1(G)∗∗ and µ ∈ L1(G),

∫
〈F, δxf〉dµ(x) =

〈Fµ, f〉} of L∞(G), we characterize M(L∞(G), H).
We recall that the map π is the identity on L1(G), so π(L1(G)L1(G)∗∗) = L1(G)

L1(G)∗∗. Indeed, the map π is an isometric isomorphism of L1(G)L1(G)∗∗ onto π(L1(G)
L1(G)∗∗). Let τ be a topology on LUC(G)∗ such that nα → n in the τ -topology if and
only if for all F ∈ L1(G)∗∗ and f ∈ L∞(G), 〈F, δxnαf〉 → 〈F, δxnf〉 in the uniform
topology on compacta. In the following Theorem, we will show that cl(L1(G)L1(G)∗∗) =
M(L∞(G), H) where the closure is taken in the τ -topology.

Theorem 2.1. Let H and τ be given as above. Then

cl(L1(G)L1(G)∗∗) = M(L∞(G), H).

Proof. It is easy to see that L1(G) ⊆M(L∞(G), H), so by ([6], Lemma 3.1),

L1(G)L1(G)∗∗ ⊆M(L∞(G), H).

We prove that M(L∞(G), H) is τ -closed. Let (nα) be a net in M(L∞(G), H) such that
nα → n (n ∈ LUC(G)∗) in the τ -topology. Now if f ∈ L∞(G), F ∈ L1(G)∗∗ and x0 ∈ G,
then for ε > 0, there is a relatively compact neighbourhood U of x0 and a α0 such that
for all x ∈ U , |〈F, δxnα0

f〉 − 〈F, δxnf〉| < ε/3. Hence, there is a neighbourhood V ⊆ U
containing x0 such that for all x ∈ V , |〈F, δxnα0

f〉 − 〈F, δx0
nα0

f〉| ≤ ε/3. Consequently,
for x ∈ V we have

|〈F, δxnf〉 − 〈F, δx0
nf〉| ≤ |〈F, δxnf〉 − 〈F, δxnα0

f〉| + |〈F, δxnα0
f〉 − 〈F, δx0

nα0
f〉|

+|〈F, δx0
nα0

f〉 − 〈F, δx0
nf〉| < ε.

On the other hand, for any α and µ ∈ L1(G),
∫
〈F, δxnαf〉dµ(x) = 〈Fµ, nαf〉. Since

nα → n in the τ -topology, hence
∫
〈F, δxnf〉dµ(x) = 〈Fµ, nf〉. It follows that nf ∈ H .

So cl(L1(G)L1(G)∗∗) ⊆M(L∞(G), H).
To prove the reverse inclusion, let n ∈M(L∞(G), H) and U be a compact neighbour-

hood of e in G. For a bounded approximate identity (eα) in L1(G) with supp eα ⊆ U ,
we will prove that eαn → n in the τ -topology. If F ∈ L1(G)∗∗, f ∈ L∞(G) and K
is a compact subset of G, then we can take ψ ∈ C0(G) such that ψ(KU) = 1. For
ϕ(x) = 〈F, δxnf〉 and ϕα(x) = 〈F, δx ∗ eαnf〉, we have

〈ϕ, δx ∗ eα〉 =

∫
ϕ(t)dδx ∗ eα(t) =

∫
〈F, δtnf〉dδx ∗ eα(t)

= 〈F, δx ∗ eαnf〉 = ϕα(x).
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But for x ∈ K, we have 〈ϕψ, δx ∗ eα〉 = 〈ϕ, δx ∗ eα〉. On the other hand, ϕψ is of the
form νg = ϕψ for some ν ∈ L1(G) and g ∈ L∞(G). So for x ∈ K we have

ϕα(x) = 〈ϕ, δx ∗ eα〉 = 〈ϕψ, δx ∗ eα〉 = 〈νg, δx ∗ eα〉.

Sicne (eα) is an approximate identity, hence ϕα → ϕ uniformly on K. Consequently
cl(L1(G)L1(G)∗∗) = M(L∞(G), H).

By above Theorem, the set of all operators T : L∞(G) → H which commute with
convolutions is identified with cl(L1(G)L1(G)∗∗) (the closure is taken in the τ -topology).
By [6] we know that T : L∞(G) → L∞(G) commute with convolutions if and only if
for some n ∈ LUC(G)∗, T = Tn where Tn(f) = nf for f ∈ L∞(G). In the following
Proposition, we show that if µ ∈M(G) and E is a weak*-limit of a bounded approximate
identity in L1(G), then for n = ΓE(µ) we have |Tn| = T|n|. Of course, we recall that for
1 ≤ p ≤ ∞, the space Lp(G) is a complete Banach lattice with positive cone

C = {f ∈ Lp(G) : f ≥ 0 almost every where}.

Moreover for µ ∈M(G), we take ρµ as a right multiplier on L1(G), i.e. ρµ(ν) = ν ∗µ for
all ν ∈ L1(G).

Proposition 2.2. The following statements hold:

(1) For µ ∈M(G), |ρ∗µ| = ρ|µ|
∗.

(2) If n = ΓE(µ), then |Tn| = T|n|.
(3) If n ∈ LUC(G)⊥ and n 6= 0, then |Tn| 6= T|n| where LUC(G)⊥ = {F ∈ L1(G)∗∗;

〈F, f〉 = 0, f ∈ LUC(G)}.

Proof. Let µ ∈ M(G) and suppµ be compact. If ∆ is a modular function of G,
we define µ̂ ∈ M(G) by 〈µ̂, f〉 = 〈µ, (f∆)⋆〉, where f ∈ C0(G), and for f ∈ L∞(G),
f⋆(x) = f(x−1) (x ∈ G). Now for f ∈ C0(G)+, x ∈ G, we have

〈|µ|, Lxf〉 = sup{|〈µ, h〉|; |h| ≤ Lxf}

= sup{|〈µ, (h∆)⋆〉|; |(h∆)⋆| ≤ Lxf}

= sup{|〈µ, (h∆)⋆〉|; |h∆| ≤ (Lxf)⋆}

= sup{|〈µ̂, h〉|; |h| ≤ (Lxf∆)⋆}

= 〈|µ̂|, (Lxf∆)⋆〉.

Consequently,
∫
f(xy)d|µ|(y) = 〈|µ|, Lxy〉 = 〈|µ̂|, (Lxf∆)⋆〉 =

∫
f(xy−1)∆(y−1)d|µ̂|(y).

Hence for all ν ∈ L1(G), we have 〈|µ|f, ν〉 = 〈f ∗ |µ̂|, ν〉, i.e. |µ|f = f ∗ |µ̂|.
It is easy to see that for all f ∈ L∞(G)+ with compact support 〈|µ|f, ν〉 = 〈f ∗ |µ̂|, ν〉

(ν ∈ L1(G)). Also, it is obvious that for g ∈ L∞(G) with compact support µg = g ∗ µ̂.
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Now by an argument similar to the proof in ([3], Theorem 3.5), we have |ρ∗µ| = ρ|µ|∗ for

all µ ∈M(G).
2) For f ∈ L∞(G)+,

|Tn|(f) = sup{|ng|; g ∈ L∞(G), |g| ≤ f} = sup{|Eµg|; g ∈ L∞(G), |g| ≤ f}.

But for g ∈ L∞(G) and ν ∈ L1(G)+, we have

〈|Eµg|, ν〉 = sup{|〈Eµg, η〉|; η ∈ L1(G), |η| ≤ ν}

= sup{|〈g, η ∗ µ〉|; η ∈ L1(G), |η| ≤ ν} = 〈|ρ∗µ(g)|, ν〉.

So, |Eµg| = |ρ∗µ(g)|. Consequently,

|Tn|(f) = sup{|ρ∗µ(g)|; g ∈ L∞(G), |g| ≤ f} = |ρ∗µ|(f).

But by (1), |ρ∗µ|(f) = ρ|µ|
∗(f) = |µ|f , so |Tn|(f) = |µ|f . On the other hand, π(|n|) = |µ|.

Indeed, for f ∈ L∞(G)+ and ν ∈ L1(G)+,

〈νπ(|n|), f〉 = 〈ν|n|, f〉 = 〈|n|, fν〉 = sup{|〈n, g〉|; g ∈ L∞(G), |g| ≤ fν}.

Now, if g ∈ L∞(G) and |g| ≤ fν, we have |〈n, g〉| = | lim〈eα ∗ µ, g〉| ≤ lim |〈eα ∗ µ, g〉| ≤
〈|µ|, fν〉 = 〈ν ∗ |µ|, f〉. Consequently, νπ(|n|) ≤ ν ∗ |µ|. But by ([3], Theorem 3.1)
ρ|µ| = |ρµ|, so

ν ∗ |µ| = ρ|µ|(ν) = |ρµ|(ν) = sup{|η ∗ µ|; η ∈ L1(G), |η| ≤ ν}

= sup{|ηn|; η ∈ L1(G), |η| ≤ ν} ≤ ν|n| = νπ(|n|).

It follows that for all ν ∈ L1(G) and ν ≥ 0, we have ν|n| = ν ∗|µ|. Therefore π(|n|) = |µ|.
3) Let n ∈ LUC(G)⊥ and n 6= 0. For f ∈ L∞(G) with f ≥ 0, we have |Tn|(f) =

sup{|ng|; g ∈ L∞(G), |g| ≤ f} = 0. On the other hand, since n 6= 0, there exists

g ∈ L∞(G) such that 〈n, g〉 6= 0. Now we take k ∈ N such that |g| ≤ k1. For µ ∈ L1(G)+,
we have

µ(G)|〈n, g〉| ≤ µ(G) sup{|〈n, h〉|;h ∈ L∞(G), |h| ≤ k1}

= µ(G)k〈|n|, 1〉 = k〈|n|1, µ〉.

Consequently |n|1 6= 0, i.e. T|n| 6= 0.

For n ∈ L1(G)∗∗, we define ρn : L1(G)∗∗ → L1(G)∗∗ by ρn(F ) = Fn. The operator
ρn is called a right multiplier on L1(G)∗∗.

Theorem 2.3. Let n = ΓE(µ), where E is a weak*-limit a bounded approximate

identity in L1(G) and µ ∈M(G). The following statements hold:

(1) |ρn|(ν) = ρ|n|(ν), for all ν ∈ L1(G).

(2) If |ρn| is weak*-weak* continuous, then |ρn| = ρ|n|.
(3) If m ∈ LUC(G)⊥ and m 6= 0, then |ρm| 6= ρ|m|.
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Proof. Since µ ∈ M(G), for all ν ∈ L1(G), we have νn ∈ L1(G). Hence there exists
a measure η ∈ M(G) such that νn = ν ∗ η for all ν ∈ L1(G) (since ν → νn is a right
multiplier on L1(G)). It is easy to see that µ = η.

Now for all ν ∈ L1(G)+, we can write |ρn|(ν) = sup{|Fn|;F ∈ L1(G)∗∗, |F | ≤ ν}.
But L1(G) is a solid sublattice of L1(G)∗∗ ([5], p.234), hence

|ρn|(ν) = sup{|η1n|; η1 ∈ L1(G), |η1| ≤ ν}

= sup{|η1 ∗ µ|; η1 ∈ L1(G), |η1| ≤ ν} = |ρµ|(ν) = ν ∗ |µ|.

On the other hand, ν ∗ |µ| = νπ(|n|) = ν|n|. Consequently, for all ν ∈ L1(G), |ρn|(ν) =
ρ|n|(ν).

2) By (1) and the Goldestines theorem, we have |ρn| = ρ|n|.
3) If m ∈ LUC(G)⊥, then for all ν ∈ L1(G), νm = 0. So for µ ∈ L1(G)+, we have

|ρm|(µ) = sup{|νm|; ν ∈ L1(G), |ν| ≤ µ} = 0. By a similar argument as given in part (3)
of Proposition 2.2, for all µ ∈ L1(G)+, we have µ|m| 6= 0, i.e. ρ|m|(µ) 6= 0. Consequently
|ρm| 6= ρ|m|.

Theorem 2.4. Let G be a compact group and µ ∈ L1(G). The following statements

hold:

(1) {|Pµ|;P ∈ L1(G)∗∗, |P | ≤ F} = {|Pµ|;P ∈ L1(G)∗∗, |P | ≤ EF} where E is a weak*

limit positive approximate identity with norm one in L1(G) and F ∈ L1(G)∗∗ with

F ≥ 0.
(2) |ρµ| = ρ|µ|.

Proof. Let F ∈ L1(G)∗∗ and F ≥ 0. If P ∈ L1(G)∗∗ and |P | ≤ F , then |EP | ≤ EF
and EPµ = Pµ. Indeed, since G is compact, L1(G) is an ideal in L1(G)∗∗ [4], hence
EPµ = Pµ. Consequently

{|Pµ|;P ∈ L1(G)∗∗, |P | ≤ F} ⊆ {|Pµ|;P ∈ L1(G)∗∗, |P | ≤ EF}.

To prove the reverse inclusion, let P ∈ L1(G)∗∗ and |P | ≤ EF . Since G is compact,
π(P ) and π(F ) are measures in M(G). If π(P ) = ν and π(F ) = η, then for f ∈ C(G),
|〈ν, f〉| ≤ 〈η, |f |〉 = 〈F, |f |〉. So we can choose a P1 ∈ L1(G)∗∗ such that |P1| ≤ F and
〈ν, f〉 = 〈P1, f〉 for all f ∈ C(G). Hence for f ∈ C(G), we have 〈P1µ, f〉 = 〈P1, µf〉 =
〈ν, µf〉 = 〈P, µf〉 = 〈Pµ, f〉, i.e. Pµ = P1µ. Consequently,

{|Pµ|;P ∈ L1(G)∗∗, |P | ≤ F} = {|Pµ|;P ∈ L1(G)∗∗, |P | ≤ EF}.

2) Let F ∈ L1(G)∗∗, F ≥ 0 and π(F ) = η. It is easy to see that

{|Pµ|;P ∈ L1(G)∗∗, |P | ≤ EF} = {|ν ∗ µ|; ν ∈M(G), |ν| ≤ η}.

So by (1), |ρµ|(F ) = η ∗ |µ| = F |µ|. Indeed, since G is compact, F |µ| ≤ L1(G), and any
f ∈ C(G) is of the form f = gν for some g ∈ L∞(G) and ν ∈ L1(G). Hence

〈F |µ|, f〉 = 〈F |µ|, gν〉 = 〈νF |µ|, g〉 = 〈ν ∗ η ∗ |µ|, g〉 = 〈η ∗ |µ|, gν〉 = 〈η ∗ |µ|, f〉.
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Consequently ρ|µ| = |ρµ|.

For n ∈ L1(G)∗∗, we denote λn as a left multiplier on L1(G)∗∗. We know that |λn| is a

left multiplier if and only if |λn| = λ|n| ([3], Lemma 3.6). For n ∈ LUC(G)⊥, |ρn|(ν) = 0

(ν ∈ L1(G)). If |ρn| is a right multiplier, then |ρn| is weak*-weak* continuous, so |ρn| = 0.
Moreover, if n 6= 0, then ρ|n| 6= 0, i.e. |ρn| 6= ρ|n|. Also, it is not known whether for any

µ ∈ M(G), we have |ρ∗∗µ | = ρ|µ|
∗∗. In the following Corollary we give some cases where

the equality holds.

Corollary 2.5. For µ ∈ L1(G), |ρ∗∗µ | = ρ|µ|
∗∗ whenever one of the following condi-

tions holds:

(1) G is a compact group.

(2) |ρ∗∗µ | is compact.

(3) |ρ∗∗µ | is weak*-weak* continuous.

Proof. Assume that (1) holds. By Theorem 2.4, |ρ∗∗µ | = ρ|µ|
∗∗. If (2) holds, since

|ρ∗∗µ | is compact, so |ρµ| : L1(G) → L1(G) is compact. Consequently G is compact [7].

The statement follows from (1). Suppose (3) holds. By Theorem 2.3, |ρ∗∗µ | = ρ|µ|
∗∗.
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