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THE LANDAU PROBLEM FOR UNIVALENT BOUNDED
NONVANISHING FUNCTIONS

WENFA YUAN, YONG XU AND DONGLI CHEN

Abstract. This paper is to inverstigate the problem of finding sup |ap + a1 + -+ + an| for
univalent holomorphic nonvanishing functions f(z) = ap + a1z + - -+ in the unit disk |z| < 1.

1. Introduction

Consider following families of the functions:

B={feHD): f(z)=ap+a1z+---,|f(2)| <1,z € D},
Bo={f € B:f(:) #0,2€ D},

B*={f€eBy: f(z) #0,z€ D and f(z) is univalent function},
Q={wecB:w(z)=cz+cz?+---,2€ D},

where H (D) denotes the set of holomorphic functions in the unit disk D = {z € C : |z] <
1}. With no loss of generality we may assume that for f € By we have the normalization
ag =e~t t>0.

The function

1+2 _ =
F(t,z) =exp (t:) =e '+ Z Ap(t)z"
n=1
plays an important role in the problem of determining max¢ep, |an|. Landau proved

n
sup|a0+a1+~~~+an|:1+z

<1~3~~~(2v1)
feB 2-4

2
20 > =G,, mneN.

v=1
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If f is univalent (say f € B®), then for every n € N, we have

sup lag+ai +---+a,| <k=~1616---.
feBs

However the result is not sharp and Lewandowski and Szynall (1999) proved the fol-
lowing lemma to improve the result,

Lemma. If f € By, then

lap + a1| < 2e7% ~ 1.21---,

lao + a1 +az| <e |1+ 2ty + ~1.33---,

__0
2(2 — tp)
and tg = 0.66 - - - is the root of equation: —4t> + 19t — 26t + 10 = 0.

Based on above lemma, we give further improvement in Section 2.

2. Main Results
We claim the following theorem for the Landau problem of B*.
Theroem. If f(z) € B*, then
lag +a1] <1.202---, (1)

lag + ay + as| < e (1 +2t2) < 1.238-- -, 2)
with tg = 1.707 - - - is the root of equation: 2t — 4t +1 = 0.

Proof. By the representation formula for function f € B*®

f(z) = exp (—t%ﬁg) —agt+mztatto, weQ
we can get the relations:
ap=e"', ay = —2tcie™t, ag = —2te tea + (1 —t)c3); (3)
Applying the inequality |ag| < 1, |a1] < W and composition of univalent and

let « = |ag|, we have

4|ap|(1 = |ao) 4x(1 — x)
< —_— = —_— = ;
lap + a1] < lao] + 1+ |ao| T+ 112 g1(z);

After elementary calculations of one extreme we arrive at following inequalities:

lag + a1] < g1(xo) = 11 — 46 ~ 1.202- - -,
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where zg = \/g — 1. Tt is easy to see that upper bound in (1) is sharp.

Using the representation (3) we have
ap+a;+ag=e "t —2te ey +ca+ (1— t)c%] =e " —2te '®(cy, 2, ).

Applying the inequality and composition of univalent: |c1| < 1, |ea] < 2|e1|(1 — |e1]), we
have

=2le1|(1 = [ea]) € €2 < 2]en|(1 = |ean]),
max ®(cy, co,t) = |c1| + 2Jer|(1 = |er|) + (1 = t)c? = Hy(cq,t),
min ®(cy, co,t) = —|c1| — 2|cr|(1 — |er|) + (1 — t)c? = Ha(ey, t).
There are two cases of the problem.
a). If t <3, 2 =|cy|, then
Hy(cy,t) = Hy(z,t) = (3 — t)z? — 3z,
Hi(ey,t) = Hi(z,t) = —(1 + t)z* + 3z.

After elementary calculations of one extreme we can obtain in the following expressions

3 9
T - H, [ —— ==
min ®(cy, 2, 1) 2 (2(3t)’t) 4(3—t)7
3 9
max ®(cy, c2,t) = Hy (2(1+t)’t) A1 +t)

9t 9t
—t 1—- — < < —t 1 .
(1 gy sermra s (Legty),
—0.461---<ag+ay +ay <1.227---.
Hence

9o
<e (14 ——"—
lap + a1 +az| <e ( +2(3—t0)

) A~ 1.227---. (4)
b). From the inequality |c2| < 2|c1|(1 — |e1]) and if ¢t > 3, 2 = |c1|, then we have
lap 4 a1 + as| < e H{2t(t — 3)2® + 6tz + 1} := e go().
We arrive at following after elementary calculations of one extreme
ga(r) < ga(1) = e H(1 +2t%) < 1.238---. (5)
According to a) and b) we obtain

ot
14—,
lag + a1 +az] <et 2(3—1t)
14 2t2, t

~
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Hence
lap 4 a1 +as| < e (14 2t2) < 1.238---, where tg = 1.707 - - -.

Remark. We conjecture that for any f € B® and n € N there exists an absolute
constant L > 1 such that

sup lag+a1+ - +ap| <L <k=1.616---.
feBs
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