GROWTH OF COMPOSITE ENTIRE FUNCTIONS

R. CHANKANYAL AND S. K. VAISH

Abstract. The growth of maximum term of a composite entire function is compared with that
of the maximum term of its left and right factors.

1. Introduction.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function. Then as usual $\mu(r, f)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$ is called the maximum term of $f(z)$ on $|z|=r$ and $M(r, f)=\max _{|z|=r}|f(z)|$ is called the maximum modulus of $f(z)$ on $|z|=r$.

The numbers $\rho_{f}(p, q)$ and $\lambda_{f}(p, q)$ are, respectively, called the (p, q)-order and lower (p, q)-order of $f(z)$ having index-pair (p, q) and are defined as [1]:

$$
\lim _{r \rightarrow \infty} \frac{\sup \log ^{[p]} M(r, f)}{\inf \log ^{[q]} r}=\begin{align*}
& \rho_{f} \equiv \rho_{f}(p, q) \tag{1.1}\\
& \lambda_{f} \equiv \lambda_{f}(p, q)
\end{align*}
$$

where p and q are integers such that $p \geq q \geq 1, \log ^{[0]} x=x$, and $\log ^{[n]} x=\log \left(\log ^{[n-1]} x\right)$ for $0<\log ^{[n-1]} x<\infty, n=1,2,3, \ldots$..

Some theorems that will be of use to us are:
Theorem A. (Singh [2]). For $0 \leq r<R$, we have

$$
\begin{equation*}
\mu(r, f) \leq M(r, f) \leq \frac{R}{R-r} \mu(R, f) \tag{1.2}
\end{equation*}
$$

Theorem B. (Juneja, Kapoor and Bajpai [1]). If $f(z)$ is an entire function then

$$
\lim _{r \rightarrow \infty} \frac{\sup \log ^{[p]} \mu(r, f)}{\inf \log ^{[q]} r}=\begin{align*}
& \rho_{f} \equiv \rho_{f}(p, q) \tag{1.3}\\
& \lambda_{f} \equiv \lambda_{f}(p, q)
\end{align*}
$$

Definition 1. Let $g(z)$ be an entire function of finite lower (p, q)-order λ_{g}. A function $\lambda_{g}(r)$ is called a lower proximate (p, q)-order of $g(z)$ relative to $\mu(r, g)$ if (i) $\lambda_{g}(r)$ is real,

Key words and phrases. Composite entire function, (p, q)-order, proximate order, maximum term.
continuous and piecewise differentiable for sufficiently large values of $r \geq r_{0}$,
(ii) $\lim _{r \rightarrow \infty} \lambda_{g}(r)=\lambda_{g}$,
(iii) $\lim _{r \rightarrow \infty} \wedge_{[q]}(r) \lambda_{g}^{\prime}(r)=0 \quad$ and
(iv) $\liminf _{r \rightarrow \infty} \frac{\log ^{[p-1]} \mu(r, g)}{\left(\log ^{[q-1]} r\right)^{\lambda_{g}(r)}}=1$,
where $\wedge_{[q]}(r)=\prod_{i=0}^{q} \log ^{[i]} r$.
The purpose of this paper is to compare the maximum term of a composite entire function with that of its left and right factors. Throughout this paper $f(z), g(z)$ and $h(z)$ will stand for entire functions.

2. Main Results

Firstly, in some theorems we will compare the growth of the maximum term of a composite entire function with that of its left factor.

Theorem 1. If ρ_{f}, ρ_{g} are finite and $\lambda_{f}>0$ then for $x>\frac{\rho_{g}}{\lambda_{f}}-1$ and $p>q$,

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=0 .
$$

Proof. Let $x>\frac{\rho_{g}}{\lambda_{f}}-1$ and $0<\varepsilon<\min \left\{\lambda_{f}, \frac{(1+x) \lambda_{f}-\rho_{g}}{x+2}\right\}$. Then in view of (1.3) it follows that for all sufficiently large values of r,

$$
\begin{equation*}
\mu(r, f)<\exp ^{[p-1]}\left(\left(\log ^{[q-1]} r\right)^{\rho_{f}+\varepsilon}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(r, f)>\exp ^{[p-1]}\left(\left(\log ^{[q-1]} r\right)^{\rho_{f}-\varepsilon}\right) \tag{2.2}
\end{equation*}
$$

Now, from Lemma 1 [2] for all sufficiently large values of r,
or,

$$
\begin{align*}
\log \mu(r, f o g) & \leq 2 \log \mu(4 \mu(2 r, g), f) \\
\log ^{[p-1]} \mu(r, f o g) & \leq 2 \log { }^{[p-1]} \mu(4 \mu(2 r, g), f) \\
\log ^{[p]} \mu(r, f o g) & <\log 2+\left(\rho_{f}+\varepsilon\right) \log ^{[q]}(4 \mu(2 r, g)) \\
& =\log 2+\left(\rho_{f}+\varepsilon\right) \log ^{[q]} \mu(2 r, g)+o(1) . \tag{2.3}
\end{align*}
$$

or,
or,

Using (2.1), we have

$$
\begin{equation*}
\log ^{[p]} \mu(r, f o g)<\log 2+\left(\rho_{f}+\varepsilon\right) \exp ^{[p-q-1]}\left(\left(\log ^{[q-1]}(2 r)\right)^{\rho_{g}+\varepsilon}\right)+o(1) \tag{2.4}
\end{equation*}
$$

Also from (2.2), we have

$$
\begin{equation*}
\left(\log ^{[p]} \mu(r)\right)^{1+x}>\left\{\exp ^{[p-q-1]}\left(\log ^{[q-1]} r\right)^{\lambda_{f}-\varepsilon}\right\}^{1+x} \tag{2.5}
\end{equation*}
$$

So for all sufficiently large values of r,

$$
\frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r)\right)^{1+x}}<\frac{\log 2+\left(\rho_{f}+\varepsilon\right) \exp ^{[p-q-1]}\left(\left(\log ^{[q-1]} 2 r\right)^{\rho_{g}+\varepsilon}\right)+o(1)}{\left(\exp ^{[p-q-1]}\left(\left(\log ^{[q-1]} r\right)^{\lambda_{f}-\varepsilon}\right)\right)^{1+x}}
$$

which implies that

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, \text { fog })}{\left(\log ^{[q]} \mu(r)\right)^{1+x}}=0
$$

Theorem 2. If $\rho_{f}, \rho_{g}, \lambda_{f}, \lambda_{g}$ are finite and $\lambda_{f}>0$, then
$\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=\infty, \quad$ where $x<\max \left\{\frac{\lambda_{g}}{\lambda_{f}}-1, \frac{\rho_{g}}{\rho_{f}}-1\right\} \quad$ and $\quad p>q$.

Proof. Let $x<\frac{\lambda_{g}}{\lambda_{f}}-1$ and $\varepsilon>0$ be such that $\varepsilon<\lambda_{f}$, if $2+x \leq 0$ and $\varepsilon<$ $\min \left\{\lambda_{f},\left(\lambda_{g}-(1+x) \lambda_{f}\right) /(2+x)\right\}$ if $2+x>0$.

For all sufficiently large values of r, we get from Lemma 2 [2],

$$
\begin{aligned}
\log \mu(r, f o g) & \geq \log \frac{1}{2}+\log \mu\left[\frac{1}{8} \mu\left(\frac{r}{4}, g\right)-|g(0)|, f\right] \\
& \geq \frac{1}{2} \log \mu\left[\frac{1}{8} \mu\left(\frac{r}{4}, g\right)-|g(0)|, f\right], \\
\text { or, } \quad \log ^{[p]} \mu(r, f o g) & \geq \frac{1}{2} \log ^{[p]} \mu\left[\frac{1}{8} \mu\left(\frac{r}{4}, g\right)-|g(0)|, f\right] .
\end{aligned}
$$

Using (1.3), we have,

$$
\begin{align*}
\log ^{[p]} \mu(r, f o g) & >\frac{1}{2}\left(\lambda_{f}-\varepsilon\right) \log ^{[q]}\left[\frac{1}{8} \mu\left(\frac{r}{4}, g\right)\right] \\
& =\frac{1}{2}\left(\lambda_{f}-\varepsilon\right) \log ^{[q]} \mu\left(\frac{r}{4}, g\right)+o(1) \\
& >\frac{1}{2}\left(\lambda_{f}-\varepsilon\right) \exp ^{[p-q-1]}\left(\left(\log ^{[q-1]}\left(\frac{r}{4}\right)\right)^{\lambda_{g}-\varepsilon}\right)+o(1) \tag{2.6}
\end{align*}
$$

Also, for a sequence of values of r tending infinity, we have

$$
\begin{equation*}
\log ^{[q]} \mu(r, f)<\exp ^{[p-q-1]}\left(\left(\log ^{[q-1]} r\right)^{\lambda_{f}+\varepsilon}\right) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), we get

$$
\begin{equation*}
\frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}>\frac{\frac{1}{2}\left(\lambda_{f}-\varepsilon\right) \exp ^{[p-q-1]}\left(\left(\log ^{[q-1]}(r / 4)\right)^{\lambda_{g}-\varepsilon}\right)+o(1)}{\left(\exp ^{[p-q-1]}\left(\left(\log ^{[q-1]} r\right)^{\lambda_{f}+\varepsilon}\right)\right)^{1+x}} \tag{2.8}
\end{equation*}
$$

for a sequence of values of r tending to infinity. This gives

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, \text { fog })}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=\infty
$$

We omit the proof for $x<\frac{\rho_{g}}{\rho_{f}}-1$ because it runs parallel to that of the case for $x<\frac{\lambda_{g}}{\lambda_{f}}-1$. This completes the proof of the theorem.

Theorem 3. If ρ_{f} and ρ_{g} are finite, $p>q, \lambda_{f}>0$ and either $\lambda_{f}=\rho_{f}$, or $\lambda_{g}=\rho_{g}$, or both, then

$$
T(x)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}
$$

has a jumped discontinuity with an infinite jump from zero to infinity at $x=\frac{\rho_{g}}{\lambda_{f}}-1$.
Proof. Since under the conditions of the theorem $\frac{\rho_{g}}{\lambda_{f}}-1=\max \left\{\frac{\rho_{g}}{\rho_{f}}-1, \frac{\lambda_{g}}{\lambda_{f}}-1\right\}$, the theorem follows from Theorem 1 and Theorem 2.

Theorem 4. If ρ_{f}, ρ_{g} are finite, $\lambda_{f}>0$ and $\lambda_{g} \rho_{f}<\lambda_{f} \rho_{g}$, then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=\infty \tag{2.10}
\end{equation*}
$$

for any x, with $\frac{\lambda_{g}}{\lambda_{f}}-1<x<\frac{\rho_{g}}{\rho_{f}}-1$ and so the corresponding limit does not exist.
Proof. Let $x>\frac{\lambda_{g}}{\lambda_{f}}-1$ and $0<\varepsilon<\min \left\{\lambda_{f}, \frac{(1+x) \lambda_{f}-\lambda_{g}}{x+2}\right\}$. From (2.3) and (1.3) we get for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[p]} \mu(r, f o g)<\log 2+\left(\rho_{f}+\varepsilon\right)+\left(\exp ^{[p-q-1]}\left(\left(\log ^{[q-1]}(2 r)\right)^{\lambda_{g}-\varepsilon}\right)\right)+o(1) \tag{2.11}
\end{equation*}
$$

Dividing (2.11) by (2.5) and taking limit infimum, we get

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=0
$$

Since under the given conditions $\frac{\rho_{g}}{\rho_{f}}-1=\max \left[\frac{\lambda_{g}}{\lambda_{f}}-1, \frac{\rho_{g}}{\rho_{f}}-1\right]>\frac{\lambda_{g}}{\lambda_{f}}-1$, it follows from Theorem 2 that

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)^{1+x}}=\infty
$$

Hence the corresponding limit does not exist.

Corollary 1. If $\lambda_{g}<\lambda_{f} \leq \rho_{f}<\rho_{g}<\infty$, then

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)}=0 \quad \text { and } \quad \limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\left(\log ^{[q]} \mu(r, f)\right)}=\infty
$$

and so the corresponding limit does not exist.
3. In this section we shall compare the growth of the maximum term of a composite entire function with that of its right factor. In first three theorems of this section we use the following definition:

Definition 2. For the entire functions $f(z)$ and $g(z)$, we define

$$
A(x)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \mu(r, f o g)}{\log ^{[q]} \mu((1+x) r, g)}, \quad \text { for } x \geq 0 \text { and } p>q .
$$

Obviously $A(x)$ is a non-increasing function of x.
Theorem 5. If $\rho_{g}<\infty$, then $A(0) \leq \rho_{f}$.
Proof. Since for $\rho_{f}=\infty$ the result is trivially true, we suppose that $\rho_{f}<\infty$. By the maximum modulus principle, we have

$$
\begin{equation*}
M(r, f o g) \leq M(M(r, g), f) \tag{3.1}
\end{equation*}
$$

(1.2) and (3.1) give,

$$
\log ^{[p]} \mu(r, f o g) \leq \log ^{[p]} M(M(r, g), f)
$$

Thus, for given $\varepsilon>0$, we get for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[p]} \mu(r, f o g) \leq\left(\rho_{f}+\varepsilon\right) \log ^{[q]} M(r, g) \tag{3.2}
\end{equation*}
$$

Since $\rho_{g}<\infty, \lim _{r \rightarrow \infty} \frac{\log ^{[q]} M(r, g)}{\log ^{[q]} \mu(r, g)}=1$ by [3], so that for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[q]} M(r, g)<(1+\varepsilon) \log ^{[q]} \mu(r, g) \tag{3.3}
\end{equation*}
$$

Therefore, from (3.2) and (3.3), we get for all sufficiently large values of r,

$$
\frac{\log ^{[p]} \mu(r, f o g)}{\log ^{[q]} \mu(r, g)}<(1+\varepsilon)\left(\rho_{f}+\varepsilon\right) .
$$

From which the theorem follows because $\varepsilon>0$ is arbitrary.
Theorem 6. $\lim _{x \rightarrow 0^{+}} A(x) \leq \rho_{f}$.
Proof. Since for $\rho_{f}=\infty$ the result is trivially true, we suppose that $\rho_{f}<\infty$.

Putting $R=(1+x) r, x>0$, in (1.2), we get
,

$$
\begin{align*}
& \mu(r, g) \leq\left(1+\frac{1}{x}\right) \mu((1+x) r, g) \\
& \log \mu(r, g) \leq \log \left(1+\frac{1}{x}\right)+\log \mu((1+x) r, g) \\
& \log ^{[q]} \mu(r, g) \leq \log ^{[q]} \mu((1+x) r, g)+o(1) \tag{3.4}
\end{align*}
$$

or,
From (3.2), (3.3) and (3.4), we get

$$
\log ^{[p]} \mu(r, f o g)<(1+\varepsilon)\left(\rho_{f}+\varepsilon\right)\left(\log ^{[q]} \mu((1+x) r, g)+o(1)\right)
$$

for all sufficiently large values of r.
Since $g(z)$ is non-constant and $\varepsilon>0$ is arbitrary, it follows from above that $A(x) \leq \rho_{f}$ for every $x>0$. Also since $A(x)$ is a non-increasing function of $x, \lim _{x \rightarrow 0^{+}} A(x)$ exists and $\lim _{x \rightarrow 0^{+}} A(x) \leq \rho_{f}$.

Theorem 7. If $\sup _{r>0} \frac{\log ^{[p]} \mu(r, f o g)}{\log ^{[q]} \mu((1+x) r, g)}$ is not attained for any $x \geq 0$ and $p>q$, then $A(0) \leq \rho_{f}$.

Proof. Let $B(x)=\sup _{r>0} \frac{\log ^{[p]} \mu(r, f o g)}{\log [9] \mu((1+x) r, g)}$ for $x \geq 0$. Since $B(x)$ is not attained, for each $x \geq 0$ there exists a sequence $\left\{r_{n}\right\}, n=1,2,3, \ldots$ tending to infinity such that

$$
B(x)-\frac{1}{n}<\frac{\log ^{[p]} \mu\left(r_{n}, \text { fog }\right)}{\log ^{[q]} \mu\left((1+x) r_{n}, g\right)}
$$

which implies that $B(x) \leq A(x)$ and so $B(x)=A(x)$ for all $x \geq 0$ because $B(x) \geq A(x)$ follows easily from the definitions.

Now, for given $\varepsilon>0$ there exists a $\xi>0$ such that

$$
\begin{equation*}
A(0)-\varepsilon=B(0)-\varepsilon<\frac{\log ^{[p]} \mu(\xi, f o g)}{\log ^{[q]} \mu(\xi, g)} . \tag{3.5}
\end{equation*}
$$

Also,

$$
\lim _{x \rightarrow 0^{+}} \frac{\log ^{[p]} \mu(\xi, f o g)}{\log ^{[q]} \mu((1+x) \xi, g)}=\frac{\log ^{[p]} \mu(\xi, f o g)}{\log ^{[q]} \mu(\xi, g)}
$$

so there exists $x_{1}>0$ such that

$$
\frac{\log ^{[p]} \mu(\xi, f o g)}{\log ^{[q]} \mu(\xi, g)}<\frac{\log ^{[p]} \mu(\xi, \text { fog })}{\log ^{[q]} \mu\left(\left(1+x_{1}\right) \xi, g\right)}+\varepsilon
$$

Therefore, from (3.5) we get

$$
A(0)-\varepsilon<\frac{\log ^{[p]} \mu(\xi, \text { fog })}{\log ^{[q]} \mu\left(\left(1+x_{1}\right) \xi, g\right)}+\varepsilon \leq B\left(x_{1}\right)+\varepsilon=A\left(x_{1}\right)+\varepsilon \leq \lim _{x \rightarrow 0^{+}} A(x)+\varepsilon
$$

Since ε is arbitrary, the theorem follows from Theorem 6 .
Theorem 8. If ρ_{f} and λ_{g} are finite, then

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p-q]}\left(\log ^{[p-1]} \mu(r, f o g)\right)^{1 / \rho_{f}}}{\log ^{[p-1]} \mu(r, g)} \leq \begin{array}{ll}
2^{\lambda g}, & \text { if }(p, q)=(2,1) \\
1, & \text { if }(p, q) \neq(2.1)
\end{array}
$$

Proof. From (1.2) and (3.1), we have

$$
\begin{equation*}
\log ^{[p]} \mu(r, f o g) \leq \log ^{[p]} M(M(r, g), f) . \tag{3.6}
\end{equation*}
$$

Also, from (1.1) for all sufficiently large values of r and for any given $\varepsilon>0$,

$$
\begin{equation*}
\log ^{[p]} M(r, f)<\left(\rho_{f}+\varepsilon\right) \log ^{[q]} r . \tag{3.7}
\end{equation*}
$$

(3.6) and (3.7) give

$$
\log ^{[p-q]}\left(\log ^{[p-1]} \mu(r, f o g)\right)^{1 /\left(\rho_{f}+\varepsilon\right)}<\log ^{[p-1]} M(r, g)
$$

for all sufficiently large values of r. This implies that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[p-q]}\left(\log ^{[p-1]} \mu(r, f o g)\right)^{1 /\left(\rho_{f}+\varepsilon\right)}}{\log ^{[p-1]} \mu(r, g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p-1]} M(r, g)}{\log ^{[p-1]} \mu(r, g)} \tag{3.8}
\end{equation*}
$$

Now, for a sequence of value of r tending to infinity, (1.2) and (1.4) give,

$$
\begin{align*}
\log ^{[p-1]} M(r, g) & \leq \log ^{[p-1]} \mu(2 r, g)+o(1) \\
& \leq(1+\varepsilon)\left(\log ^{[q-1]}(2 r)\right)^{\lambda_{g}(r)}+o(1) \\
& =(1+\varepsilon) \frac{\left(\log ^{[q-1]}(2 r)\right)^{\lambda_{g}+\delta}}{\left(\log ^{[q-1]}(2 r)\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}}+o(1) \tag{3.9}
\end{align*}
$$

where $\delta>0$ is arbitrary.
Since

$$
\frac{d}{d r}\left\{\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}\right\}=\left\{\lambda_{g}+\delta-\lambda_{g}(r)-\lambda_{g}^{\prime}(r) \wedge_{[q]}(r)\right\} \frac{\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}}{\wedge_{[q-1]}(r)}>0
$$

for all sufficiently large values of r and $\delta>0$. This implies that $\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}$ is an increasing function of r. Therefore, for a sequence of values of r tending to infinity, (3.9) gives

$$
\begin{aligned}
\log ^{[p-1]} M(r, g) & <(1+\varepsilon) \frac{\left(\log ^{[q-1]}(2 r)\right)^{\lambda_{g}+\delta}}{\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}} \\
& \leq(1+\varepsilon) \frac{\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta}\left(1+L_{q-1}(r)\right)^{\lambda_{g}+\delta}}{\left(\log ^{[q-1]} r\right)^{\lambda_{g}+\delta-\lambda_{g}(r)}}+o(1) \\
& =(1+\varepsilon)\left(\log ^{[q-1]} r\right)^{\lambda_{g}(r)}\left(1+L_{q-1}(r)\right)^{\lambda_{g}+\delta}+o(1)
\end{aligned}
$$

where $L_{0}(r)=1, L_{1}(r)=\frac{\log 2}{\log r}$ and $L_{q-1}(r)=\left\{\log \left(1+L_{q-2}(r)\right)\right\} /\left(\log ^{[q-1]} r\right), q=$ $3,4,5, \ldots$.

Again, for all sufficiently large values of r, (1.4) gives

$$
\log ^{[p-1]} \mu(r, g)>(1-\varepsilon)\left(\log ^{[q-1]} r\right)^{\lambda_{g}(r)}
$$

Therefore, for a sequence of values of r tending to infinity, we find

$$
\begin{equation*}
\log ^{[p-1]} M(r, g)<\frac{1+\varepsilon}{1-\varepsilon}\left(1+L_{q-1}(r)\right)^{\lambda_{g}+\delta} \log ^{[p-1]} \mu(r, g)+o(1) \tag{3.10}
\end{equation*}
$$

Since ε and δ are arbitrary, the theorem follows from (3.8) and (3.10).
Now, we study the growth of the maximum term of two composite entire functions.
Theorem 9. If ρ_{h}, ρ_{g} and λ_{f} are finite, then

$$
\lim _{r \rightarrow \infty} \frac{\left(\log ^{[p-2]} \mu(r, h o g)\right)^{\left(\log ^{[q-1]} M(r, g)\right)^{x}}}{\log ^{[p-2]} \mu(r, f o g)}=0, \quad \text { for } x<\lambda_{f}-\rho_{h}
$$

Proof. Let $x<\lambda_{f}-\rho_{h}$ and $0<\varepsilon<\left(\lambda_{f}-\rho_{h}-x\right) / 2$. From (1.2), we have, for all sufficiently large values of r,

$$
\begin{align*}
\mu(r, h o g) & \leq M(r, h o g) \\
& \leq M(M(r, g), h) \\
& <\exp ^{[p-1]}\left(\left(\log ^{[q-1]} M(r, g)\right)^{\rho_{h}+\varepsilon}\right) . \\
\text { or, } \quad \log ^{[p-2]} \mu(r, h o g) & <\exp \left(\left(\log ^{[q-1]} M(r, g)\right)^{\rho_{h}+\varepsilon}\right)
\end{align*}
$$

Also, we can easily prove that for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[p-2]} \mu(r, f o g)>\exp \left(\left(\log ^{[q-1]} M(r, g)\right)^{\lambda_{f}-\varepsilon}\right. \tag{3.12}
\end{equation*}
$$

From (3.11) and (3.12) for all sufficiently large values of r, we get

$$
\begin{aligned}
\frac{\left(\log ^{[p-2]} \mu(r, h o g)\right)^{\left(\log ^{[q-1]} M(r, g)\right)^{x}}}{\log ^{[p-2]} \mu(r, f o g)} & <\frac{\exp \left(\left(\log ^{[q-1]} M(r, g)\right)^{\rho_{h}+\varepsilon+x}\right)}{\exp \left(\left(\log ^{[q-1]} M(r, g)\right)^{\lambda_{f}-\varepsilon}\right)} \\
& =\frac{1}{\exp \left(\left(\log ^{[q-1]} M(r, g)\right)^{\lambda_{f}-\rho_{h}-x-2 \varepsilon}\right)}
\end{aligned}
$$

Since $\lambda_{f}-\rho_{h}-x-2 \varepsilon>0$ and $g(z)$ is non-constant,

$$
\lim _{r \rightarrow \infty} \frac{\left(\log ^{[p-2]} \mu(r, h o g)\right)^{\left(\log ^{[q-1]} M(r, g)\right)^{x}}}{\log ^{[p-2]} \mu(r, f o g)}=0
$$

Corollary 2. Using (1.2) we get under the assumptions of Theorem 9 that

$$
\lim _{r \rightarrow \infty} \frac{\left.\left(\log ^{[p-2]} \mu(r, h o g)\right)^{\left(\log ^{[q-1]}\right.} \mu(r, g)\right)^{x}}{\log ^{[p-2]} \mu(r, f o g)}=0, \quad \text { for } x<\lambda_{f}-\rho_{h}
$$

References

[1] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p, q)-order and lower (p, q)-order of an entire function, J. reine angew. Math. 282(1976), 53-67.
[2] A. P. Aingh, On maximum term of composition of entire functions, Proc. Nat. Acad. Sci. India 59(1989), 103-115.
[3] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, 1949.

Department of Mathematics, G. B. Pant University, Pantnagar-263145, Distt. U.S. Nagar, Uttaranchal, India.
E-mail: drskvaish@yahoo.com

