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MULTIPLE POSITIVE SOLUTIONS FOR PERIODIC BOUNDARY

VALUE PROBLEM VIA VARIATIONAL METHODS

YU TIAN AND WEIGAO GE

Abstract. In this paper, we investigate the positive solutions of periodic boundary value problem. By using critical

point theory the existence of multiple positive solutions is obtained.

1. Introduction

In this paper, we consider the existence of multiple positive solutions for the following
boundary value problem{

x ′′(t )−M x(t )+ f (t , x(t )) = 0, t ∈ [0,2π],
x(0)−x(2π) = x ′(0)−x ′(2π) = 0,

(1.1)

where M > 0, f : [0,2π]×[0,+∞] → [0,+∞) is continuous, f (t ,0) 6≡ 0 for t ∈ [0,2π] and F (t , x) =∫ x
0 f (t , s)d s.

Recently, periodic boundary value problems for differential equations and systems have
been studied intensively, see [3], [9], [10], [11], [13] and the references therein. The results
have been obtained mainly by the upper and lower solutions method, fixed point theorem in
cones.

Jiang [9] applied the Krasnosel’skii’s fixed point theorem to the problem (1.1), and get the
existence of one positive solution by imposing the following conditions on f :

lim
u→0

max
t∈[0,2π]

f (t ,u)

u
= 0 and lim

u→∞ min
t∈[0,2π]

f (t ,u)

u
=+∞ (superlinear) (1.2)

or

lim
u→0

min
t∈[0,2π]

f (t ,u)

u
=+∞ and lim

u→∞ max
t∈[0,2π]

f (t ,u)

u
= 0 (sublinear) (1.3)

Since the appearance in 1978 of the work of Rabinowitz [14], many authors have consid-
ered to apply variational methods to periodic boundary value problem, see [2], [4], [6], [7],
[16], [15]. Tang and Wu [16] studied the problem{

ü +∇H(t ,u) = 0, t ∈ [0,T ]

u(0) = u(T ), u̇(0) = u̇(T ).
(1.4)
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where
∫ T

0 b(t )d t = 0, by applying Mountain Pass Theorem, the existence of one solution was
obtained. Chen and Long [4] obtained the existence of one solution for the problem (1.4)
where H is neither convex nor homogeneous.

As far as we known, there are few papers to consider the existence of multiple positive
solutions for periodic boundary value problem by using variational methods. It is well known
that positive solutions are very important in applications. In [1], the existence of multiple
positive solutions for the following discrete boundary value problem were obtained{

∆2 y(k −1)+ f (k, y(k)) = 0, k ∈ [1,T ],

y(0) = 0 = y(T +1),
(1.5)

where [1,T ] is the discrete interval {1,2, . . . ,T }, 4y(k) = y(k +1)− y(k), f ∈C ([1,T ]× [0,∞),R)
satisfies f (k,0) ≥ 0, ∀ k. They applied critical point theory and supposed the following condi-
tions hold
(a) min

k∈[1,T ]
liminf

u→∞
f (k,u)

u >λ1,

λ1 is the smallest eigenvalue of ∆2 y(k −1)+λy(k) = 0, y ∈ H ;
(b) there is a constant M > 0, independent of λ, such that ‖y‖ 6= M for every solution y ≥ 0 to

∆2 y(k −1)+λ f (k, y(k)) = 0, y ∈ H for each λ ∈ (0,1].
Condition (b) is not easy to be verified in applications.
Our aim of this paper is to apply critical point theory and operator theory to problem (1.1)

and obtain new assumptions on nonlinearity of f , which are different from superlinear (1.2)
or sublinear (1.3) that were obtained by using topological degree theory. This is the first paper
to combining variational methods with operator theory to deal with periodic boundary value
problem. Moreover, the conditions on f is easy to be verified.

2. Related lemmas

Lemma 2.1. Let x+ = max{±x,0}, then the following three properties hold:
(i) x = x+−x−;

(ii) ‖x+‖ ≤ ‖x‖;
(iii) if (xn) uniformly converges to x in C ([0,2π]), then (x+

n ) uniformly converges to x+ in
C ([0,2π]);

(iv) x+(t )x−(t ) = 0, (x+)′(t )(x−)′(t ) = 0 for t ∈ [0,2π].

Lemma 2.2. If x ∈C 1([0,2π]) is a solution of problem{
x ′′(t )−M x(t )+ f (t , x+(t )) = 0, t ∈ [0,2π],

x(0) = x(2π), x ′(0) = x ′(2π),
(2.1)

then x(t ) ≥ 0, x(t ) 6≡ 0, t ∈ [0,2π] and hence it is a solution of boundary value problem (1.1).

Proof. If x ∈C 1([0,2π]) is a solution of (2.1), then by Lemma 2.1 we have

0 =
∫ 2π

0

[
x ′′(t )−M x(t )+ f (t , x+(t ))

]
×x−(t )d t
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= −
∫ 2π

0

[
x ′(t )(x−)′(t )+M x(t )x−(t )

]
d t +

∫ 2π

0
f (t , x+(t ))x−(t )d t

≥
∫ 2π

0

{
[(x−)′(t )]2 +M [x−(t )]2

}
d t ,

so x−(t ) = 0 for t ∈ [0,2π], that is x(t ) ≥ 0. If x(t ) ≡ 0, the fact f (t ,0) 6≡ 0 gives a contradiction.

Remark 2.1. By Lemma 2.2, in order to find the positive solutions of boundary value prob-
lem (1.1) if suffices to get solutions of (2.1).

Throughout this paper, X denotes the Sobolev space

H 1
2π([0,2π]) =

{
x ∈C ([0,2π]) | x ′ ∈ L2([0,2π]), x(0) = x(2π)

}
equipped with the norm

‖x‖ =
(∫ 2π

0
|x ′(t )|2 +M |x(t )|2d t

) 1
2

and inner product

〈x, y〉 =
∫ 2π

0

[
x ′(t )y ′(t )+M x(t )y(t )

]
d t .

Clearly X is a reflexive Banach space. Define the functional Φ on X by

Φ(x) = 1

2

∫ 2π

0

[
|x ′(t )|2 +M |x(t )|2

]
d t −

∫ 2π

0

[
F (t , x+(t ))− f (t ,0)x−(t )

]
d t . (2.2)

Then the functional Φ is a continuously Fréchet differential functional with

〈Φ′(x), y〉 =
∫ 2π

0

[
x ′(t )y ′(t )+M x(t )y(t )− f (t , x+(t ))y(t )

]
d t . (2.3)

Definition 2.1. A function x is a classical solution to (2.1) if x ∈ C 2([0,2π]), x(0) = x(2π),
x ′(0) = x ′(2π), and

x ′′(t )−M x(t )+ f (t , x+(t )) = 0 for every t ∈ [0,2π].

Definition 2.2. A function x is a weak solution to (2.1) if x ∈ X and∫ 2π

0

[
x ′(t )y ′(t )+M x(t )y(t )

]
d t =

∫ 2π

0
f (t , x+(t ))y(t )d t

for every y ∈ X .

Proposition 2.3. Classical and weak solutions to (2.1) coincide.

Lemma 2.4.([9]) Problem (2.1) is equivalent to the equation

x(t ) = T x(t ) =
∫ 2π

0
G(t , s) f (s, x+(s))d s,
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where m =p
(M) and

G(t , s) =G(|t − s|) =


em(t−s) +em(2π−t+s)

2m(e2mπ−1)
, 0 ≤ s ≤ t ≤ 2π,

em(s−t ) +em(2π−s+t )

2m(e2mπ−1)
, 0 ≤ t ≤ s ≤ 2π.

By computing, G(t , s) has the following properties:

(a)
2emπ

2m(e2mπ−1)
=G(π) ≤G(t , s) ≤G(0) = e2mπ+1

2m(e2mπ−1)
;

(b)
∣∣∣ ∂
∂t

G(t , s)
∣∣∣≤ e2mπ

e2mπ−1
.

Proposition 2.5. A function x is a classical solution if and only if x is a fixed point of the
operator T , that is T x = x, where T is defined in Lemma 2.4.

Lemma 2.6. For x ∈ X , then ‖x‖∞ ≤ p
2max{(2πM)−

1
2 , (2π)

1
2 }‖x‖ := ∆‖x‖, where ‖x‖ =

max
t∈[0,2π]

|x(t )|.

Proof. For x ∈ X , it follows from the mean value theorem that

x(τ) = 1

2π

∫ 2π

0
x(s)d s

for some τ ∈ [0,2π]. Hence for t ∈ [0,2π], using Hölder inequality,

|x(t )| =
∣∣∣x(τ)+

∫ t

τ
x ′(s)d s

∣∣∣≤ 1

2π

∫ 2π

0
x(s)d s +

∫ 2π

0
|x ′(s)|d s

≤ (2π)−
1
2

(∫ 2π

0
|x(s)|2d s

) 1
2 + (2π)

1
2

(∫ 2π

0
|x ′(s)|2d s

) 1
2

≤ p
2max

{
(2πM)−

1
2 , (2π)

1
2

}
‖x‖,

which completes the proof.

Lemma 2.7. (Th38.A [17]) For the functional F : M ⊆ X → [−∞,+∞] with M 6= ;, min
u∈M

F (u) =
α has a solution in case the following hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed, i.e., by definition, for each sequence (un) in

M such that un * u as n →∞, we always have u ∈ M;
(iii) F is weak sequentially lower semi-continuous on M.

Lemma 2.8.([8]) Let E be a Banach space and ϕ ∈ C 1(E ,R) satisfy (PS) condition. Assume
there exist x0, x1 ∈ E, and a bounded open neighborhood Ω of x0 such that x1 \Ω and

max{ϕ(x0),ϕ(x1)} < inf
x∈∂Ω

ϕ(x).
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Let
Γ= {h | h : [0,1] → E is continuous and h(0) = x0,h(1) = x1}

and
c = inf

h∈Γ
max

s∈[0,1]
ϕ(h(s)).

The c is a critical value of ϕ, that is, there exists x∗ ∈ E such that ϕ′(x∗) = Θ and ϕ(x∗) = c,
where c > max{ϕ(x0),ϕ(x1)}.

3. Main results

Theorem 3.1. Suppose that f (t , x) = a(t )xµ−1 + g (t , x), where µ > 2, a ∈ C ([0,2π], (0,∞)),
min

t∈[0,2π]
a(t ) > 0 and g : [0,2π]× [0,+∞) → [0,+∞) is continuous satisfying

g (t , x) ≤ b(t )+ c(t )x (3.1)

b,c ∈C ([0,2π], [0,+∞)) satisfy ‖c‖∞ < min{µ−2
2πµ∆

−2, (∆1∆)−1} and

(1−∆1∆‖c‖∞)
µ−1
µ−2 (∆1∆

µ−1‖a‖∞)−
1
µ−2

{
(µ−1)−

µ−1
µ−2 −(µ−1)−

1
µ−2

}
+∆1‖b‖∞<0, (3.2)

where ∆ is defined in Lemma 2.6, ∆1 = (2π)
3
2

[
M(G(0))2 + ( e2mπ

e2mπ−1
)2

] 1
2

.

Then problem (1.1) has two positive solutions, at least one of which is in BR , where R =
(

1−∆1∆‖c‖∞
(µ−1)∆1∆µ−1‖a‖∞

) 1
µ−2

.

Proof. We divide the proof into three steps.

Step 1. We show that the functionalΦ satisfies (PS) condition, that is, (xn) has a convergent
subsequence whenever it satisfies Φ′(xn) → 0 as n →∞ and {Φ(xn)} is bounded.

By (2.2), (2.3) and Lemma 2.1 we have(µ
2
−1

)
‖xn‖2 = µΦ(xn)−〈Φ′(xn), xn〉+µ

∫ 2π

0
G(t , x+

n (t )d t −µ
∫ 2π

0
(g (t ,0), x−

n (t ))d t

−
∫ 2π

0
g (t , x+

n (t ))xn(t )d t , (3.3)

where G(t , x) = ∫ x
0 g (t , s)d s. Condition (3.1) means that

G(t , x) ≤ b(t )x + c(t )

2
x2. (3.4)

Substituting (3.1), (3.4) into (3.3), by Lemma 2.1, Lemma 2.6 we have(µ
2
−1

)
‖xn‖2 ≤ µΦ(xn)−〈Φ′(xn), xn〉+2πµ‖b‖∞‖x+

n ‖∞+ µ

2

∫ 2π

0
c(t )(x+

n (t ))2d t

+
∫ 2π

0
g (t , x+

n )x−
n (t )d t
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≤ µΦ(xn)−〈Φ′(xn), xn〉+2π(µ+1)‖b‖∞‖xn‖∞+πµ‖c‖∞‖xn‖2
∞

≤ µΦ(xn)−〈Φ′(xn), xn〉+2π(µ+1)∆‖b‖∞‖xn‖+πµ∆2‖c‖∞‖xn‖2.

So (µ
2
−1−πµ∆2‖c‖∞

)
‖xn‖2 ≤µΦ(xn)−〈Φ′(xn), xn〉+2π(µ+1)‖b‖∞∆‖xn‖.

Since Φ(xn) is bounded and Φ′(xn) → 0 as n →∞, we have that (xn) is bounded in X .
From the reflexivity of X , we may extract a weakly convergent sequence, that for simplicity,

we call (xn), xn * x. Following we will show that (xn) converges strongly to x. By (2.3) we have

‖xn−x‖2=〈Φ′(xn), xn−x〉−〈Φ′(x), xn−x〉+
∫ 2π

0

[
f (t , x+

n (t ))− f (t , x+(t ))
]

(xn(t )−x(t ))d t . (3.5)

SinceΦ′(xn) → 0 by assumption, and xn−x is bounded in X , we deduce that 〈Φ′(xn), xn−x〉→
0. By [12], (xn) converges uniformly to x on C ([0,2π]). Noticing Lemma 2.1(iii), (x+

n ) converges
uniformly to x+ on C ([0,2π]), which means∫ 2π

0

[
f (t , x+

n (t ))− f (t , x+(t ))
]

(xn(t )−x(t ))d t → 0.

Moreover, xn * x and Φ′(x) ∈ X ∗ means that 〈Φ′(x), xn − x〉 → 0 as n →∞. Therefore, ‖xn −
x‖→ 0 as n →∞.

Step 2. There exists R > 0 such that the functional Φ has a local minimum x0 ∈ BR := {x ∈
X : ‖x‖ < R}.

Let R > 0, which will be determined later. First we claim that the functional Φ has a min-
imum on B R . Clearly B R is a bounded and weak sequentially closed. Following we will show
that Φ is weak sequentially lower semi-continuous on B R . For this, let Φ1(x) = 1

2

∫ 2π
0 |x ′(t )|2 +

M |x(t )|2d t = 1
2‖x‖2 and Φ2(x) = −∫ 2π

0 F (t , x+(t ))− f (t ,0)x−(t )d t , then Φ(x) =Φ1(x)+Φ2(x).
By xn * x on X and Proposition 1.2 [12] we have (xn) uniformly converges to x in C ([0,2π]).
So Φ2 is weak sequentially continuous. Clearly Φ1 is continuous, which together with the
convexity ofΦ1 we haveΦ1 is weak sequentially lower semi-continuous. Therefore,Φ is weak
sequentially lower semi-continuous on BR . Our claim follows from Lemma 2.7.

If x0 ∈ ∂BR , then it is also a minimizer of Φ|∂BR , so the gradient of Φ at x0 point in the
direction of the inward normal to ∂BR , i.e.

Φ′(x0) =−µx0

for some µ≥ 0, then 〈Φ′(x0), y〉 =−µ〈x0, y〉 for all y ∈ X holds. That is,

x ′′
0 (t )−M x0(t )+λ f (t , x+

0 (t )) = 0, x0 ∈ X (3.6)

with λ= 1
1+µ ∈ (0,1], ‖x0‖ = R holds.
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Following we claim that for any λ ∈ (0,1], the solution of (3.6) is not on ∂BR , for which, we
get a contradiction. In fact, by (3.1), Lemma 2.4, Lemma 2.6, it follows for ‖x‖ = R,

‖λT x‖ ≤
(∫ 2π

0

[
M |T x(t )|2 +|(T x)′(t )|2

]
d t

) 1
2

=
(∫ 2π

0
M

∣∣∣∫ 2π

0
G(t , s) f (s, x+(s))d s

∣∣∣2 +
∣∣∣∫ 2π

0
(∂G/∂t )(t , s) f (s, x+(s))d s

∣∣∣2
d t

) 1
2

≤
{

2π
[

M
(

max
(t ,s)∈[0,2π]2

G(t , s)
)2 +

(
max

(t ,s)∈[0,2π]2
(∂G/∂t )(t , s)

)2]} 1
2

×
∣∣∣∫ 2π

0
f (s, x+(s))d s

∣∣∣
< (

2π
) 1

2

[
M(G(0))2+

( e2mπ

e2mπ−1

)2] 1
2
[

2π‖a‖∞‖x‖µ−1
∞ +2π‖b‖∞+2π‖c‖∞‖x‖∞

]
≤ ∆1 ×

[
∆µ−1‖a‖∞Rµ−1 +‖b‖∞+‖c‖∞∆R

]
.

Let
Λ(R) =∆1 ×

[
∆µ−1‖a‖∞Rµ−1 +‖b‖∞+‖c‖∞∆R

]
−R.

By computing we haveΛ′(R) ≤ 0 for R ∈ [0,R0],Λ′(R) ≥ 0 for R ∈ [R0,∞), where R0 =
(

1−∆1∆‖c‖∞
(µ−1)∆1∆µ−1‖a‖∞

) 1
µ−2

.

Moreover, by (3.2), we haveΛ(R0) < 0. So let R = R0, ‖λT x‖ < ‖x‖ for ‖x‖ = R, that is, the solu-
tions ofλT x = x do not satisfh ‖x‖ = R. By Proposition 2.5, for amy λ ∈ (0,1], (3.6) has no solu-
tion on ∂BR . Therefore, x0 ∈ BR and hence it is a local minimizer ofΦ, andΦ(x0) < min

x∈∂BR

Φ(x).

Step 3. There exists x1 with ‖x1‖ > R such that Φ(x1) < min
x∈∂BR

Φ(x).

Let e(t ) = sin t ∈ X , then

Φ(λe) = λ
2

2

∫ 2π

0

[
|cos t |2 +M |sin t |2

]
d t −

∫ 2π

0

[
F (t ,λ(sin t )+)− f (t ,0)λ

(
sin

(2πt

T

))−]
d t

≤ λ
2

(1+M)π−
∫ 2π

0

λ
µ

a(t )

µ
|(sin t )+|µd t +λ

∫ 2π

0
f (t ,0)d t .

Since ∫ 2π

0
(sin t )+d t ≤ (2π)

1
µ′

(∫ 2π

0
|(sin t )+|µd t

) 1
µ

, where
1

µ
+ 1

µ′ = 1,

we have

Φ(λe) ≤λ2
(1+M)π− λ

µ

µ
min

t∈[0,2π]
a(t )(2π)

− µ

µ′
(∫ 2π

0
(sin t )+d t

)µ+λ∫ T

0
f (t ,0)d t .

Since µ > 2, we have lim
λ→+∞

Φ(λe) = −∞. So there exists sufficiently large λ0 with ‖λ0e‖ > R

such that Φ(λ0e) < min
x∈∂BR

Φ(x).
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Lemma 2.8 now gives the critical value

c = inf
h∈Γ

max
t∈[0,1]

Φ(h(t )),

where
Γ= {h | h : [0,1] → E is continuous and h(0) = x0, h(1) = x1},

that is, there exists x∗ ∈ X such that Φ′(x∗) = 0. Therefore, x0, x∗ are two critical points of Φ,
and hence they are classical solutions of (2.1) by Proposition 2.3. Lemma 2.2 means x0, x∗ are
two positive solutions of problem (1.1).

Remark 3.1. The assumptions on nonlinearity f are different from those in [9]. There
are functions satisfying Theorem 3.1 but not satisfying superlinear or sublinear in [9]. For
example, let M = 4, µ= 3, f (t , x) = a(t )x2 +b(t )+ c(t )x, where a(t ) = 1

8π
5
2

, b(t ) = t

720π
5
2

c(t ) =
1

60π3 for t ∈ [0,2π]. Then f satisfies Theorem 3.1, but not satisfies theorem in [9]. Besides we
get the existence of two positive solutions not one positive solution as in [9].
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