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TWO DISCRETE INEQUALITIES OF GRÜSS TYPE VIA PÓLYA-SZEGÖ

AND SHISHA-MOND RESULTS FOR REAL NUMBERS

S. S. DRAGOMIR AND L. KHAN

Abstract. Some new Grüss type discrete inequalities for nonnegative real numbers and appli-

cations for the moments of guessing mappings are given.

1. Introduction

In 1950, Biernacki, Pidek and Ryll-Nardzewski [1] proved the following Grüss type
discrete inequality.

If ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) are such that there exists the real numbers
a, A, b, B with

a ≤ ai ≤ A, b ≤ bi ≤ B, i ∈ {1, . . . , n} (1.1)

then
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ā, b̄
)∣

∣ ≤ 1

n

[n

2

]

(

1 − 1

n

[n

2

]

)

(A − a) (B − b)

=
1

n2

[

n2

4

]

(A − a) (B − b)

≤ 1

4
(A − a) (B − b) (1.2)

where

Cn

(
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A weighted version of the above result has been obtained in 1988 by Andrica and Badea
[2].

Let ā, b̄ satisfy (1.1) and p̄ = (p1, . . . , pn) be an n−tuple of nonnegative numbers
with Pn :=

∑n
i=1 pi > 0. If S is a subset of {1, . . . , n} that minimises the expression
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Recently, Dragomir and Booth [3] obtained the following result.

If ā, b̄ are real n−tuples and p̄ is nonnegative with Pn > 0, then
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where ē = (1, 2, . . . , n) and ∆aj := aj+1−aj is the forward difference, and j = 1, . . . , n−1.

Note that
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In particular, we have
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The constant 1
12 is best possible.

In 2002, Dragomir [4] extended the above result for the p−norm. Namely, he proved

that
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where p > 1, 1
p + 1

q = 1.

In particular, we have
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The constant 1
6 is best possible.

The case of one-norm [5], can be stated as follows:
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In particular, we have
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The constant 1
2 is sharp.

Another direction was considered by Cerone and Dragomir in [8].

If ā, b̄ are real n−tuples and p̄ is a positive n−tuple and there exists m, M ∈ R such

that

m ≤ ai ≤ M, (1.12)

then one has the inequality
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The constant 1
2 is best possible. In particular, we have
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The constant 1
2 is best possible.

In this paper we obtain different Grüss type discrete inequalities for nonnegative real

numbers by the use of some counterpart results for the Cauchy-Buniakowsky-Schwarz

inequality. Application for the moments of guessing mapping are also given.

2. Discrete Inequalities

The following Grüss type inequality holds.

Theorem 1. Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be two sequences of positive real

numbers with

0 < a ≤ ai ≤ A < ∞ and 0 < b ≤ bi ≤ B < ∞ for each i ∈ {1, . . . , n} . (2.1)

Then one has the inequality
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The constant 1
4 is best possible in (2.2) in the sense that it cannot be replaced by a smaller

constant.
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Proof. We have, by the Cauchy-Buniakowski-Schwarz inequality for double sums,
the inequality
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Utilising the Pólya-Szegö inequality [19]
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provided 0 < m1 ≤ zi ≤ M1 < ∞, 0 < m2 ≤ ui ≤ M2 < ∞, i ∈ {1, . . . , n} , we may state
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In a similar fashion, we obtain
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Using (2.3), (2.5) and (2.6), we deduce the desired inequality (2.2).
Now, assume that the inequality in (2.2) holds with a constant c > 0, i.e.,
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Let a = 1 − ε, A = 1 + ε, with ε ∈ (0, 1) . Then from (2.8) we get 1 − ε2 ≤ 4c for any
ε ∈ (0, 1) , which shows that c ≥ 1

4 .

Remark 1. We will now compare the inequality (2.2) with the Grüss inequality
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showing that if x ∈ (0, 1] ∪ [4,∞), U (x) ≥ 1 while for x ∈ (1, 4) , U (x) < 1.

In conclusion, the bound provided by (2.2) is sometimes better, and at other times,
worse than the bound provided by the Grüss inequality.

The second result of Grüss type is embodied in the following theorem.

Theorem 2. Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be two sequences of positive

real numbers satisfying (2.2). Then one has the inequality
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The constant c = 1 is the best possible in the sense that it cannot be replaced by a smaller

constant.

Proof. We shall use Shisha-Mond’s inequality [20]
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Now, making use of (2.3), (2.12) and (2.13), we obtain the desired inequality (2.10).
To prove the sharpness of the constant, assume that (2.10) holds with a constant
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that is,
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Remark 2. We shall show that at some times, the Grüss inequality (2.9) is better,
and at other times, the inequality (2.10) is better.

If we choose ai = bi, (i = 1, . . . , n) , a = b, A = B, we have to compare

I1 :=
1

4
(A − a)

2

with

I2 :=
(√

A −
√

a
)2
∑n

i=1 ai

n
.

If we assume that a = 0, A = 1, then

I1 =
1

4
, I2 =

∑n
i=1 ai

n
(i = 1, . . . , n)

showing that for 0 ≤ ai ≤ 1 with

∑

n

i=1
ai

n < 1
4 , (2.10) is better than the Grüss inequality

while for

∑

n

i=1
ai

n > 1
4 , the Grüss inequality provides a better bound.

Remark 3. We will show now the fact that the bounds provided by (2.2) and (2.10)
cannot generally be compared.

Assume that ai = bi, (i = 1, . . . , n) , a = b, A = b and consider

J1 :=
1

4

(A − a)
2

aA

(

1

n

n
∑

i=1

ai

)2

J2 :=
(√

A −
√

a
)2
∑n

i=1 ai

n
.

If we choose a = 1, A = 4, we get

J1 =
9

16
x2, J2 = x where x :=

∑n
i=1 ai

n
∈ [1, 4] .

We observe that J1 − J2 = x(9x−16)
16 showing that for x ∈

[

1, 16
9

]

the bound provided by
(2.10) is better than the bound provided by (2.2) while for x ∈

(

16
9 , 4

]

, the conclusion is
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3. Applications for Moments of Guessing Mappings

In 1994, J. L. Massey [14] considered the problem of guessing the value taken on by
a discrete random variable X in one trial of a random experiment by asking questions of
the form

“Did X take on its ith possible value?” (3.1)

until the answer is
“Yes!”. (3.2)

This problem arises for instance when a cryptologist must try out possible secret keys
one at a time after minimising the possibilities by some cryptoanalysis.

Consider a random variable X with finite range X = {x1, . . . , xn} and distribution
PX (xk) = pk for k = 1, 2, . . . , n.

A one-to-one function G : χ → {1, . . . , n} is a guessing function for X. Thus

E (Gm) :=

n
∑

k=1

kmpk (3.3)

is the mth moment of this function, provided we renumber the xi such that xk is always

the kth guess.
In [14], Massey observed that, E (G) , the average number of guesses, is minimised by

a guessing strategy that guesses the possible values of X in decreasing order of probability.

In the same paper [14], Massey proved that

E (G) ≥ 1

4
2H(X) + 1 provided H (X) ≥ 2 bits, (3.4)

for an optimal guessing strategy, where H (X) is the Shannon entropy

H (X) = −
n
∑

i=1

pi log2 (pi) . (3.5)

He also has shown that E (G) may be arbitrarily large when H (X) is an arbitrarily
small positive number such that there is no interesting upper bound on E (G) in terms
of H (X) .

In 1996, Arikan [15] has proved that any guessing algorithm for X obeys the lower
bound
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1
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p
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In 1997, Boztaş [16] proved that for m ≥ 1, integer
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(
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In 1997, Dragomir and Boztaş [17] obtained for any guessing sequence:
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where [x] is the integer part of x.

For other results on E (Gp) , p > 0 see also [18]. We mention only, by making use of

Grüss inequality, one has for p, q > 0 that
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− E (Gp)E (Gq)
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4
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The above result may be complemented in the following way (see for example [11]).

Theorem 3. With the above assumptions, we have the inequality
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for any p, q > 0.

Applications for different particular instances of p, q > 0 may be provided, but we

omit the details.

The following result also holds [9].
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Theorem 4. Assume Sn (p) , p > 0 denotes the sum of p-power of the first n natural

numbers, that is

Sn (p) :=
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kp.
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1

n
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We are able now to state the first reasult for the momments of guessing mapping that
may be obtained by the use of the inequality (2.2).

Theorem 5. If the probability distribution (p1, . . . , pn) satisfies the assumption

0 < pm ≤ pi ≤ pM for any i ∈ {1, . . . , n} , (3.15)

then one has the inequality
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If one uses the other Grüss type inequality (2.10), then one may state the following result
as well.

Theorem 6. If the probability distribution (p1, . . . , pn) satisfies the assumption

(3.15), then one has the inequality

∣

∣

∣
E (Gp) − 1

n
Sn (p)

∣

∣

∣
≤ (

√
pM −√

pm)
(√

np − 1
)

√

Sn (p).

In particular, for p = 1, we have the inequality

∣

∣

∣
E (G) − n + 1

2

∣

∣

∣
≤ (

√
pM −√

pm)
(√

n − 1
)

√

n (n + 1)

2
.
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References

[1] Biernacki, M., Pidek, H. and Ryll-Nardzewski, C. (1950), Sur une inégalité entre des
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[17] Dragomir, S. S. and Boztaş, S. (1997), Some estimates of the average number of guesses to

determine a random variable, Proc. 1997 IEEE Int. Symp. on Inf. Th., (Ulm, Germany,

1997), p. 159.

[18] Dragomir, S. S. and Boztaş, S. (1998), Estimation of arithmetic means and their applications

in guessing theory, Math. Comput. Modelling, 28(10) (1998), 31-43.
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