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ISOTROPIC GEOMETRY OF GRAPH SURFACES ASSOCIATED WITH

PRODUCT PRODUCTION FUNCTIONS IN ECONOMICS

MUHITTIN EVREN AYDIN AND MAHMUT ERGUT

Abstract. A production function is a mathematical formalization in economics which

denotes the relations between the output generated by a firm, an industry or an economy

and the inputs that have been used in obtaining it. In this paper, we study the product

production functions of 2 variables in terms of the geometry of their associated graph

surfaces in the isotropic 3−space I
3. In particular, we derive several classification results

for the graph surfaces of product production functions in I
3 with constant curvature.

1. Introduction

In economics, a production function is a non-constant positive function that specifies the

output of a firm, an industry, or an entire economy for all combinations of inputs. Explicitly,

it is a map of class C∞ which has non-vanishing first derivatives defined by







h : Rn
+ −→R+, (x1, x2, . . . , xn) 7−→ h (x1, x2, . . . , xn) ,

R
n
+ = {(x1, x2, . . . , xn) : xi > 0, i = 1, . . . ,n} .

(1.1)

Here h denotes the quantity of output, n is the number of inputs and the variables are the

inputs (such as capital, labor, raw materials etc.). Some interesting examples of production

functions can be found in [18].

In order for the production functions to model as well economic reality, they are required

to get some proporties (see e.g. [5, 22]). The most important of these proporties is the pro-

duction function f to be homogeneous, i.e. there exist a real number p such that

h (λx1,λx2, . . . ,λxn) =λp h (x1, x2, . . . , xn) , λ ∈R+. (1.2)

(1.2) implies that when the inputs are multiplied by same factor, the output is multiplied by

some power of the factor.
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If p < 1 (resp. p > 1) in (1.2), then the production function is said to have decreasing

(resp. increasing) return to scale. If p = 1, then it is said to have constant return to scale.

The presence of increasing returns means that a one percent increase in the usage levels

of all inputs would result in a greater than one percent increase in output; the presence of

decreasing returns means that it would result in a less than one percent increase in output.

Constant returns to scale is the in-between case (cf. [8]).

A. D. Vilcu and G. E. Vilcu [26] completely classified the homogeneous production func-

tions with constant proportional marginal rate of substitution. Further, the homogeneous

production functions have been investigated via their associated graph hypersurfaces in [6]-

[11], [29].

The most famous one among homogeneous production functions is Cobb-Douglas pro-

duction function, introduced in 1928 by C. W. Cobb and P. H. Douglas [12]. In original form, it

is given as

Y = bLkC 1−k ,

where b presents the total factor productivity, Y the total production, L the labor input and C

the capital input.

The generalized Cobb-Douglas production function of n variables is defined by

h (x)= Ax
α1

1 x
α2

2 · · ·x
αn
n , x = (x1, x2, . . . , xn) ∈R

n
+

where A,α1,α2, . . . ,αn > 0. We note that h has constant return to scale if and only if
∑n

i=1αi =
1.

X. Wang, Y. Fu [28] and A.D. Vilcu, G.E. Vilcu [24, 25] classified the graph hypersurfaces

of the generalized Cobb-Douglas production functions with zero Gauss-Kronocker and mean

curvature.

On the other hand, there are some non-homogeneous production functions, including

the famous Spillman-Mitscherlich and transcendental production functions respectively de-

fined by






h (x)= A
[

1−exp(a1x1)
]

·
[

1−exp(a2x2)
]

· · ·
[

1−exp(an xn)
]

,

x = (x1, x2, . . . , xn) ∈R
n
+, A > 0, ai < 0, i = 1, . . . ,n

and






h (x)= Ax
a1

1 exp(b1x1) ·x
a2

2 exp(b2x2) · · ·x
an
n exp(bn xn) ,

x = (x1, x2, . . . , xn) ∈R
n
+, A > 0, ai ,bi ∈R, a2

i
+b2

i
6= 0, i = 1, . . . ,n.

Such production functions, including the generalized Cobb-Douglas production function,

belong to a more general class of production functions given by

h (x) =
n
∏

j=1

g j

(

x j

)

,x = (x1, x2, . . . , xn) ∈R
n
+,
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where g j is a continuous positive real function with nonzero first derivatives, j = 1, . . . ,n. H.

Alodan et al. [1] called these production functions product production functions. A produc-

tion function is said to be quasi-product, if it is of the form

h (x)= F

(

n
∏

j=1

g j

(

x j

)

)

,x = (x1, x2, . . . , xn)∈R
n
+,

where F, g j are continuous positive real functions with nonzero first derivatives, j = 1, . . . ,n. A

lot of classifications of the quasi-product and quasi-sum (see [16]) production functions can

be found in [1]-[4], [14, 27] in terms of the geometry of their graph hypersurfaces.

B.-Y. Chen, et al. [7, 13] investigated the graph hypersurfaces of the production models

via the isotropic geometry. In the present paper, we classify the graph surfaces of product

production functions of 2 variables with constant curvature in the isotropic 3-space I
3.

2. Basics on isotropic spaces

For later use, we provide a brief review of isotropic geometry from [7], [19]-[21].

The isotropic 3-space I
3 is a Cayley–Klein space defined from a 3-dimensional projective

space P
(

R
3
)

with the absolute figure which is an ordered triple
(

ω, f1, f2

)

, where ω is a plane

in P
(

R
3
)

and f1, f2 are two complex-conjugate straight lines in ω. The homogeneous coor-

dinates in P
(

R
3
)

are introduced in such a way that the absolute plane ω is given by X0 = 0

and the absolute lines f1, f2 by X0 = X1 + i X2 = 0, X0 = X1 − i X2 = 0. The intersection point

F (0 : 0 : 0 : 1) of these two lines is called the absolute point. The group of motions G6 of I3 is a

six-parameter group given in the affine coordinates x1 = X1

X0
, x2 = X2

X0
, x3 = X3

X0
by

(x1, x2, x3) 7−→
(

x ′
1, x ′

2, x ′
3

)

:















x ′
1 = a +x1 cosφ−x2 sinφ,

x ′
2 = b +x1 sinφ+x2 cosφ,

x ′
3 = c +d x1 +ex2 +x3,

(2.1)

where a,b,c ,d ,e,φ ∈ R. Such affine transformations are called isotropic congruence transfor-

mations or i-motions. It is easily seen from (2.1) that i-motions are indeed composed by an

Euclidean motion in the x1x2−plane (i.e. translation and rotation) and an affine shear trans-

formation in x3−direction.

In general, the following terminology is used for the isotropic spaces. Consider the points

x = (x1, x2, x3) and y =
(

y1, y2, y3

)

. The projection in z−direction ontoR
2 , (x1, x2, x3) 7−→ (x1, x2,0) ,

is called the top view. In the sequel, many of metric properties in isotropic geometry (invari-

ants under G6) are Euclidean invariants in the top view such as the isotropic distance, so-

called i-distance. I-distance of two points x and y is defined as the Euclidean distance of their
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top views, i.e.,

∥

∥x−y
∥

∥

i =

√

√

√

√

2
∑

j=1

(

y j −x j

)2
. (2.2)

The i-metric is degenerate along the lines in z−direction, and such lines are called isotropic

lines. The plane containing an isotropic line is called an isotropic plane. Therefore, an isotropic

3−space I
3 is the product of the Euclidean 2−space R

2 and an isotropic line with a degenerate

parabolic distance metric.

Let M 2 be a regular surface immersed in I
3 which has no isotropic tangent planes. Such

a surface M 2 is said to be admissible and can be parametrized by

r : D ⊆R
2 −→ I

3 : (u1,u2) 7−→ (r1 (u1,u2) ,r2 (u1,u2) ,r3 (u1,u2)) , (2.3)

where r1, r2 and r3 are smooth real-valued functions on a domain D ⊆R
2. Denote g the metric

on M 2 induced from I
3. The components of the first fundamental form of M 2 can be calcu-

lated via the induced metric g as follows

gi j = g
(

rui
,ru j

)

, rui
=

∂r

∂ui
, i , j ∈ {1,2} .

The unit normal vector field of M 2 is completely isotropic, i.e. (0,0,1). Also, the components

of the second fundamental form are (for details, see [20], p. 150-155)

ti j =
det

(

rui u j
,ru1

,ru2

)

√

det
(

gi j

)

, rui u j
=

∂2r

∂ui∂u j
, i , j ∈ {1,2} . (2.4)

Thus the relative curvature (so-called the isotropic curvature or isotropic Gaussian curvature)

and the isotropic mean curvature are respectively defined by

K =
det

(

ti j

)

det
(

gi j

) , H =
g11t22−2g12t12 + g22t11

2det
(

gi j

) . (2.5)

A surface is called isotropic minimal (resp. isotropic flat) if its isotropic mean curvature (resp.

relative curvature) vanishes.

In particular, if M 2 is a Monge surface in I
3 of the form

(u1,u2) 7−→ (u1,u2,h (u1,u2)) ,

then the metric on M 2 induced from I
3 is given by g∗ = du2

1 +du2
2. This implies that M 2 is

always a flat space with respect to the induced metric g∗. Thus its Laplacian is given by

△=
2

∑

j=1

∂2

∂u2
j

.
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Also, the matrix of second fundamental form of M 2 becomes the Hessian matrix of h (i.e.

the square matrix
(

hui u j

)

of second-order partial derivatives of the function h). Thereby, the

formulas in (2.5) reduce to

K = det
(

hui u j

)

= hu1u1
hu2u2

−
(

hu1u2

)2
, 2H =△h = hu1u1

+hu2u2
. (2.6)

3. Product production functions

Let us consider the product production function of 2 variables given by

h : R2
+ −→R+,

(

x, y
)

7−→ h
(

x, y
)

= f (x) g
(

y
)

,

where f , g are continuous positive real functions with f ′ (x)= d f

dx 6= 0 and g ′ (y
)

= dg

d y 6= 0. The

graph surface M 2 corresponding to h is of the form

r
(

x, y
)

=
(

x, y,h
(

x, y
)

= f (x) g
(

y
))

, (3.1)

which we call product production surface.

We remark that the surfaces of the form (3.1) are known as factorable surfaces or homo-

thetical surfaces in ambient spaces and have been studied in [15, 17, 23, 30].

The following result provides a complete classification of the product production sur-

faces in I
3 with constant relative curvature.

Theorem 3.1. Let M 2 be a surface given by (3.1) in I
3 with constant relative curvature K0.

(A) If K0 = 0, then one of the following occurs:

(A.1) h
(

x, y
)

= c1 f (x) or h
(

x, y
)

= c2g
(

y
)

for nonzero constants c1,c2.

(A.2) h is a transcendental production function of 2 variables given by

h
(

x, y
)

= A exp
(

c1x +c2 y
)

,

where A,c1,c2 are nonzero constants.

(A.3) Up to translations of x and y, h is a Cobb-Douglas production function of 2 vari-

ables with constant return to scale.

(B) If K0 6= 0, then it is negative (K0 < 0) and, up to translations of x and y, h is a Cobb-Douglas

production function of 2 variables given by

h
(

x, y
)

=
√

−K0x y.
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Proof. Assume that M 2 has constant relative curvature K0 in I
3. Then, it follows from (2.6) that

(

f ′′g ′′) f g −
(

f ′g ′)2 = K0 (3.2)

where f ′ = d f
dx and g ′ = dg

d y , etc. We divide the proof into two cases:

Case (i). K0 = 0. Then, from (3.2), both situations, f or g constants, are solutions for (3.2).

This implies the statement (A.1) of the theorem. Now, let us assume that f and g are non-

constant functions. Hence, it follows from (3.2) that f and g cannot be linear functions. Thus

the equation (3.2) can be rewritten as

f ′′ f
(

f ′
)2

−
(

g ′)2

g ′′g
= 0,

which yields

f f ′′
(

f ′
)2

=λ=
(

g ′)2

g ′′g
(3.3)

for a nonzero constant λ. In order to solve (3.3) we have to distinguish two situations.

Case (i.1). λ= 1. Then after solving (3.2) we get

f (x) = c1 exp(c2x) and g
(

y
)

= c3 exp
(

c4 y
)

,

where ci are nonzero constants, 1 ≤ i ≤ 4, which gives the the statement (A.2) of the theorem.

Case (i.2). λ 6= 1. Solving (3.3) yields

f (x) = [(1−λ) (c1x +d1)]
1

1−λ and g
(

y
)

=
[(

λ−1

λ

)

(

c2 y +d2

)

] λ
λ−1

for nonzero constants c1,c2 and some constants d1,d2. Up to suitable translations of x, y , we

obtain

h
(

x, y
)

= f (x) g
(

y
)

= Ax
1

1−λ y− λ
1−λ

for A = [c1 (1−λ)]
1

1−λ

[

c2

(

λ−1
λ

)] λ
λ−1

. This proves the statement (A.3) of the theorem.

Case (ii). K0 6= 0. Suppose that f and g are non-linear functions. Hence, we can rewrite (3.2)

as

f f ′′
(

f ′
)2

−
(

g ′)2

g g ′′ =
K0

(

f ′
)2

g g ′′
. (3.4)

Differentiating of (3.4) with respect to y gives

−

(
(

g ′)2

g g ′′

)′

=
K0

(

f ′
)2

(

1

g g ′′

)′
. (3.5)
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From (3.5), if
(

1

g g ′′

)′
= 0,

i.e. g g ′′ is a nonzero constant c in (3.5), then we get 1
c

(

(

g ′)2
)′
= 0, which is not possible be-

cause g is non-linear function. In (3.5) if

(
(

g ′)2

g g ′′

)′

= 0, (3.6)

then (3.5) reduces to
K0

(

f ′
)2

(

1

g g ′′

)′
= 0,

which yields g g ′′ = d , d 6= 0. Considering this in (3.6) implies 2
d g ′g ′′ = 0 and it is a contradic-

tion. Thereby we can rewrite (3.5) as

−

(

(g ′)2

g g ′′

)′

(

1
g g ′′

)′ =
K0

(

f ′
)2

. (3.7)

Since f is a non-linear function, the right-side of (3.7) is a function of x. However the left-side

of (3.7) is either a constant or a function of y. Both cases are not possible.

Now let either f or g be a linear function. Without loss of generality, we may assume that

f is a linear function, i.e. f (x) = c1x +d1, c1 6= 0, d1 ∈R. Then we get from (3.2)

g ′ =
p
−K0

c1
, K0 < 0.

This implies that g is also a linear function, i.e. g
(

y
)

=
p
−K0

c1
y +d2, d2 ∈R. Thus, up to suitable

translations of x and y, we derive

h
(

x, y
)

=
√

−K0x y.

This gives of the statement (B) of the theorem.

Therefore, the proof is completed.

Next classifies the product production surfaces of constant isotropic mean curvature in

I
3.

Theorem 3.2. Let M 2 be a surface given by (3.1) in I
3 with constant isotropic mean curvature

H0.
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(A) If H0 is a nonzero constant, then

h
(

x, y
)

=
H0

g0
x2 +d1x +d2, (or

H0

f0
y2 +d1 y +d2)

for f0, g0 ∈R− {0} , d1,d2 ∈R.

(B) If M 2 is isotropic minimal, i.e. H0 = 0, then either

(B.1) up translations of x and y, h is a Cobb-Douglas production function of 2 variables

given by h
(

x, y
)

= Ax y, A > 0, or

(B.2) h is given by one of the following

h
(

x, y
)

=
(

c1e
p
λx +c2e−

p
λx

)(

c3 cos
(p

λy
)

+c4 sin
(p

λy
))

and

h
(

x, y
)

=
(

c5 cos
(p

−λx
)

+c6 sin
(p

−λx
))(

c7e
p
−λy +c8e−

p
−λy

)

for nonzero constants λ,c1, . . . ,c8.

Proof. Assume that M 2 has constant isotropic mean curvature H0. Then, by (2.6) , we get

2H0 = f ′′g + f g ′′. (3.8)

It follows from (3.8) that when g is a nonzero constant g0 we have

f (x)=
H0

g0
x2 +d1x +d2, d1,d2 ∈R,

and analogously if f is a nonzero constant f0, we deduce

g
(

y
)

=
H0

f0
y2 +d3 y +d4, d3,d4 ∈R,

which proves the statement (A) of the theorem.

Now suppose that f , g are non-constant functions. Then (3.8) can be rewritten as

f ′′

f
+

g ′′

g
=

2H0

f g
. (3.9)

After taking the partial derivative of (3.9) with respect to x, we deduce

(

f ′′

f

)′
f 2

f ′ =−2H0
1

g
. (3.10)

The left-side of (3.10) is etiher a constant or a function of x while the other side is a function

of y. This case is only possible when H0 = 0 and

(

f ′′

f

)′
= 0. (3.11)
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Similarly, taking the partial derivative of (3.9) with respect to y, we find H0 = 0 and

(

g ′′

g

)′
= 0. (3.12)

This means that M 2 is isotropic minimal, i.e. H0 = 0. From (3.9) , (3.11) and (3.12) , we con-

clude
f ′′

f
=λ=−

g ′′

g
(3.13)

for some constant λ. If λ= 0 in (3.13), then f and g become linear functions. Thus, up trans-

lations of x and y, we get h
(

x, y
)

= Ax y , which gives the proof of the statement (B.1).

Now let us assume that λ 6= 0, i.e. f and g are non-linear functions. Then the equations

in (3.13) can be rewritten as

f ′′−λ f = 0 (3.14)

and

g ′′+λg = 0. (3.15)

If λ> 0, by solving (3.14) and (3.15) , we derive

f (x) = c1e
p
λx +c2e−

p
λx

and

g
(

y
)

= c3 cos
(p

λy
)

+c4 sin
(p

λy
)

for nonzero constants c1, . . . ,c4. Otherwise (i.e. λ< 0) we obtain

f (x) = c5 cos
(p

−λy
)

+c6 sin
(p

−λy
)

and

g
(

y
)

= c7e
p
−λy +c8e−

p
−λy

for nonzero constants c5, . . . ,c8. This gives the proof.

Remark 3.3. For the product production function given by h
(

x, y
)

= f (x) g
(

y
)

, we have that

f and g are nonconstant functions. Hence, while the statement (A.1) of Theorem 3.1 and the

statement (A) of Theorem 3.2 are correct in mathematical perspective, in reality such product

production functions do not exist.

Now let us consider Spillman-Mitscherlich and transcendental production functions of 2

variables respectively given by

{

h
(

x, y
)

= A
[

1−exp(ax)
]

·
[

1−exp
(

by
)]

,
(

x, y
)

∈R
2
+, A > 0, a,b < 0

(3.16)
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and
{

h
(

x, y
)

= Axa1 exp(b1x1) ·x
a2

2 exp(b2x2) ,
(

x, y
)

∈R
2
+, A > 0, ai ,bi ∈R, a2

i
+b2

i
6= 0, i = 1,2.

(3.17)

From Theorem 3.1 and Theorem 3.2, we obtain the following results for the surfaces cor-

responding to these production functions.

Corollary 3.4. Let h be a Spillman-Mitscherlich production function of 2 variables given by

(3.16). Then the corresponding graph surface M 2 of h has neither constant relative nor constant

isotropic curvature in I
3.

Corollary 3.5. Let h be a transcendental production function of 2 variables given by (3.17)

and M 2 its associated graph surface in I
3. Then:

(A) M 2 has constant relative curvature K0 in I
3 if and only if K0 = 0 and one of the following

occurs:

(A.1) a1 = a2 = 0 and b1 6= 0 6= b2, or

(A.2) a1 +a2 = 1, a1 6= 0 6= a2 and b1 = b2 = 0.

(B) M 2 has constant isotropic curvature H0 in I
3 if and only if H0 = 0 and a1 = a2 = 1, b1 = b2 =

0.
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