
TAMKANG JOURNAL OF MATHEMATICS
Volume 47, Number 4, 421-432, December 2016
doi:10.5556/j.tkjm.47.2016.2100

-
+

+

-

-
-

-
-

This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

THE ROMAN BONDAGE NUMBER OF A DIGRAPH

N. DEHGARDI, D. MEIERLING, S. M. SHEIKHOLESLAMI AND L. VOLKMANN

Abstract. Let D = (V , A) be a finite and simple digraph. A Roman dominating function on

D is a labeling f : V (D) → {0,1,2} such that every vertex with label 0 has an in-neighbor

with label 2. The weight of an RDF f is the value ω( f ) =
∑

v∈V f (v). The minimum weight

of a Roman dominating function on a digraph D is called the Roman domination number,

denoted by γR (D). The Roman bondage number bR (D) of a digraph D with maximum

out-degree at least two is the minimum cardinality of all sets A′ ⊆ A for whichγR (D−A′)>

γR (D). In this paper, we initiate the study of the Roman bondage number of a digraph.

We determine the Roman bondage number in several classes of digraphs and give some

sharp bounds.

1. Introduction

Let D be a finite simple digraph with vertex set V (D) =V and arc set A(D) = A. A digraph

without directed cycles of length 2 is an oriented graph. The order n = n(D) of a digraph D

is the number of its vertices. We write deg+D (v) = deg+(v) for the outdegree of a vertex v and

deg−D (v) = deg−(v) for its indegree. The minimum and maximum indegree and minimum

and maximum outdegree of D are denoted by δ− = δ−(D), ∆− =∆−(D), δ+ = δ+(D) and ∆+ =

∆
+(D), respectively. If (u, v) is an arc of D, then we also write u → v , and we say that v is an

out-neighbor of u and u is an in-neighbor of v . For a vertex v of a digraph D, we denote the set

of in-neighbors and out-neighbors of v by N−(v)= N−
D (v) and N+(v) = N+

D (v), respectively. If

X ⊆V (D), then D[X ] is the subdigraph induced by X . If X ⊆V (D) and v ∈V (D), then A(X , v)

is the set of arcs from X to v . Note that for any digraph D with m arcs,

∑

u∈V (D)

deg−(u)=
∑

u∈V (D)

deg+(u)= m. (1)

The underlying graph G[D] of a digraph D is that graph obtained by replacing each arc uv by

an edge uv . Note that G[D] has two parallel edges uv when D contains the arcs (u, v) and
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(v,u). A digraph D is called connected, if the underlying graph G[D] is connected. Consult

[9, 20] for the notation and terminology which are not defined here. For a real-valued function

f : V (D) −→ R, the weight of f is w ( f ) =
∑

v∈V f (v). For S ⊆V , we define f (S) =
∑

v∈S f (v), so

w ( f ) = f (V ).

A subset S of vertices of D is a dominating set if N+[S] = V . The domination number

γ(D) is the minimum cardinality of a dominating set of D. The bondage number, denoted by

b(D), of D is the minimum number of arcs whose removal from D results in a digraph with

larger domination number. An arc set B for which γ(D −B ) > γ(D) is called a bondage set. A

b(D)-set is a bondage set of D of size b(D). If B is a b(D)-set, then obviously

γ(D −B ) = γ(D)+1. (2)

Recently, Carlson and Develin [3], Shan and Kang [16], and Huang and Xu [10, 12] studied the

bondage number for digraphs, independently. A thorough study of bondage number appears

in [19].

A Roman dominating function (RDF) on a digraph D = (V , A) is a function f : V −→ {0,1,2}

satisfying the condition that every vertex v for which f (v) = 0 has a in-neighbor u for which

f (u)= 2. The weight of an RDF f is the value ω( f ) =
∑

v∈V f (v). The minimum weight of a Ro-

man dominating function on a digraph D is called the Roman domination number, denoted

by γR (D). A γR (D)-function is a Roman dominating function of D with weight γR (D). Roman

domination for digraphs is investigated in [6, 17]. A Roman dominating function f : V −→

{0,1,2} can be represented by the ordered partition (V0,V1,V2) (or (V
f

0 ,V
f

1 ,V
f

2 ) to refer to f )

of V , where Vi = {v ∈V | f (v) = i }. In this representation, its weight is ω( f ) = |V1|+2|V2|. It is

clear that

γ(D) ≤ γR (D) ≤ 2γ(D). (3)

The Roman dominating number for undirected graphs was introduced by Steward [18]

and ReVelle and Rosing [15] and has been studied by several authors [4, 5, 8].

The Roman bondage number bR (D) of a digraph D is the cardinality of a smallest set of

arcs A′ ⊆ A(D) for which γR (D − A′) > γR (D).

The definition of the Roman bondage number for undirected graphs was given by Jafari

Rad and Volkmann [13] and has been studied by several authors [2, 14, 7].

Our purpose in this paper is to initiate the study of the Roman bondage number in di-

graphs. We first present some general upper bounds for Roman bondage number and then

we determine the Roman bondage number of some classes of digraphs.

By Proposition B, we note that if D is a digraph with ∆+(D) ≤ 1, then γR (D) = n implying

that for any subset A′ ⊆ A(D), γR (D − A′) = γR (D). Therefore the Roman bondage number is

only defined for digraphs with maximum out-degree at least two.
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We make use of the following results in this paper.

Proposition A ([17]).

(1) For a digraph D of order n ≥ 2, γR (D) = 2 if and only if∆+(D) = n−1 or n = 2 and A(D) =;.

(2) For a digraph D of order n ≥ 3, γR (D) = 3 if and only if∆+(D) = n−2 or n = 3 and∆+(D) ≤ 1.

(3) For a digraph D of order n ≥ 4, γR (D) = 4 if and only if ∆+(D) = n −3 or ∆+(D) ≤ n −3 and

there are two vertices u, v ∈V (D) such that N+
D [u]∪N+

D[v ]=V (D) or n = 4 and ∆+(D) ≤ 1.

Proposition B ([17]). Let D be a digraph of order n. Then γR (D) < n if and only if ∆+(D) ≥ 2.

For every graph G , the expression dega(G) =
∑

v∈V (G) deg(v)/|V (G)| is called the average

degree of G .

Proposition C ([1]). For any digraph D with δ−(D) ≥ 1, there exists a pair of vertices, say u and

v, that are either adjacent or at distance two in G[D] with a common in-neighbor in D, with

the property that

degG[D](u)+degG[D](v)≤ 2dega(G[D]).

Proposition D ([11]). For any vertex transitive digraph D of order n, b(D) ≥ ⌈ n
γ(D) ⌉.

Observation 1. Let D be a digraph of order n with γR (D) < n. Assume that H is a spanning

subdigraph of D with γR (H )= γR (D). If K = A(D)− A(H ), then bR (H )≤ bR (D) ≤ bR (H )+|K |.

Proof. Let F ⊆ A(D) be a set such that γR (D −F ) > γR (D) and |F | = bR (D). It follows that

γR (H −F ) ≥ γR (D −F ) > γR (D) = γR (H ) and hence bR (H )≤ |F | = bR (D).

Now let F ′ ⊆ A(H ) such that γR (H −F ′) > γR (H ) and |F ′| = bR (H ). We deduce that γR (D−

(K ∪F ′)) =γR (H −F ′) > γR (H )= γR (D) and thus bR (D) ≤ bR (H )+|K |. ���

Observation 2. If a digraph D has a vertex v such that every γR (D)-function assigns 2 to v ,

then bR (D) ≤deg+(v)≤∆+.

Proof. Let A+
v be the set of arcs in D with tail v . Assume that f is a γR (D − A+

v )-function.

Clearly f is a Roman dominating function of D. Since N+
D−A+

v
(v) =;, we deduce that f (v) 6= 2

and hence f is not a γR (D)-function. It follows that γR (D − A+
v ) > γR (D), and the proof is

complete. ���

2. Bounds on the Roman bondage number

In this section we establish bounds on the Roman bondage number of a digraph.
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Theorem 3. If D is a digraph, and x y z a path of length 2 in G[D] such that (y, x), (y, z) ∈ A(D),

then

bR (D) ≤ degG[D](x)+degG[D](y)+degG[D](z)−3−|N−(x)∩N−(y)|. (4)

Moreover, if x and z are adjacent in G[D], then

bR (D) ≤ degG[D](x)+degG[D](y)+degG[D](z)−4−|N−(x)∩N−(y)|. (5)

Proof. Let D ′ be the digraph obtained from D by removing the arcs incident with x, y and z

with the exception of (y, z) and all arcs going from N−(x)∩N−(y) to y . In D ′, the vertex x is

isolated, z is a vertex with indegree 1 and outdegree 0 or 1, and y is an in-neighbor of z and

all in-neighbors of y in D ′, if any, lie in N−(x). Let f = (V0,V1,V2) be a γR (D ′)-function. Then

f (x) = 1. Consider three cases.

Case 1. f (z) = 0.

Then f (y)= 2 and therefore (V0∪{x},V1−{x},V2) is an RDF on D of weight less than ω( f ), and

(4) as well as (5) are proved.

Case 2. f (z) = 2.

Then f (y) = 0 and the function g : V (D) → {0,1,2} defined by g (x) = 0, g (y) = 2, g (z) = 0 and

g (v) = f (v) otherwise, is clearly an RDF on D of weight less than ω( f ), and hence (4) as well

as (5) hold.

Case 3. f (z) = 1.

If f (y)= 1, then (V0 ∪ {x, z},V1 − {x, y, z},V2 ∪ {y}) is an RDF on D of weight less than f , and (4)

as well as (5) hold. However, if f (y)= 0, then there exists a vertex w ∈ N−(x)∩N−(y) such that

f (w ) = 2. Since w is an in-neighbor of x in D, (V0 ∪ {x},V1 − {x},V2) is an RDF on D of weight

less than ω( f ), and the proof is complete. ���

By applying Theorem 3, we obtain the following result that gives a lower bound on the

number of arcs in a digraph with given Roman bondage number.

Theorem 4. Let D be a digraph of order n with δ−(D) ≥ 1, δ+(D) ≥ 2 and Roman bondage

number bR (D). If dega(G[D]) is the average degree of the underlying graph of D, then

bR (D) ≤ 2dega (G[D])+∆(G[D])−3 and |A(D)| ≥ (n/4)(bR (D)−∆(G[D])+3).

Proof. Let D be a digraph satisfying the hypothesis. By Proposition C, we know that there

is at least one pair of vertices, say u and v , that are either adjacent or at distance 2 from

each other with a common in-neighbor, and with the property that degG[D](u)+degG[D](v) ≤

2dega (G[D]). If u and v are at distance two in G[D] with a common in-neighbor w in D, then

uw v is a path in G[D] such that (w,u), (w, v)∈ A(D). If u and v are adjacent and (v,u)∈ A(D),
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then it follows from δ+(D) ≥ 2 that v has an out-neighbor other than u, say w . In each case,

there is a path x y z in G[D] such that (y, x), (y, z)∈ A(D). Using Theorem 3, we obtain

bR (D) ≤ degG[D](x)+degG[D](y)+degG[D](z)−3 ≤ 2dega (G[D])+∆(G[D])−3.

Since 2|E (G[D])| = n dega (G[D]), we have 4|E (G[D])| = 2n dega (G[D]) ≥ n(bR (D)−∆(G[D])+

3). Hence

|A(D)| = |E (G[D])| ≥ (n/4)(bR (D)−∆(G[D])+3). ���

Theorem 5. If D is a digraph, and x y z a path of length 2 in G[D] such that (y, x), (y, z)∈ A(D),

then

bR (D) ≤degG[D](x)+deg−D (y)+degG[D](z)−|N−(x)∩N−(y)∩N−(z)|. (6)

Proof. Let S be the set of all arcs incident to x, z and all arcs terminating at y with the excep-

tion of all arcs going from N−(x)∩N−(z) to y . By construction, |S| = degG[D](x)+deg−(y)+

degG[D](z)− |N−(x)∩ N−(y)∩ N−(z)|. Let D ′ be the digraph obtained from D by removing

the arcs of S. In D ′, the vertices x, z are isolated, and all in-neighbors of y in D ′, if any, lie in

N−(x)∩N−(z). Let f = (V0,V1,V2) be a γR (D ′)-function. Then f (x) = f (z) = 1.

If f (y) = 2, then (V0∪{x, z},V1−{x, z},V2) is an RDF on D of weight less than f . If f (y)= 1,

then (V0∪{x, z},V1−{x, y, z},V2∪{y}) is an RDF on D of weight less than f . However, if f (y)= 0,

then there exists a vertex w ∈ N−(x)∩ N−(y)∩ N−(z) such that f (w ) = 2. Since w is an in-

neighbor of x and z in D, (V0 ∪ {x, z},V1 − {x, z},V2) is an RDF on D of weight less than f , and

the proof is complete. ���

Assume that δ+(D) ≥ 2, and let y ∈ V (D) be an arbitrary vertex. Then there exist two

different vertices x, z ∈ N+(y). Thus G[D] contains a path x y z such that (y, x), (y, z)∈ A(D) for

each vertex y in D. Applying Theorem 5 for a vertex y ∈V (D) with deg−(y) = δ−(D), we obtain

the next bound immediately.

Corollary 6. If D is a digraph with δ+(D) ≥ 2, then bR (D) ≤ 2∆(G[D])+δ−(D).

Since δ−(D) ≤ 1
2∆(G[D]), this in turn yields the next corollary.

Corollary 7. If D is a digraph with δ+(D) ≥ 2, then bR (D) ≤ 5
2
∆(G[D]).

The next result presents an upper bound on the Roman bondage number that involves

the maximum degree. This bound also indicates a relationship between the Roman bondage

number and the Roman domination number.

Theorem 8. Let D be a digraph of order n ≥ 4 with δ+(D) ≥ 2 and Roman domination number

γR (D) ≥ 3. Then

bR (D) ≤ (γR (D)−2)∆(G[D])+1.
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Proof. By Corollary 6, the result is immediate for γR (D) ≥ 5. Henceforth, we assume that

γR (D) ≤ 4. First assume that γR (D) = 3. Let u be a vertex in D, and let Au denote the set of

arcs incident with u. If γR (D−Au) > γR (D), then bR(D) ≤ |Au | = degG[D](u) and hence bR(D) ≤

∆(G[D]). Thus we may assume that γR (D−Au )= γR (D) or equivalentlyγR (D−u) = γR (D)−1 =

2 for every vertex u ∈V (D). Let V (D) = {v1, v2, . . . , vn}. Since γR (D −vi ) = 2, there is a vertex v̂i

such that every vertex of D−{vi , v̂i } is an out-neighbor of v̂i . Hence deg+(v̂i ) ≥ n−2 for each i .

On the other hand, γR (D) = 3 implies that deg+(v̂i ) = n−2 for each i . Define ĝ : V (D) →V (D)

by ĝ (vi ) = v̂i for i = 1, . . . ,n. It follows from γR (D) = 3 that v̂i 6= v̂ j if i 6= j . Hence, the function

ĝ : V (D) →V (D) is one to one and so V (D) = {v̂1, v̂2, . . . , v̂n}. This implies that deg+(vi ) = n−2

for each i . Let Av1
denote the set of arcs incident with v1 and let a be an arc with tail v̂1. Then

γR (D − Av1
−a) > 3 = γR (D) and hence bR (D) ≤ degG[D](v1)+1 ≤∆(G[D])+1.

Now assume that γR (D) = 4. Suppose, to the contrary, that bR(D) > 2∆(G[D])+1. Then for

any vertex u of D, we have γR (D −u) = γR (D)−1 = 3, since degG[D](u) < bR (D). Let u ∈ V (D)

and let Au denote the set of arcs incident with u. Assume that H = D − Au . Then clearly

γR (H ) = γR (D) and bR (H ) = bR (D −u). By Observation 1 we have bR (D) ≤ bR (H )+ |Au | =

bR (D −u)+degG[D](u). Since γR (D −u) = 3, we have

bR (D) ≤ bR (D −u)+degG[D](u)

≤ ∆(G[D −u])+1+degG[D](u)

≤ ∆(G[D])+1+∆(G[D])

= 2∆(G[D])+1.

This contradiction completes the proof. ���

For a digraph D, a subset S of V (D) and x ∈ S, the private out-neighborhood of x with

respect to S is the set P N (x,S) = N+[x]−N+[S − {x}]. If f = (V
f

0 ,V
f

1 ,V
f

2 ) is a γR (D)-function,

then every vertex x of V
f

2 has at least two private out-neighbors with respect to V
f

2 , one of

them being possibly x and the other ones in V
f

0 . If a vertex x of V
f

2 has exactly one private

out-neighbor y in V
f

0 , we can also put x and y in V
f

1 . To avoid this ambiguity, we choose in

this case to put x and y in V
f

1 and we call good γR (D)-function, a γR (D)-function such that

|V
f

2 | is minimum. Then every vertex of V
f

2 has at least two private out-neighbors with respect

to V
f

2 , obviously all in V
f

0 .

We now introduce a parameter to bound bR (D). Let a be an arc of D, and let f = (V0,V1,V2)

be a γR (D)-function. We say that the arc a supports f if a ∈ A(V2,V0) = {(u, v) | u ∈ V2, v ∈V0}.

Denote by s(D) the minimum size of a set of arcs such that each γR (D)-function is supported

by at least one such arc. Three arcs a,b,c support all γR (D)-functions in Figure 1.

Theorem 9. For any digraph D, bR (D) ≥ s(D) with equality if for any γR (D)-function f =

(V0,V1,V2), each u ∈V0 is a private out-neighbor of some vertex in V2.



THE ROMAN BONDAGE NUMBER OF A DIGRAPH 427

t

t

t

t

t

t

t

t

t

q

❯

✌

✙②
♦

❖

✕

✯
⑦

✴

❨

✗

✲

❄

✛
▼

✒

a

b

c

Figure 1: A digraph D with bR (D) = s(D) = 3

Proof. Assume A′ ⊆ A(D) with |A′| < s(D). Then there exists a γR (D)-functions f = (V0,V1,V2)

such that f is not supported by any arc in A′. We show by contradiction that f is still a γR (D−

A′)-function.

Suppose to the contrary that there exists a vertex u ∈ V0 such that u 6∈ N+(V2) in D −

A′. Since f is a γR (D)-function, there exists a vertex v ∈ V2 such that (v,u) ∈ A(D). Hence

(v,u) ∈ A(D) supports f , which implies that (v,u) 6∈ A′. It follows that u ∈ N+
D−A′(v) which

is a contradiction. Thus γR (D) = γR (D − A′) for any set A′ ⊆ A(D) with |A′| < s(D), and so

bR (D) ≥ s(D).

Now let D be a digraph and let for any γR (D)-function f = (V0,V1,V2), each u ∈ V0 be a

private out-neighbor of some vertex in V2. Assume that f = (V0,V1,V2) is an arbitrary γR (D)-

function. Assume that A′ is a set of s(D) arcs such that each γR (D)-function is supported by

at least one such arc. We show that f is not an RDF of D − A′. Since A′ supports f , there

exists an arc (v,u) ∈ A′ such that v ∈ V2, u ∈ V0 and u is a private out-neighbor of v . By the

assumption, u 6∈ N+
D−A′(V2). Thus f is not an RDF of D − A′. It follows that γR (D − A′)> γR (D)

and so bR (D) = s(D). This completes the proof. ���

Proposition 10. For every digraph D with γR (D) = 2γ(D),

bR(D) ≥ b(D).

Proof. Let B be a bR (D)- set. Then by (3) we have

2γ(D −B ) ≥ γR(D −B ) > γR(D) = 2γ(D).

Thus γ(D −B ) >γ(D) and hence bR(D) ≥ b(D). ���

We close this section with presenting a lower bound on the Roman bondage number of

vertex-transitive digraphs.
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Theorem 11. Let D be a vertex-transitive digraph of order n. Then

bR (D) ≥

⌈

2n

γR (D)

⌉

.

Proof. Let V (D) = {v1, v2, . . . , vn} and let Di be the family of all good γR (D)-functions f that

assign 2 to vi . By definition, we observe that if f = (V
f

0 ,V
f

1 ,V
f

2 ) ∈ Di and g = (V
g

0 ,V
g

1 ,V
g

2 ) ∈

D j , then r = |V
f

2 | = |V
g

2 |.

First we show that |Di | = |D j | for any i and j . Since D is vertex-transitive, there exists

an automorphism θ of D such that θ(vi ) = v j . It is not hard to see that for any good γR (D)-

function f ∈Di , we have f θ−1 ∈D j . Define the function ψ : Di →D j by ψ( f ) = f θ−1. Clearly

ψ( f ) = f θ−1 6= hθ−1 =ψ(h) for any distinct good γR (D)-functions f ,h ∈Di and hence ψ is an

injection. On the other hand, for any g ∈ D j , it holds that gθ ∈ Di and ψ(gθ) = (gθ)θ−1 = g .

Thus, ψ is a bijection from Di to D j , and so |Di | = |D j | for any i , j ∈ {1,2, . . . ,n}.

If f = (V0,V1,V2) is a good γR (D)-function with V2 = {vi1
, . . . , vir

}, then f ∈ Di1
, . . . , f ∈

Dir
. This implies that every good γR (D)-function appears r = |V2| times in ∪n

i=1
Di . Thus, the

number of good γR (D)-functions is equal to n|D1|
r . Since an arc (vi , v j ) only supports those

good γR (D)-functions in Di , we must have s(D) ≥ n
r where s(D) is the minimum size of a set

of arcs such that each γR (D)-function is supported by at least one such arc. Hence bR (D) ≥

s(D) ≥ ⌈n
r ⌉ ≥ ⌈ 2n

γR (D) ⌉ and the proof is complete. ���

3. Exact values of bR (D)

In this section we determine the exact value of the Roman bondage number of some

classes of digraphs.

Theorem 12. If D is a digraph of order n ≥ 3 with exactly k ≥ 1 vertices of outdegree n −1,

then bR (D) = k .

Proof. Since k ≥ 1, we note that γR (D) = 2 by Proposition A (1). Let A′ ⊆ A(D) be an arbitrary

subset of arcs such that |A′| < k , and let D ′ = D − A′. Clearly, there exists a vertex w in D ′ such

that deg+D (w )= deg+D ′(w )= n −1 and thus γR (D) =γR (D ′)= 2. This shows that bR (D) ≥ k .

Now let v1, v2, . . . , vk be the vertices of outdegree n−1 in D, and let ai be an arc of D with

tail vi for 1 ≤ i ≤ k . Since D has exactly k vertices of outdegree n − 1, we observe that the

maximum outdegree of the digraph F = D − {a1, a2, . . . , ak } is n−2. The hypothesis n ≥ 3 leads

to γR (F ) = 3 by Proposition A (2), and so we see that bR (D) ≤ k . Altogether, we have bR (D) = k ,

and the proof is complete. ���

The proof of next result is similar to the proof of Theorem 12 and therefore omitted.
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Theorem 13. If D is a digraph of order n ≥ 3 with exactly k ≥ 1 vertices of outdegree n −1,

then b(D) = k .

Corollary 14. If n ≥ 3, then bR (K ∗
n ) = b(K ∗

n ) =n, where K ∗
n is the complete digraph of order n.

Corollary 14 reveals that the bounds of Proposition 10 and Theorem 11 are tight.

Proposition 15. Let K ∗
n1,n2,...,np

be the complete p-partite digraph such that p ≥ 2 ≥ n1, n1 ≤

n2 ≤ ·· · ≤ np and n =
∑p

i=1
ni ≥ 3. Then

bR (K ∗
n1,n2,...,np

)=







i , ni = 1 < ni+1

2i , ni = 2 < ni+1.

Proof. Let V1,V2, . . . ,Vp be the partite sets of the complete p-partite digraph D = K ∗
n1,n2,...,np

with |Vi | = ni .

If n1 = 1, then γR (D) = 2. Let i be the greatest index with ni = 1. Let A′ ⊂ A(D) be a subset

of arcs of D that contains one outgoing arc for each vertex v ∈V j for j ≤ i . Then γR (D−A′) ≥ 3

by Proposition A and thus, bR (D) ≤ i . On the other hand, if A′ ⊂ A(D) is a subset of arcs of D

with |A′| ≤ i −1, then D − A′ contains a vertex that dominates all other vertices of D − A′ and

thus, γR (D − A′) = 2. It follows that bR (D) = i .

If n1 = 2, then γR (D) = 3. Let i be the greatest index with ni = 2. Every γR (D)-function

f = (V
f

0 ,V
f

1 ,V
f

2 ) has the property that V
f

1 ∪V
f

2 = V j for an index j ≤ i . Let A′ ⊂ A(D) be

a subset of arcs of D that contains one outgoing arc for each vertex v ∈ V j for j ≤ i . Then

γR (D − A′) ≥ 4 by Proposition A and hence bR (D) ≤ 2i . On the other hand, if A′ ⊂ A(D) is a

subset of arcs of D with |A′| ≤ 2i −1, then D − A′ contains a set V j = {v, w } with j ≤ i such that

v dominates all vertices of V (D)−V j and thus, γR (D − A′) = 3. It follows that bR (D) = 2i . ���

Theorem 16. Let K ∗
m,n be the complete bipartite digraph such that n ≥ m ≥ 2 and m +n ≥ 5.

Then

bR (K ∗
m,n) =







2 if m = 2

m +2 if m ≥ 3.

Proof. The result is immediate for m = 2 by Proposition 15. Let m ≥ 3 and let X = {x1, . . . , xm}

and Y = {y1, . . . , yn} be the partite sets of the complete bipartite digraph D = K ∗
m,n . By Propo-

sition A, we have γR (D) = 4. It is easy to see that γR (D − A′) ≥ 5 where A′ = {(xi , y1) | 1 ≤ i ≤

m}∪ {(y1, x1), (y1, x2)}. This yields bR (D) ≤ m +2.

Now, we show that bR (D) ≥ m +2. Let A′ ⊂ A(D) be a subset of arcs of D such that |A′| =

m +1 and let D ′ = D − A′. Then D ′ has at least n −1 vertices whose out-degrees are equal in

D and D ′. Let Z = {v ∈ V (D) | d+
D (v) = d+

D ′(v)}. If Z ∩ X 6= ; and Z ∩Y 6= ;, then obviously
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γR (D ′) = 4. Henceforth, we assume that Z ∩ X =; or Z ∩Y =;. Assume that Z ∩ X =; (the

case Z∩Y =; is similar). Then Z ⊆ Y and A′ contains one outgoing arc for each vertex xi ∈ X .

Since |A′| = m+1 < 2m, we deduce that A′ contains exactly one outgoing arc for some xi ∈ X .

Assume, without loss of generality, that i = 1 and (x1, y1) ∈ A′. If Z = Y , then f = (V (D ′)−

{x1, y1},;, {x1, y1}) is a Roman dominating function of D ′ of weight 4 and hence γR (D ′)= 4. Let

Z á Y . Then we may assume that Z = {y1, . . . , yn−1}. Thus A′ contains one outgoing arc from

yn , say (yn , xm). Since |A′| = m +1, we conclude that A′ contains exactly one outgoing arc

for each vertex xi ∈ X and one outgoing arc from yn . If (xi , y j ) ∈ A′ for some 1 ≤ i ≤ m

and some j < n, then f = (V (D ′)− {xi , y j },;, {xi , y j }) is a Roman dominating function of

D ′ of weight 4 and hence γR (D ′) = 4. Thus, we assume that (xi , yn) ∈ A′ for each 1 ≤ i ≤ m.

But then γR (D ′) = 4 by Proposition A. Thus bR (D) ≥ m +2 and the proof is complete. ���

The k-th power Dk of a directed graph D is defined to be the directed graph on the ver-

tices of D with an arc from a to b in Dk if and only if one can get from a to b in D with at most

k steps. Figure 1 illustrates the 2-th power of the directed cycle C9.

Theorem 17. For k ≥ 2, let C k
n be the k-th power of the directed cycle of length n ≥ 2k +1. If n

is a multiple of k +1, then bR (C k
n ) = k +1.

Proof. Let D = C k
n , where k ≥ 2 and n is a multiple of k + 1. Let V = V (D) = {v1, v2, . . . , vn}

and A = A(D) = {vi vi+ j : j = 1,2, . . . ,k} where the subscript i + j is taken modulo n. Note that

γR (D) = 2n/(k +1) and every γR (D)-function f = (V
f

0 ,V
f

1 ,V
f

2 ) has the property that V
f

1 = ;

and V
f

2 = {vi+ j (k+1) : j = 0,1, . . . ,n/(k +1)−1} for an index 1 ≤ i ≤ k +1. Hence, the number of

γR (D)-functions is k +1.

For i 6= j , it is easy to see that the function g : V (D) → V (D) by g (vk ) = vk+( j−i ) for k =

1, . . . ,n, is an automorphism of D with g (vi ) = v j . Therefore, D is a vertex-transitive digraph.

It follows from Theorem 11 that bR (D) ≥ k +1. Now we shall show that bR (D) ≤ k +1. Let A′ =

{(vi , vi+k) : i = 1,2, . . . ,k +1} and D ′ = D − A′. If g is an arbitrary γR (D ′)-function, then clearly

V
g

1 6= ; and so g is not a γR (D)-function because every γR (D)-function f has the property

that V
f

1 =;. Therefore, γR (D ′) > γR (D) implying that bR (D) ≤ k +1.

Altogether, we have bR (D) = k +1 and the proof is complete. ���

Using Proposition D and an argument similar to that described in the proof of Theorem

17, we get the next result.

Theorem 18. For k ≥ 2, let C k
n be the k-th power of the directed cycle of length n ≥ 2k +1. If n

is a multiple of k +1, then γ(D) =n/(k +1) and b(C k
n ) = k +1.

Theorems 17 and 18 reveal that the bounds of Propositions 10 and Theorem 11 are tight.
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