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COMMON FIXED POINT THEOREMS BY ALTERING DISTANCES

K. JHA AND R. P. PANT

Abstract. In this paper we obtain common fixed point theorems for weakly commuting pairs

of self mappings by altering distances between the points under a φ-contractive condition.

1. Introduction

The study of common fixed points for self mappings on a metric space by altering

distances between the points with the use of control functions has emerged as an area of

wide interest. Khan et al. [2] established fixed point theorem for a single self map. Sastry

and Babu [7] proved fixed point theorem for a pair of self maps. Sastry et al. [8] proved

a unique common fixed point theorem for four mappings by using a control function in

order to alter distances between the points. Pant et al. [5, 6] obtained an answer to the

open problem of Sastry et al. [8] by establishing a connection between continuity and

reciprocal continuity in the setting of control function.

The presence of control function creates certain difficulties in proving the existence of

fixed point under contractive conditions. In view of these difficulties, known fixed-point

theorems either employ a stronger contractive condition like the Banach contractive

condition e.g. in Sastry et al. [8] or assume the existence of a convergent sequence of

iterates e.g. in [2], [7]. The study of fixed points in the presence of control function under

more general contractive conditions like Mier-Keeler type (ε, δ)-contractive condition or

a φ-contractive condition is still an open area. In the present paper, we prove a common

fixed point theorem assuming a φ-contractive condition. We employ a control function

that unifies the choice of control function in [7], [8]. Also, in the settings of our theorem,

we consider the open problem of [8] and provide an answer to the problem in the setting

of a more general contractive condition than in Sastry et al. [8].

We have used the following notions.

Definition 1.1. A control function ψ is defined as ψ : ℜ+ → ℜ+ which is continuous,

monotonically increasing, ψ(2t) ≤ 2ψ(t) and ψ(t) = 0 if and only if t = 0.
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Definition 1.2. Two self mappings A and S of a metric space (X, d) are called

weakly commuting if d(ASx, SAx) ≤ d(Ax, Sx) for each x in X . This condition implies

that ASx = SAx whenever Ax = Sx.

Clearly, commuting and weakly commuting mappings are compatible, but the con-

verses are not necessarily true [1].

Definition 1.3. ([8]) Two self mappings A and S of a metric space (X, d) are

called ψ-compatible if limn ψ(d(ASxn, SAxn)) = 0 whenever {xn} is a sequence such

that limnAxn = limn Sxn = t for some t in X .

Definition 1.4. ([3]) Two self mappings A and S of a metric space (X, d) are said

to be reciprocally continuous in X , if limnASxn = At and limn SAxn = St whenever
{xn} is a sequence such that limnAxn = limn Sxn = t for some t in X .

Notation 1.5. If A, B, S and T are four self mappings of (X, d) and ψ is a control

function on ℜ+, we write

Mψ(x, y) = max{ψ(d(Sx, T y)), ψ(d(Ax, Sx)), ψ(d(By, Ty)),

[ψ(d(Ax, Ty)) + ψ(d(Sx,By))]/2}.

2. Main Theorem

Theorem 2.1. Let (A,S) and (B, T ) be weakly commuting pairs of self mappings of

a complete metric space (X, d) and ψ be as in Definition 1.1 satisfying

(i) AX ⊂ TX , BX ⊂ SX and

(ii) ψ(d(Ax,By)) ≤ φ(Mψ(x, y)), for all x, y in X whenever Mψ(x, y) > 0 and

φ : ℜ+ → ℜ+ be an upper semi continuous function such that φ(t) < t for each t > 0.

Suppose that (A,S) and (B, T ) are ψ-compatible pairs of reciprocally continuous map-

pings. Then A, B, S and T have a unique common fixed point.

Proof. Let x0 be any point in X . Define sequences {xn} and {yn} in X such that

y2n = Ax2n = Tx2n+1; y2n+1 = Bx2n+1 = Sx2n+2. (2.1.1)

We claim that {yn} is a Cauchy sequence. We write αn = ψ(d(yn, yn+1)). Then, using

condition (ii), it follows that

α2n = ψ(d(y2n, y2n+1)) = ψ(d(Ax2n, Bx2n+1))

≤ φ(Mψ(x2n, x2n+1))

= φ(max{ψ(d(Sx2n, Tx2n+1)), ψ(d(Ax2n, Sx2n)), ψ(d(Bx2n+1, Tx2n+1)),

[ψ(d(Sx2n, Bx2n+1))]/2}).

= φ(max{ψ(d(y2n, y2n+1)), ψ(d(y2n−1, y2n)), ψ(d(y2n+1, y2n)),
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[ψ(max{d(y2n, y2n+1), d(y2n, y2n−1)})]/2})

= φ(ψ(d(y2n−1, y2n)))

≤ φ(ψ(d(y2n−1, y2n))) = φ(α2n−1).

That is,

α2n ≤ φ(α2n−1) < α2n−1. (2.1.2)

Similarly, α2n−1 < α2n−2; α2n−2 < α2n−3 and so on. Thus {αn} = {ψ(d(yn, yn+1))} is a

strictly decreasing sequence of positive numbers and hence converges, say, to α ≥ 0. Sup-

pose α > 0. Then the inequality (2.1.2) on making n→ ∞ and in view of upper semi con-
tinuity of φ yields α ≤ φ(α) < α, a contradiction. Hence α = limn→∞ ψ(d(yn, yn+1)) = 0.

This, by the monotonically increasing property of ψ, implies

lim
n→∞

d(yn, yn+1) = 0, (2.1.3)

and also {d(yn, yn+1)} is a strictly decreasing sequence of positive numbers. We now
show that {yn} is a Cauchy sequence.

Suppose it is not. Then there exists an ε > 0 and a subsequence {yni
} of {yn} such

that d(yni
, yni+1) > 2ε. But since limn→∞ d(yn, yn+1) = 0, there exists an integer mi

satisfying ni < mi < ni+1 such that d(yni
, ymi

) ≥ ε. If not, then

d(yni
, yni+1

) ≤ d(yni
, yni+1−1) + d(yni+1

, yni+1−1) < ε+ d(yni+1
, yni+1−1) < 2ε,

a contradiction. If mi is the smallest integer such taht d(yni
, ymi

) ≥ ε, then

ε ≤ d(yni
, ymi

) ≤ d(yni
, ymi−2) + d(ymi−2, ymi−1) + d(ymi−1, ymi

)

< ε+ d(ymi−2, ymi−1) + d(ymi−1, ymi
).

That is, there corresponds an integer mi satisfying ni < mi < ni+1 such that

d(yni
, ymi

) ≥ ε and lim
ni→∞

d(yni
, ymi

) = ε. (2.1.4)

From the triangle inequality, we get |d(yni
, ymi+1)− d(yni

, ymi
)| ≤ d(ymi+1, ymi

). Thus,
as ni → ∞, we obtain d(ymi+1, yni

) → ε. Similarly, we can get d(yni+1, ymi
) → ε.

Applying the continuity of ψ, we get either

ψ(d(ymi+1, yni
)) → ψ(ε) or ψ(d(yni+1, yni

)) → ψ(ε). (2.1.5)

Moreover, mi can be chosen in such a manner that mi is even, when ni is odd and mi is

odd, when ni is even. Suppose that ni is odd and mi is even. Then by virtue of (ii), we
get

ψ(d(yni+1, ymi+1)) = ψ(d(Axni+1, Bxmi+1)) ≤ φ(Mψ(xni+1, xmi+1)).

On letting ni → ∞ and in view of result (2.1.5) and applying the upper semi continuity

of φ, the above inequality yields ψ(ε) ≤ φ(ψ(ε)) < ψ(ε), a contradiction. Hence {yn} is
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a Cauchy sequence. Since X is complete, there is a point z in X such that yn → z as

n→ ∞. Hence from (2.1.1), we have

y2n = Ax2n+1 = Tx2n+1 → z and y2n+1 = Bx2n+1 = Sx2n+2 → z. (2.1.6)

Now suppose that (A,S) is a ψ-compatible pair of reciprocally continuous mappings.

Since A and S are reciprocally continuous, by (2.1.6), we get

ASx2n → Az and SAx2n → Sz. (2.1.7)

Also, ψ-compatibility of A and S implies that limn ψ(d(ASx2n, SAx2n)) = 0. We now

show that Az = Sz.

Suppose Az 6= Sz. Let ε = (d(Az, Sz))/2. Then there exists N in Z+ such that

ψ(d(ASx2n, SAx2n)) < ψ(ε) for all n ≥ N . This implies that d(ASx2n, SAx2n) < ε for

all n ≥ N . Hence by (2.1.7), d(Az, Sz) < ε = (d(Az, Sz))/2, a contradiction.

Hence

Az = Sz. (2.1.8)

Since AX ⊂ TX , there is a point w in X such that Tw = Az. By (2.1.8),

Tw = Az = Sz. (2.1.9)

Now, we show that Az = Bw. Suppose Az 6= Bw. Then, by (ii), we have

ψ(d(Az,Bw)) ≤ φ(Mψ(z, w)) ≤ φ(ψ(d(Bw, Tw))) < ψ(d(Bw,Az)),

a contradiction. Hence Az = Bw. Therefore, by (2.1.9),

Bw = Az = Sz = Tw. (2.1.10)

Since A and S are weakly commuting, we have by (2.1.10),

ASz = SAz and AAz = ASz = SAz = SSz. (2.1.11)

Since B and T are weakly commuting, we have

BBw = BTw = TBw = TTw. (2.1.12)

We now show that AAz = Az. Suppose AAz 6= Az. Then by (ii), we get

ψ(d(Az,AAz)) = ψ(d(Bw,AAz))

≤ φ(Mψ(Az,w))

= φ(ψ(d(Az,AAz))), (by (2.1.10) & (2.1.12))

a contradiction. Hence AAz = Az.
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Also, we have AAz = SAz. Therefore, Az is a common fixed point for A and S. Also,
suppose BBw 6= Bw. By (ii), we have

ψ(d(Bw,BBw)) = ψ(d(Az,BBw)) (by (2.1.10))

≤ φ(Mψ(z,Bw))

= φ(ψ(d(Bw,BBw))), (by (2.1.10) & (2.1.12))

< ψ(d(Bw,BBw)),

a contradiction. Hence BBw = Bw and since TBw = BBw, we have Bw as a common
fixed point for B and T . Since Az = Bw, we have Az as a common fixed point for A, B,
S and T . Uniqueness of a common fixed point follows by (ii). The proof is similar when
the pair (B, T ) is assumed ψ-compatible and reciprocally continuous. This completes
the proof of the theorem.

In the above theorem, we replace reciprocal continuity of B and T by continuity of
A and obtain result similar to Theorem 2.1,

Theorem 2.2. Let (A,S) and (B, T ) be weakly commuting pairs of self mappings of

a complete metric space (X, d) and ψ be as in definition (1.1) satisfying

(i) AX ⊂ TX , BX ⊂ SX and

(ii) ψ(d(Ax,By)) ≤ φ(Mψ(x, y)), for all x, y in X whenever Mψ(x, y) > 0 and φ :
ℜ+ → ℜ+ be an upper semi continuous function such that φ(t) < t for each t > 0.

Suppose that A and S are ψ-compatible and A is continuous mapping. Then A, B,

S and T have a unique common fixed point.

Proof. Let x0 be any fixed point in X . Define sequences {xn} and {yn} in X given
by the rule

y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2. (2.2.1)

This can be done by virtue of (i). Then applying the same proof as that in the Theorem
2.1, we can show that {yn} is a Cauchy seuqence. Since X is a complete metric space,
there is a point z in X such that

y2n = Ax2n = Tx2n+1 → z and y2n+1 = Bx2n+1 = Sx2n+2 → z. (2.2.2)

Now, suppose that (A,S) is ψ-compatible then we have

Ax2n → z and Sx2n → z implies that lim
n
ψ(d(ASx2n, SAx2n)) = 0. (2.2.3)

Also, since A is continuous, so by (2.2.2), we get

AAx2n → Az and ASx2n → Az as n→ ∞. (2.2.4)

We claim that limn SAx2n = Az. Using (2.2.3), we get

ψ(d(SAx2n, Az)) ≤ ψ(d(SAx2n, ASx2n) + d(ASx2n, Az)) → 0 as n→ ∞.
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Thus, we get d(SAx2n, Az) → 0 as n → ∞, and so limn SAx2n = Az. Also, since
AX ⊂ TX , for each n, there exists w2n in X such that AAx2n = Tw2n and AAx2n =
Tw2n → Az. Thus, AAx2n → Az, SAx2n → Az, ASx2n → Az and Tw2n → Az as
n → ∞. Again, we claim that limnBw2n → Az. If not, then there exist ε > 0 and a
subsequence {nk} such that d(AAx2nk

, Bw2nk
) > ε and ψ(d(SAx2nk

, ASx2nk
)) < ε for

all nk. Therefore,

ψ(ε) ≤ ψ(d(AAx2nk
, Bw2nk

))

≤ φ(Mψ(Ax2nk
, w2nk

))

= φ(max{ψ(d(SAx2nk
, Tw2nk

)), ψ(d(AAx2nk
, SAx2nk

)), ψ(d(Bw2nk
, Tw2nk

)),

[ψ(d(AAx2nk
, Tw2nk

)) + ψ(d(Bw2nk
, SAx2nk

))]/2})

= φ(max{ψ(d(Bw2nk
, Tw2nk

)), [ψ(d(Bw2nk
, SAx2nk

))]/2}),

= φ(ψ(d(Bw2nk
, AAx2nk

))),

< ψ(d(Bw2nk
, AAx2nk

)), a contradiction.

Hence limnBw2n = Az.
We claim that Az = Sz. For this, using (ii), we get

ψ(d(Sz,Bw2n)) ≤ φ(Mψ(z, w2n))

= φ(max{ψ(d(Sz, Tw2n)), ψ(d(Az, Sz)), ψ(d(Bw2n, Tw2n)),

[ψ(d(Az, Tw2n)) + ψ(d(Bz, Sw2n))]/2}),

= φ(max{ψ(d(Sz, Tw2n)), ψ(d(Az, Sz)), [ψ(d(Sz,Bw2n))]/2}).

Letting n→ ∞, we get

ψ(d(Sz,Az)) ≤ φ(max{ψ(d(Sz,Az))), [ψ(d(Sz,Az))]/2})

= φ(ψ(d(Sz,Az))), a contradiction.

Thus we have
Az = Sz. (2.2.5)

Since AX ⊂ TX , there exists some w in X such that Az = Tw. Therefore, we have

Az = Sz = Tw. (2.2.6)

Moreover, we show that Az = Bw. Suppose on the contrary that Az 6= Bw. Then, using
(ii), we get

ψ(d(Az,Bw)) ≤ φ(Mψ(z, w))

= φ(max{ψ(d(Sz, Tw)), ψ(d(Az, Sz)), ψ(d(Bw, Tw)),

[ψ(d(Az, Tw)) + ψ(d(Bz, Sw))]/2}),

= φ(max{ψ(d(Bw,Az)), [ψ(d(Bw,Az))]/2}),

= φ(ψ(d(Bw,Az))), a contradiction.
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Therefore, Az = Bw. Hence
Az = Sz = Tw = Bw. (2.2.7)

Since A and S are weakly commuting, we have by (2.2.7), ASz = SAz and hence

AAz = ASz = SAz = SSz (2.2.8)

and by the weakly commuting property of B and T , we get

BBw = BTw = TBw = TTw. (2.2.9)

We now show that AAz = Az. Suppose that AAz 6= Az then by (ii), we get

ψ(d(Az,AAz)) = ψ(d(Bw,AAz)) ≤ φ(Mψ(Az,w)) = φ(ψ(d(Az,AAz))),

(using (2.2.7) & (2.2.8)), a contradiction. Hence AAz = Az. Also, we have AAz = SAz.
Therefore, Az is a common fixed point of A and S. Again, suppose that BBw 6= Bw.
Then using (ii), we get

ψ(d(Bw,BBw)) = ψ(d(Az,BBw)) (by (2.2.6))

≤ φ(Mψ(z,Bw))

= φ(ψ(d(Bw,BBw))), (by using (2.2.7) & (2.2.9))

< ψ(d(Bw,BBw)), a contradiction.

Hence BBw = Bw and since TBw = BBw, we have Bw being a common fixed point for
B and T . Finally, since Az = Bw, we have Az as a common fixed point for A, B, S and
T . Moreover, the uniqueness of a common fixed point follows from (ii). This completes
the proof of the theorem.

Remark. The proof is similar when the pair (A,S) is assumed ψ-compatible and
S is continuous. Moreover, we can get the same result when the (B, T ) is assumed
ψ-compatible and either T or B is assumed to be continuous.

The following example shows that if A and S are not continuous in Theorem 2.2 then
the result of Theorem 2.2 is not true. That is, all the mappings A, B, S and T do not
have common fixed point.

Example 2.3. Let X = [0, 1] with the Euclidean metric d. Define A = B and
S = T : X → X by the rule A0 = 1/2, Ax = x/4 for 0 < x ≤ 1 and S0 = 1, Sx = x/2
for 0 < x ≤ 1. Then A and S are weakly commuting mappings and hence they are ψ-
compatible, with ψ being an identity mapping. Also, A and S satisfy both the conditions
(i) and (ii) of Theorem 2.2 with φ(t) = t/2. But A and S are not continuous and they
do not have common fixed point.

Acknowledgement

The authors take this opportunity to express their sincere thanks to an anonymous
referee for valuable comments.



116 K. JHA AND R. P. PANT

References

[1] S. M. Kang and B. E. Rhoades, Fixed points for four mappings, Math. Japonica 37(1992),

1053-1059.

[2] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorem by altering distances between the

points, Bull. Austral. Math. Soc. 30(1984), 1-9.

[3] R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc. 90(1998), 281-

286.

[4] R. P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl.

Math. 30(1999), 147-152.

[5] R. P. Pant, K. Jha and A. B. Lohani, A note on common fixed points by altering distances,

Tamkang J. Math. (2003) (to appear).

[6] R. P. Pant, K. Jha and S. Padaliya, On common fixed points by altering distances between

the points, Tamkang J. Math. (2003) (to appear).

[7] K. P. R. Sastry and G. V. R. Babu, Some fixed point theorems by altering distances between

the points, Ind. J. Pure and Appl. Math. 30(June 1999), 641-647.

[8] K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu and G. A. Naidu, Generalization of common

fixed point theorems for weakly commuting mappings by altering distances, Tamkang Journal

of Math. 31(2000), 243-250.

Department of Mathematical Sciences, Kathmandu University, P.O.Box 6250, Kathmandu,

Nepal.

E-mail: jhaknh@yahoo.co.in

Department of Mathematics, Kumaon University, D.S.B. Campus, Nainital-263002, Uttaran-

chal, India.


