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GROWTH OF COMPOSITE ENTIRE FUNCTIONS

R. CHANKANYAL AND S. K. VAISH

Abstract. The growth of maximum term of a composite entire function is compared with that

of the maximum term of its left and right factors.

1. Introduction.

Let f(z) =
∑∞

n=0 anzn be an entire function. Then as usual µ(r, f) = maxn≥0 |an|r
n

is called the maximum term of f(z) on |z| = r and M(r, f) = max|z|=r |f(z)| is called
the maximum modulus of f(z) on |z| = r.

The numbers ρf(p, q) and λf (p, q) are, respectively, called the (p, q)-order and lower
(p, q)-order of f(z) having index-pair (p, q) and are defined as [1]:

lim
r→∞

sup log[p] M(r, f)

inf log[q] r
=

ρf ≡ ρf (p, q)

λf ≡ λf (p, q)
, (1.1)

where p and q are integers such that p ≥ q ≥ 1, log[0] x = x, and log[n] x = log(log[n−1] x)
for 0 < log[n−1] x < ∞, n = 1, 2, 3, . . ..

Some theorems that will be of use to us are:

Theorem A. (Singh [2]). For 0 ≤ r < R, we have

µ(r, f) ≤ M(r, f) ≤
R

R − r
µ(R, f). (1.2)

Theorem B. (Juneja, Kapoor and Bajpai [1]). If f(z) is an entire function then

lim
r→∞

sup log[p] µ(r, f)

inf log[q] r
=

ρf ≡ ρf (p, q)

λf ≡ λf (p, q)
. (1.3)

Definition 1. Let g(z) be an entire function of finite lower (p, q)-order λg. A function
λg(r) is called a lower proximate (p, q)-order of g(z) relative to µ(r, g) if (i) λg(r) is real,
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continuous and piecewise differentiable for sufficiently large values of r ≥ r0,

(ii) lim
r→∞

λg(r) = λg,

(iii) lim
r→∞

∧[q](r)λ
′
g(r) = 0 and (1.4)

(iv) lim inf
r→∞

log[p−1] µ(r, g)

(log[q−1] r)λg(r)
= 1,

where ∧[q](r) =
∏q

i=0 log[i] r.
The purpose of this paper is to compare the maximum term of a composite entire

function with that of its left and right factors. Throughout this paper f(z), g(z) and
h(z) will stand for entire functions.

2. Main Results

Firstly, in some theorems we will compare the growth of the maximum term of a
composite entire function with that of its left factor.

Theorem 1. If ρf , ρg are finite and λf > 0 then for x >
ρg

λf
− 1 and p > q,

lim
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= 0.

Proof. Let x >
ρg

λf
− 1 and 0 < ε < min{λf ,

(1+x)λf−ρg

x+2 }. Then in view of (1.3) it
follows that for all sufficiently large values of r,

µ(r, f) < exp[p−1]((log[q−1] r)ρf +ε) (2.1)

and
µ(r, f) > exp[p−1]((log[q−1] r)ρf−ε). (2.2)

Now, from Lemma 1 [2] for all sufficiently large values of r,

log µ(r, fog) ≤ 2 logµ(4µ(2r, g), f),

or, log[p−1] µ(r, fog) ≤ 2 log[p−1] µ(4µ(2r, g), f),

or, log[p] µ(r, fog) < log 2 + (ρf + ε) log[q](4µ(2r, g))

= log 2 + (ρf + ε) log[q] µ(2r, g) + o(1). (2.3)

Using (2.1), we have

log[p] µ(r, fog) < log 2 + (ρf + ε) exp[p−q−1]((log[q−1](2r))ρg+ε) + o(1). (2.4)

Also from (2.2), we have

(log[p] µ(r))1+x > {exp[p−q−1](log[q−1] r)λf−ε}1+x. (2.5)
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So for all sufficiently large values of r,

log[p] µ(r, fog)

(log[q] µ(r))1+x
<

log 2 + (ρf + ε) exp[p−q−1]((log[q−1] 2r)ρg+ε) + o(1)

(exp[p−q−1]((log[q−1] r)λf−ε))1+x

which implies that

lim
r→∞

log[p] µ(r, fog)

(log[q] µ(r))1+x
= 0.

Theorem 2. If ρf , ρg, λf , λg are finite and λf > 0, then

lim sup
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= ∞, where x < max

{

λg

λf
− 1,

ρg

ρf
− 1

}

and p > q.

Proof. Let x <
λg

λf
− 1 and ε > 0 be such that ε < λf , if 2 + x ≤ 0 and ε <

min{λf , (λg − (1 + x)λf )/(2 + x)} if 2 + x > 0.

For all sufficiently large values of r, we get from Lemma 2 [2],

log µ(r, fog) ≥ log
1

2
+ log µ

[

1

8
µ

( r

4
, g

)

− |g(0)|, f

]

≥
1

2
log µ

[

1

8
µ

(r

4
, g

)

− |g(0)|, f

]

,

or, log[p] µ(r, fog) ≥
1

2
log[p] µ

[

1

8
µ

(r

4
, g

)

− |g(0)|, f

]

.

Using (1.3), we have,

log[p] µ(r, fog) >
1

2
(λf − ε) log[q]

[

1

8
µ

(r

4
, g

)

]

=
1

2
(λf − ε) log[q] µ

( r

4
, g

)

+ o(1)

>
1

2
(λf − ε) exp[p−q−1]

(

(

log[q−1]
(r

4

))λg−ε
)

+ o(1). (2.6)

Also, for a sequence of values of r tending infinity, we have

log[q] µ(r, f) < exp[p−q−1]

(

(

log[q−1] r
)λf +ε

)

. (2.7)

From (2.6) and (2.7), we get

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
>

1
2 (λf − ε) exp[p−q−1]((log[q−1](r/4))λg−ε) + o(1)

(exp[p−q−1]((log[q−1] r)λf +ε))1+x
(2.8)
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for a sequence of values of r tending to infinity. This gives

lim sup
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= ∞.

We omit the proof for x <
ρg

ρf
− 1 because it runs parallel to that of the case for

x <
λg

λf
− 1. This completes the proof of the theorem.

Theorem 3. If ρf and ρg are finite, p > q, λf > 0 and either λf = ρf , or λg = ρg,

or both, then

T (x) = lim sup
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
,

has a jumped discontinuity with an infinite jump from zero to infinity at x =
ρg

λf
− 1.

Proof. Since under the conditions of the theorem
ρg

λf
− 1 = max{

ρg

ρf
− 1,

λg

λf
− 1}, the

theorem follows from Theorem 1 and Theorem 2.

Theorem 4. If ρf , ρg are finite, λf > 0 and λgρf < λfρg, then

lim inf
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= 0 (2.9)

and

lim sup
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= ∞, (2.10)

for any x, with
λg

λf
− 1 < x <

ρg

ρf
− 1 and so the corresponding limit does not exist.

Proof. Let x >
λg

λf
− 1 and 0 < ε < min{λf ,

(1+x)λf−λg

x+2 }. From (2.3) and (1.3) we

get for all sufficiently large values of r,

log[p] µ(r, fog) < log 2 + (ρf + ε) + (exp[p−q−1]((log[q−1](2r))λg−ε)) + o(1). (2.11)

Dividing (2.11) by (2.5) and taking limit infimum, we get

lim inf
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= 0.

Since under the given conditions
ρg

ρf
− 1 = max[

λg

λf
− 1,

ρg

ρf
− 1] >

λg

λf
− 1, it follows

from Theorem 2 that

lim sup
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))1+x
= ∞.

Hence the corresponding limit does not exist.
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Corollary 1. If λg < λf ≤ ρf < ρg < ∞, then

lim inf
r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))
= 0 and lim sup

r→∞

log[p] µ(r, fog)

(log[q] µ(r, f))
= ∞

and so the corresponding limit does not exist.

3. In this section we shall compare the growth of the maximum term of a composite

entire function with that of its right factor. In first three theorems of this section we use

the following definition:

Definition 2. For the entire functions f(z) and g(z), we define

A(x) = lim sup
r→∞

log[p] µ(r, fog)

log[q] µ((1 + x)r, g)
, for x ≥ 0 and p > q.

Obviously A(x) is a non-increasing function of x.

Theorem 5. If ρg < ∞, then A(0) ≤ ρf .

Proof. Since for ρf = ∞ the result is trivially true, we suppose that ρf < ∞. By

the maximum modulus principle, we have

M(r, fog) ≤ M(M(r, g), f). (3.1)

(1.2) and (3.1) give,

log[p] µ(r, fog) ≤ log[p] M(M(r, g), f).

Thus, for given ε > 0, we get for all sufficiently large values of r,

log[p] µ(r, fog) ≤ (ρf + ε) log[q] M(r, g). (3.2)

Since ρg < ∞, limr→∞
log[q] M(r,g)

log[q] µ(r,g)
= 1 by [3], so that for all sufficiently large values

of r,

log[q] M(r, g) < (1 + ε) log[q] µ(r, g). (3.3)

Therefore, from (3.2) and (3.3), we get for all sufficiently large values of r,

log[p] µ(r, fog)

log[q] µ(r, g)
< (1 + ε)(ρf + ε).

From which the theorem follows because ε > 0 is arbitrary.

Theorem 6. limx→0+ A(x) ≤ ρf .

Proof. Since for ρf = ∞ the result is trivially true, we suppose that ρf < ∞.
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Putting R = (1 + x)r, x > 0, in (1.2), we get

µ(r, g) ≤

(

1 +
1

x

)

µ((1 + x)r, g),

or, log µ(r, g) ≤ log

(

1 +
1

x

)

+ log µ((1 + x)r, g),

or, log[q] µ(r, g) ≤ log[q] µ((1 + x)r, g) + o(1). (3.4)

From (3.2), (3.3) and (3.4), we get

log[p] µ(r, fog) < (1 + ε)(ρf + ε)(log[q] µ((1 + x)r, g) + o(1))

for all sufficiently large values of r.
Since g(z) is non-constant and ε > 0 is arbitrary, it follows from above that A(x) ≤ ρf

for every x > 0. Also since A(x) is a non-increasing function of x, limx→0+ A(x) exists
and limx→0+ A(x) ≤ ρf .

Theorem 7. If supr>0
log[p] µ(r,fog)

log[q] µ((1+x)r,g)
is not attained for any x ≥ 0 and p > q, then

A(0) ≤ ρf .

Proof. Let B(x) = supr>0
log[p] µ(r,fog)

log[q] µ((1+x)r,g)
for x ≥ 0. Since B(x) is not attained, for

each x ≥ 0 there exists a sequence {rn}, n = 1, 2, 3, . . . tending to infinity such that

B(x) −
1

n
<

log[p] µ(rn, fog)

log[q] µ((1 + x)rn, g)
,

which implies that B(x) ≤ A(x) and so B(x) = A(x) for all x ≥ 0 because B(x) ≥ A(x)
follows easily from the definitions.

Now, for given ε > 0 there exists a ξ > 0 such that

A(0) − ε = B(0) − ε <
log[p] µ(ξ, fog)

log[q] µ(ξ, g)
. (3.5)

Also,

lim
x→0+

log[p] µ(ξ, fog)

log[q] µ((1 + x)ξ, g)
=

log[p] µ(ξ, fog)

log[q] µ(ξ, g)
,

so there exists x1 > 0 such that

log[p] µ(ξ, fog)

log[q] µ(ξ, g)
<

log[p] µ(ξ, fog)

log[q] µ((1 + x1)ξ, g)
+ ε.

Therefore, from (3.5) we get

A(0) − ε <
log[p] µ(ξ, fog)

log[q] µ((1 + x1)ξ, g)
+ ε ≤ B(x1) + ε = A(x1) + ε ≤ lim

x→0+
A(x) + ε.
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Since ε is arbitrary, the theorem follows from Theorem 6.

Theorem 8. If ρf and λg are finite, then

lim inf
r→∞

log[p−q](log[p−1] µ(r, fog))1/ρf

log[p−1] µ(r, g)
≤

2λg, if (p, q) = (2, 1)

1, if (p, q) 6= (2.1)
.

Proof. From (1.2) and (3.1), we have

log[p] µ(r, fog) ≤ log[p] M(M(r, g), f). (3.6)

Also, from (1.1) for all sufficiently large values of r and for any given ε > 0,

log[p] M(r, f) < (ρf + ε) log[q] r. (3.7)

(3.6) and (3.7) give

log[p−q](log[p−1] µ(r, fog))1/(ρf +ε) < log[p−1] M(r, g)

for all sufficiently large values of r. This implies that

lim inf
r→∞

log[p−q](log[p−1] µ(r, fog))1/(ρf +ε)

log[p−1] µ(r, g)
≤ lim inf

r→∞

log[p−1] M(r, g)

log[p−1] µ(r, g)
. (3.8)

Now, for a sequence of value of r tending to infinity, (1.2) and (1.4) give,

log[p−1] M(r, g) ≤ log[p−1] µ(2r, g) + o(1)

≤ (1 + ε)(log[q−1](2r))λg(r) + o(1)

= (1 + ε)
(log[q−1](2r))λg+δ

(log[q−1](2r))λg+δ−λg(r)
+ o(1), (3.9)

where δ > 0 is arbitrary.
Since

d

dr
{(log[q−1] r)λg+δ−λg(r)} = {λg + δ − λg(r) − λ′

g(r) ∧[q] (r)}
(log[q−1] r)λg+δ−λg(r)

∧[q−1](r)
> 0

for all sufficiently large values of r and δ > 0. This implies that (log[q−1] r)λg+δ−λg(r) is
an increasing function of r. Therefore, for a sequence of values of r tending to infinity,
(3.9) gives

log[p−1] M(r, g) < (1 + ε)
(log[q−1](2r))λg+δ

(log[q−1] r)λg+δ−λg(r)

≤ (1 + ε)
(log[q−1] r)λg+δ(1 + Lq−1(r))

λg+δ

(log[q−1] r)λg+δ−λg(r)
+ o(1)

= (1 + ε)(log[q−1] r)λg(r)(1 + Lq−1(r))
λg+δ + o(1),
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where L0(r) = 1, L1(r) = log 2
log r and Lq−1(r) = {log(1 + Lq−2(r))}/(log[q−1] r), q =

3, 4, 5, . . ..
Again, for all sufficiently large values of r, (1.4) gives

log[p−1] µ(r, g) > (1 − ε)(log[q−1] r)λg(r).

Therefore, for a sequence of values of r tending to infinity, we find

log[p−1] M(r, g) <
1 + ε

1 − ε
(1 + Lq−1(r))

λg+δ log[p−1] µ(r, g) + o(1). (3.10)

Since ε and δ are arbitrary, the theorem follows from (3.8) and (3.10).
Now, we study the growth of the maximum term of two composite entire functions.

Theorem 9. If ρh, ρg and λf are finite, then

lim
r→∞

(log[p−2] µ(r, hog))(log
[q−1] M(r,g))x

log[p−2] µ(r, fog)
= 0, for x < λf − ρh.

Proof. Let x < λf − ρh and 0 < ε < (λf − ρh − x)/2. From (1.2), we have, for all
sufficiently large values of r,

µ(r, hog) ≤ M(r, hog)

≤ M(M(r, g), h)

< exp[p−1]((log[q−1] M(r, g))ρh+ε).

or, log[p−2] µ(r, hog) < exp((log[q−1] M(r, g))ρh+ε). (3.11)

Also, we can easily prove that for all sufficiently large values of r,

log[p−2] µ(r, fog) > exp((log[q−1] M(r, g))λf−ε. (3.12)

From (3.11) and (3.12) for all sufficiently large values of r, we get

(log[p−2] µ(r, hog))(log
[q−1] M(r,g))x

log[p−2] µ(r, fog)
<

exp((log[q−1] M(r, g))ρh+ε+x)

exp((log[q−1] M(r, g))λf−ε)

=
1

exp((log[q−1] M(r, g))λf−ρh−x−2ε)
.

Since λf − ρh − x − 2ε > 0 and g(z) is non-constant,

lim
r→∞

(log[p−2] µ(r, hog))(log
[q−1] M(r,g))x

log[p−2] µ(r, fog)
= 0.

Corollary 2. Using (1.2) we get under the assumptions of Theorem 9 that

lim
r→∞

(log[p−2] µ(r, hog))(log
[q−1] µ(r,g))x

log[p−2] µ(r, fog)
= 0, for x < λf − ρh.
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