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A NEW GENERAL IDEA FOR STARLIKE AND CONVEX FUNCTIONS

SHIGEYOSHI OWA, H. M. SRIVASTAVA, TOSHIO HAYAMI AND KAZUO KUROKI

Abstract. Let o/ be the class of functions f(z) which are analytic in the open unit disk U
with f£(0) =0 and f’(0) = 1. For the class <7, a new general class </ is defined. With this
general class «/, two interesting classes ;" (@) and £} (a) concerning classes of starlike
of order a in U and convex of order « in U are considered.

1. Introduction

Let «f be the class of functions f(z) of the form
[e 0]
f@=z+) apz", (1.1)
n=2

which are analytic in the open unit disk U= {z€ C:|z| <1} and f(0) = f'(0)—1=0. If f(2) € o/

satisfies f(z1) # f(z2) for any z; € U and z, € U with z; # 2z, then f(z) is said to be univalent
in U and denoted by f(z) € . If f(z) € o satisfies the following inequality:

R ( zf'(2)

f(2)

for some real @ (0 < a < 1), then we say that f(z) is starlike of order @ in U and denoted by

f(2) € ¥*(a). Further, if f(z) € «f satisfies the following inequality:
1
R (1 + 2/ (@)
(@)
for some real @ (0 < a < 1), then f(z) is said to be convex of order @ in U. We also write
f(z) € X () for convex functions f(z) of order a in U (see, for details, [1], [2], [5], [6] and

) >a (zel) (1.2)

) >a (zel) 1.3)

[7]). In the literature on Geometric Function Theory in Complex Analysis, there are many
interesting results for univalent functions, starlike functions and convex functions (see, for
example, [3], [4] and [8]).
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In view of the definitions for the function classes .#, ¥ * («) and % («), it is known that

K@cF (ac¥ and f(zeH(a) = zf'(2)e S (a)

and : F
f(z) e " (a) = f detEZ(a).
0
It is well known that the Koebe function f(z) given by
flz) = z —z+oZo:nz” (1.4)
1- Z)z n=2 .
is the extremal function for the class #*(0) =.%* and that a function f(z) given by
z o0
fe=——=z+) 2" (1.5
-2z n=2

is the extremal function for the class £ (0) = .%".

Taking the principal value for \/z, we consider a function f(z) given by

(2)=—————=z+ 3 (n+1)z'*2  (zeU). (1.6)
! (1-vz)° nX::l
Then we find that
%(Zf/(Z))_%( 1 )>1 (zeU) (.7
f@ ) T\1-yzl) 2 ’ '

1
that is, that f(z) is starlike of order 5 in U. Also, if we consider a function given by

2- = .
f(z)zz(—‘/z)zzu Y (1+2)2 zev), (1.8)
2(1-v/7z) n=1' 2

then f(z) satisfies the following inequality:

sre(zf,(Z))zsre( 4-3vz+z )>0 (zeU), (1.9
f@ 2(2-vz)(1-V7)
which imples that f(z) is starlike in U.
Furthermore, if we take a function given by
od R
f(z):l_ﬁ=z+n;z 2 (zel), (1.10)

then f(z) satisfies the following inequalities:

") 2lna) s

(zeU), (1.11)
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3
so that f(z) is starlike of order n inU, and

i _
%(1+Zf (Z))z (2(24 SVEXE oo (zew, (1.12)

f'@ -Vz)(1-v7)
which imples that f(z) is convex in U.

In view of the above observations, we introduce the general function classes <} (k =
1,2,3,...) as follows.

Let /). be the class of functions f(z) given by
o) n
f@=z+) aj2z%  (k=1,23,.), (1.13)
n=1

which are analytic in the punctured open unit disk
Up=U\{0} ={z:2€C and 0<]|z|<1},

. - 1
where we consider the principal value for z.

If f(z) € of} satisfies the following inequality:

%(Z]{(S)) sa  (zel) (1.14)

for some real & (0 = a < 1), then we say that f(z) € ¥ (@). Further, if f(z) € o/ satisfies the

following inequality:

1!

§R(1+M)>a (zeU) (1.15)
(@)

for some real @ (0 < a < 1), then we write f(z) € #;(a). With the above definitions, we see

that

f2) € Hi(a) < zf'(2) € # (@)

and

2

f@) e F(a) = Tdteﬂfk((x).

0

2. Coefficient inequalities

First of all, for the above-defined new general function classes, we consider the coeffi-

cient inequalities for functions in yk* () and A ().
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Theorem 1. If f(z) € o} satisfies the following inequality:
i (n +1 a) 'a

Z 41— L

n=1 k T

forsomereala (0 < a <1), then f(z) € yk* (a). The equality in (2.1) is attained for

<l-a (2.1)

& (1-a)ke 142

Z o+ Din+ (1-a)k) (lef=1). 2.2)

f@)=z+

Proof. It follows that the function f(z) € #"(a) when f(z) € </ satisfies the following in-
equality:

/
@ it zew), 2.3)
f(2)
Indeed, we have
© n n o n
zf'(2) n§1 ke ngl k ’aH% <
- = - — <l-a 2.4)
f@) 1+ Y ay,nz* 1- ) |ayyn
n=1 k n=1
if f(z) satisfies the following condition:
o0 n o0
Zﬂa% §(1—a)(1—2'a1+% ) 2.5)
n=1 n=1

which is equivalent to the inequality (2.1). Further, we consider the function f(z) € <7} which
satisfies the following condition:

§(2+1—a”a —(l—a)i(l— ! )—l—a (2.6)
n=1k Ml “\n n+1) ' :
This yields
(E+1—a)|a L 2.7
k YET nm+1) '
for all n > 1. Therefore, we have
G,y = —— 0Bk (lel=1) 2.8)
YET i+ D+ (- k) - '
which shows us that the function f(z) given by (2.2) satisfies the equality in (2.1). a
Taking k = 1 in Theorem 1, we have the following corollary.
Corollary 1. If f(z) € of satisfies the following inequality.
(o]
> (n—a)la =1-a (2.9)

n=2
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for somereal a (0 < a < 1), then f(z) € #*(a). The inequality in (2.9) is attained for the func-
tion f(z) given by

B ey 1-a)e n B
f(z)_“n;z—n(n—l)(n—a)z (lel = 1). (2.10)

Next, we derive Theorem 2 below.

Theorem 2. If f(z) € <. satisfies the following inequality.

gl(%ﬂ)(%ﬂ—aﬂaug Sl-a 2.11)

for somereal a (0 < a < 1), then f(z) € Xy (a). The equality in (2.11) holds true for f(z) given

by

fle)=z+ 3 -k’ 2T (el=1). (2.12)
mnm+n+ b+ 1-a)k)

Proof. Noting that

f(2) € Hi(@) = zf'(2) € F (),
we immediately see that zf’(z) € yk* (a), that is, that f(z) € £ (a) if f(z) € o satisfies the
following inequality:

<l-a (2.13)

i (2+1)(2+1—a) |a1+ﬂ
n=1 k k .
for some real a (0 < a < 1). Also, the equality in (2.11) is attained for f(z) given by (2.12). O

Upon setting k = 1 in Theorem 2, we deduce the following corollary.

Corollary 2. If f(z) € of satisfies the following inequality.

Y nn-alay S1-a (2.14)

n=2

forsomereala (0 < a < 1), then f(z) € X (a). The equality in (2.14) is attained for the function
f(z) given by
& 1-a)e

S n-Dn-a) (el =1). (2.15)

fl&)=z+
Corollary 3. If f(z) € <) satisfies the coefficient inequality (2.11) for some real a (0 < a < 1),
then f(z) € & (B) with
1+k

P=Tre—ar !

(2.16)
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Proof. If f(z) € o/} constrained by (2.11) satisfies the following inequality:

2 (518 s

<1-8 2.17)

for some real 8 (0 < 8 < 1), then we say that f(z) € yk* (B). Therefore, we consider some real
B such that

%+1—,6< (%+1)(%+1—a)

=5 S —— (2.18)
foralln=1,2,3,.... This yields
n+k
ﬁgm (n=1,2,3,...).
Therefore, we see that
§min{ n+k }: 1+k . 0
n>1 ln+2-a)k 1+2-a)k

3. A general class of functions

Noting that the Koebe function f(z) given by (1.4) is the extremal function for the class

<*, we consider the function f(z) given by

fa=—2 =24 ) et (3.1)
(1 —Z%) n=1
for k =1,2,3,.... If k=1 in (3.1), then f(z) € 5”1*. Moreover, if k = 2 in (3.1), then f(z) €
1
L =].
2 (2)
For such f(z) given by (3.1), we have the following result.
-1
Theorem 3. If f(z) is given by (3.1), then f(z) €§”k* (kT)
Proof. It follows that
/ 1 _ _
m(Zf(Z)):m - 2zrc1 g k=2, 2 1 Jk-1 3.2
f@) k(l—zE) k k(l—zf) k
for ze U. Oa

Remark 1. From f(z) in (3.1), we see that

OZO: (%+1—a)’a1+%

n=1

:i(%+1—a)(n+l)

n=1
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oo oo n
=(1-a) ) (n+D+) —(n+1)
n=1 n=1 k
>1—-a.
Therefore, f(z) does not satisfy the inequality (2.1) for any a and k.

We now derive the following result.

k-4
Theorem 4. If f(z) is given by (3.1) with k = 4, then f(z) € %} (7)

Proof. We note that the function f(z) given by (3.1) satisfies the following condition:

zf"(2) 3z% (k-2)zF
1+ — =1+ ~ -
f'@ k(l—zz) k(k—(k—zm)
3 k-2
=1+ - (z € Uyp). (3.3)

k(zt-1) k(ket-(k-2)
If we take z = 0, then the left-hand side of (3.3) becomes 1. Therefore, we consider

Z%:ei%:eiw ((p:g).

k

We then have £ 5 =2 ((e—2)— k )

zf"(z - —2)—kcos¢g
RI1+ =1-—+ . 3.4
( f'(2) ) k k((k—2)2+k?-2k(k-2)cos¢) (34)
It is easy to see that the right-hand side of (3.4) is decreasing for cos ¢ with k = 4. This obvi-

ously yields
zf"(2) ) k-4
RI1+ > — el). 3.5
( 7@ ok (zel) 3.5
O
Next, we define a function f(z) by
z & n
fla)= -=z+ ) 2'TE (3.6)
1-2z% n=1

fork=1,2,3,....f k=1in (3.6), then f(z) € % .

2k -
Theorem 5. If f(2) is given by (3.6), then f(z) € # (

1
T ) and f(z) € Z3(0).

Proof. Noting that
z2f'(z) 2%

1@ ki)

(3.7
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we have

! -1 1 2k—1
§R(zf (z)):§R k . _|> k 3.8)
f(Z) k k(l _ ZE) 2k
for z € U. Further, we readily find that
Z2f"(2) k- (k-2)zF (k- 1)zt
y = N Y (3.9
f'@ k(l—zE) k(k—(k—l)zE)
which shows that
" -1 2 1
§R(1+Zf, (z)):% k N _ :
f(2) k k(l—zf) k—(k—1)zx
k-1 1 1
> 4 - ————
k k k-(k-1
=0
for ze U. Oa
Remark 2. From f(z) in (3.6), we see that
X n X n
r;l(%+l—a)'a1+% :;1(E+1—a)>1—a, 3.10)
which shows that f(z) does not satisfy (2.1) for any a and k.
In view of the function f(z) given by (1.8), we introduce a function f(z) as follows:
z[k - (k—1)z% o )
f(z)z(—2)=z+2(l+ﬁ)zl+ﬁ (3.11)
1 n=1 k
k(l —Zk)

with k=1,2,3,.... If k=1, then f(z) becomes the Koebe function given by (1.4).

We derive the following result.

Theorem 6. If f(2) is given by (3.11), then f(z) € #,7(0).
Proof. Note that, for f(z) given by (3.11), we get

f'2) 2t ((k+1) - (k- Dzt
—1+

f@) k(l—z%)(k—(k—l)z%)
1 1
%

) e
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Since ,
2@ =1 for z=0,
f(2)
we consider 0
1 0
E = ZE = ltp = -
zk=e e ((p k)'
We then find that
! 2k—1 1-
m(zf (Z)) _ 2k _ — . (3.12)
f@ 2k (2k? -2k +1) - (2k—1)*cos ¢ + 2k(k — 1) cos? ¢
Letting
X=cos@ -1=5x=<1),
we consider a function g(x) given by
(x) = Lox (3.13)
& C(2k2-2k+1) - 2k -1)2x+2k(k—1)x2 '
Then, since g’(x) = 0, we obtain
gx) S limg(x) =1.
x—1
Consequently, we obtain
zf’(z))
R|l——|>0 (zel), (3.14)
( f(2
which that f(z) € &7 (0). O
Remark 3. From f(z) in (3.11), we have
X n © n
—+1-al|a;z|= —+l-a||—-+1
nZ::l(k )| 1% n;( )(k )
X n X n
=(1-a) —+1|+ —(=+1
L) L)
>1-a. (3.15)

Thus, clearly, the function f(z) does not satisfy the inequality (2.1) for any a and k.
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