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EXISTENCE THEOREMS FOR GENERALIZED VECTOR EQUILIBRIA

WITH VARIABLE ORDERING RELATION

LU-CHUAN CENG, YEONG-CHENG LIOU AND CHING-FENG WEN

Abstract. In this paper we study the solvability of the generalized vector equilibrium

problem (for short, GVEP) with a variable ordering relation in reflexive Banach spaces.

The existence results of strong solutions of GVEPs for monotone multifunctions are es-

tablished with the use of the KKM-Fan theorem. We also investigate the GVEPs without

monotonicity assumptions and obtain the corresponding results of weak solutions by

applying the Brouwer fixed point theorem. These results are also the extension and im-

provement of some recent results in the literature.

1. Introduction

A partially order set (X ,¹) is a set X equipped with a partial order ¹, that is, ¹ is a transi-

tive, reflexive, antisymmetric relation. An ordered vector space X is a real vector space with a

partial order ¹ such that if x, y ∈ X and x ¹ y , then

(i) x + z ¹ y + z for each z ∈ X ; and

(ii) αx ¹αy for each α≥ 0.

A nonempty subset P of a vector space X is a convex cone if αP ⊂ P for all α ≥ 0 and

P +P ⊂ P . A convex cone P is pointed if P ∩ (−P) = {0}. A cone P is proper if it is properly

contained in X . Note that P is a proper cone if and only if 0 6∈ intP , where intE denotes the

interior of a set E . A pointed convex cone P induces a partial order ≤P on X defined by x ≤P y

whenever y − x ∈ P . In this case, (X ,≤P ) is an ordered vector space (X ,≤P ) with an order

relation ≤P . The weak order 6≤intP on an ordered vector space (X ,≤P ) with intP 6= ; is defined

by x 6≤intP y whenever y −x 6∈ intP .

Let X and Y be two Banach spaces. The space of all continuous linear operators from a

Banach space X into a Banach space Y is denoted by L (X ,Y ). For S ∈ L (X ,Y ) and x ∈ X ,
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〈S, x〉 denotes the value of S at x. Let K be a nonempty closed convex subset of X and let C :

K → 2Y be a cone mapping, i.e., C (x) is a proper closed pointed convex cone and intC (x) 6= ;

for each x ∈ K . Suppose that A : K ×L (X ,Y ) →L (X ,Y ) and f : K → Y are single-valued map-

pings and T : K → 2L (X ,Y ) is a set-valued mapping. In 2010, Ceng and Huang [16] introduced

and considered the generalized vector variational inequality (for short, GVVI), which is to find

x0 ∈ K with the following property: there exists u0 ∈ T (x0) such that

〈A(x0,u0), y −x0〉+ f (y)− f (x0) 6≤intC (x0) 0, ∀y ∈ K . (1.1)

Such an x0 is also called a strong solution of GVVI (1.1). If T is single-valued, then the GVVI

reduces to the vector variational inequality (VVI). In recent years there has been an increasing

interest in VVI; mainly this study in finite-dimensional Euclidean spaces was first introduced

by Giannessi in [6]. It has shown to be an effective and powerful tool in the mathematical

investigation of a wide class of problems arising in pure and applied sciences. Various classes

of VVIs have been intensively analyzed both in finite- and infinite-dimensional spaces; see

[2]-[4], [7]-[11], [14]-[18], [20]-[26] and the references therein. In [19], Zheng posed the con-

cept of semimonotonicity and applied Fan-Glicksberg fixed point theorem to generalize the

existence results for VVI obtained by Chen [4] which is to find a point x0 ∈ K such that

〈η(x0, x0), y −x0〉+ f (y)− f (x0) 6≤intC (x0) 0, ∀y ∈ K , (1.2)

where η : K ×K →L (X ,Y ). Most of the latest existence results for VVI problems are based on

KKM-Fan Theorem [5], which requires the feasible set to be closed and bounded in the strong

topology and the mapping to possess certain monotonicity type properties; see [2, 9, 10, 18].

It is noteworthy that Huang and Fang [9] studied the following VVI in reflexive Banach spaces

not only with but also without monotonicity assumptions: find x0 ∈ K such that

〈T x0, y −x0〉+ f (y)− f (x0) 6≤ intC 0, ∀y ∈ K , (1.3)

where T : K →L (X ,Y ) and C is a proper closed pointed convex cone with intC 6= ;. Further-

more, Zeng and Yao [18] defined the concepts of the complete and strong semicontinuities

and extended the results of Huang and Fang [9] to the GVVI, i.e., find x0 ∈ K and u0 ∈ T (x0)

such that

〈Au0, y −x0〉+ f (y)− f (x0) 6≤intC 0, ∀y ∈ K , (1.4)

where A : L (X ,Y ) →L (X ,Y ) and T : K → 2L (X ,Y ).

Motivated and inspired by generalized vector equilibrium problems considered in Zeng

and Yao [27, 28], this work is to further extend the results of Ceng and Huang [16] to the setting

of the following generalized vector equilibrium problem (GVEP):
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GVEP. Let K be a nonempty closed convex subset of X and let C : K → 2Y be a cone mapping.

Let Φ : L (X ,Y )×K ×K → Y is a equilibrium-like function, i.e., Φ(w, x, y)+Φ(w, y, x)= 0 for

each (w, x, y) ∈L (X ,Y )×K ×K . Suppose that A : K ×L (X ,Y ) →L (X ,Y ) and f : K → Y are

single-valued mappings and T : K → 2L (X ,Y ) is a set-valued mapping. Then the objective is

to find x0 ∈ K with the following property: there exists w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, ∀y ∈ K . (1.5)

Such an x0 is called a strong solution of GVEP (1.5).

In particular, ifΦ(w, x, y)= 〈w, y −x〉 for each (w, x, y)∈L (X ,Y )×K ×K , then GVEP (1.5)

reduces to GVVI (1.1). We first establish the existence results of the GVEP (1.5) for monotone

multifunction T : K → 2L (X ,Y ) with the use of the KKM-Fan theorem. To this end, we need

to provide a parallel version of the existence of strong solutions to GVEP (1.5). It is somewhat

difficult to derive a corresponding result of strong solutions to our GVEP (1.5) without assum-

ing monotonicity. Instead, we investigate the following problem: find a point x0 ∈ K , called a

weak solution, such that for each y ∈ K there exists w ∈ A(x0,T (y)) satisfying

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0. (1.6)

Each strong solution is of course a weak solution of GVEP (1.5), but the converse is false. This

problem for the case whereΦ(w, x, y)= 〈w, y−x〉, A(x,u)= u and f ≡ 0 was introduced by Lin,

Yang and Yao [12]. Being based upon the characterization of upper semicontinuity together

with the Brouwer fixed point theorem, we present several new results which are the extension

of those in [2, 3, 9, 10, 16, 17, 18].

The paper is organized as follows. In Section 2 we set notation and give some back-

ground. In Section 3 we prove the existence results of GVEP (1.5) for vector monotone mul-

tifunctions in reflexive Banach spaces. Finally, in Section 4 we study the GVEP (1.5) without

monotonicity assumptions. In the remainder of this paper, for simplicity, we denote GVEP

(1.5) by GVEP.

2. Notation, definitions and basic properties

Let X and Y be topological spaces. A multifunction ϕ : X → 2Y is upper semicontinuous

at x if for every open set V containing ϕ(x), there is a neighborhood U of x such that z ∈ U

implies ϕ(z) ⊂ V . We say that ϕ is upper semicontinuous on X if it is upper semicontinuous

at every point of X . The mapping ϕ is closed, or has closed graph if its graph given by

G (ϕ)= {(x, y)∈ X ×Y : y ∈ϕ(x)}

is a closed subset of X ×Y . We recall the following well-known facts.
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Theorem 2.1.

(a) An upper semicontinuous multifunction ϕ : X → 2Y is closed if either

(i) ϕ is closed-valued and Y is regular, or

(ii) ϕ is compact-valued and Y is Hausdorff.

(b) A compact-valued multifunction ϕ : X → 2Y is upper semicontinuous if and only if for

every net {(xα, yα)} in G (ϕ) that satisfies xα → x for some x ∈ X the net {yα} has a subnet

converging to a point in ϕ(x).

Let (X ,‖·‖) be a normed vector space so that its norm induces a metric d . For any pair of

nonempty subsets A and B of X , define

dH (A,B ) =max{sup
a∈A

inf
b∈B

‖a −b‖, sup
b∈B

inf
a∈A

‖a −b‖}.

This extended real number dH (A,B ) is the Hausdorff distance between A and B induced by

d . The distance function dH turns the collection of all nonempty closed and bounded subsets

of X , denoted C B (X ), into a metric space. Note that [13] if A and B are nonempty subsets of

X with B compact, then for each a ∈ A there exists b ∈ B such that

‖a −b‖≤ dH (A,B ).

Definition 2.1 ([18]). Let X and Y be two real Banach spaces and K be a nonempty closed

convex subset of X . A compact-valued multifunction T : K → 2L (X ,Y ) is H-hemicontinuous

if the mapping α 7→ T (x +αy) is continuous at 0+, where C B (L (X ,Y )) is equipped with the

metric topology induced by dH .

The concept of H-hemicontinuity is interesting and useful in connection to nonlinear

mappings of monotone type.

Definition 2.2. Let X and Y be real Banach spaces. A function f : X → Y is completely con-

tinuous if { f (xn)} converges to f (x) in Y whenever {xn} converges weakly to some x ∈ X , i.e.,

f is weak-to-norm sequentially continuous.

A completely continuous linear operator T from a Banach space X into a Banach space

Y is also known as a Dunford-Pettis operator and is continuous. Hence the collection of all

completely continuous linear operators from X into Y , denoted Lcc(X ,Y ), is a subspace of

L (X ,Y ). Sequential continuity does not in general imply continuity. In fact not all com-

pletely continuous operators are weak-to-norm continuous. It does of course follow from the

definition of complete continuity that every weak-to-norm continuous linear operator from

X into Y is completely continuous.



EXISTENCE THEOREMS FOR GENERALIZED VECTOR EQUILIBRIA 459

Definition 2.3. Let X and Y be real Banach spaces, K be a nonempty subset of X and C be a

convex cone.

(i) A single-valued mapping T : K →L (X ,Y ) is C -monotone if

〈T (x)−T (y), x − y〉 ≥C 0, for all x, y ∈ K .

(ii) A set-valued mapping T : K → 2L (X ,Y ) is C -monotone if

〈x∗
− y∗, x − y〉 ≥C 0, for all x, y ∈ K , x∗

∈ T x, y∗
∈ T y.

(iii) A set-valued mapping T : K → 2L (X ,Y ) is C -monotone with respect to a mapping A :

L (X ,Y ) →L (X ,Y ) (see [18]) if

〈Ax∗
− Ay∗, x − y〉 ≥C 0, for all x, y ∈ K , x∗

∈ T x, y∗
∈ T y.

(iv) A mapping f : K → Y is C -convex if K is convex and

f (t x + (1− t )y)≤C t f (x)+ (1− t ) f (y), for all x, y ∈ K , t ∈ [0,1].

Definition 2.4. Let X and Y be real Banach spaces, K be a nonempty subset of X and C be

a convex cone. Let T : K → 2L (X ,Y ) be a set-valued mapping and A : K ×L (X ,Y ) →L (X ,Y )

be a single-valued mapping. A equilibrium-like function Φ : L (X ,Y )×K ×K → Y is called

C -monotone with respect to T and A if for each y ∈ K

Φ(w1, x2, x1)+Φ(w2, x1, x2) ≥C 0, for all x1, x2 ∈ K , w1 ∈ A(y,T x1), w2 ∈ A(y,T x2).

3. Strong solutions of GVEP with monotonicity

We turn attention to the question of the solvability to GVEPs for vector monotone multi-

functions in reflexive Banach spaces by applying the KKM-Fan theorem.

Let E be a nonempty subset of a topological vector space X . A multifunction ϕ : E → 2X

is a KKM mapping if for any finite subset {x1, x2, . . . , xn} of E ,

co{x1, x2, . . . , xn} ⊂
n
⋃

i=1

ϕ(xi ),

where co{x1, x2, . . . , xn} denotes the convex hull of {x1, x2, . . . , xn}. In a topological vector space,

the convex hull of a finite union of compact convex sets is compact.

Lemma 3.1 (KKM-Fan Theorem [5]). Let E be a nonempty convex subset of a Hausdorff topo-

logical vector space X and let ϕ : E → 2X be a KKM mapping with closed values. If there is a

point x0 ∈ E such that ϕ(x0) is compact, then
⋂

x∈E ϕ(x) 6= ;.
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Lemma 3.2 ([3]). Let C be a closed pointed convex cone with intC 6= ; and let (X ,≤C ) be a real

ordered Banach space. For any a,b,c ∈ X , we have

(i) c 6≤intC a and a ≥C b imply that c 6≤intC b;

(ii) c ≥intC a and a ≤C b imply that c 6≥intC b.

A key to our problem is shown as follows. It also generalizes [9, Lemma 2.5], [18, Lemma

2.3] and [16, Lemma 3.3].

Lemma 3.3. Let X and Y be real Banach spaces, K be a nonempty closed convex subset of X ,

Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function, C : K → 2Y and T : K → 2L (X ,Y ) be two

multifunctions, and f : K → Y and A : K ×L (X ,Y ) →L (X ,Y ) be two single-valued functions.

Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) T is H-hemicontinuous with nonempty compact values;

(iii) f is C−-convex;

(iv) A is continuous in the second variable;

(v) Φ is continuous in the first variable, and C−-convex in the third variable;

(vi) Φ is C−-monotone with respect to T and A.

Then a point x0 ∈ K is a strong solution of GVEP, i.e., there exists w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K ,

if and only if

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K and w ∈ A(x0,T (y)).

Proof. Suppose that there exist x0 ∈ K and w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .

Let y ∈ K and w ∈ A(x0,T (y)). SinceΦ is C−-monotone with respect to T and A, it follows that

Φ(w, x0, y)+Φ(w0, y, x0) ≥C−
0.

Also, since Φ is a equilibrium-like function, we have

Φ(w, x0, y) ≥C−
Φ(w0, x0, y),

and so

Φ(w, x0, y)+ f (y)− f (x0) ≥C−
Φ(w0, x0, y)+ f (y)− f (x0),
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which immediately leads to

Φ(w, x0, y)+ f (y)− f (x0) ≥C (x0) Φ(w0, x0, y)+ f (y)− f (x0).

Therefore by Lemma 3.2,

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K , w ∈ A(x0,T (y)).

For the converse, suppose that there exists x0 ∈ K such that

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K , w ∈ A(x0,T (y)),

that is,

Φ(A(x0, v), x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K , v ∈ T (y). (3.1)

For any y ∈ K , yt = (1−t )x0+t y ∈ K , for all t ∈ (0,1), because K is convex. Let vt ∈ T (yt ). Using

yt and vt in place of y and v in Eq. (3.1) respectively yields

Φ(A(x0, vt ), x0, yt )+ f (yt )− f (x0) 6≤intC (x0) 0. (3.2)

On the other hand, since f is C−-convex andΦ is C−-convex in the third variable, we have

Φ(A(x0, vt ), x0, yt )+ f (yt )− f (x0)

≤C−
(1− t )Φ(A(x0, vt ), x0, x0)+ tΦ(A(x0, vt ), x0, y)+ (1− t ) f (x0)+ t f (y)− f (x0)

= t [Φ(A(x0, vt ), x0, y)+ f (y)− f (x0)].

In particular,

Φ(A(x0, vt ), x0, yt )+ f (yt )− f (x0) ≤C (x0) t [Φ(A(x0, vt ), x0, y)+ f (y)− f (x0)]. (3.3)

By Eqs. (3.2) and (3.3) and Lemma 3.2, we obtain

Φ(A(x0, vt ), x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all vt ∈ T (yt ), t ∈ (0,1). (3.4)

Since T is compact-valued, for each vt ∈ T (yt ) there exists ut ∈ T (x0) such that

‖vt −ut‖≤ dH (T (yt ),T (x0)).

We may assume without loss of generality that {ut } converges strongly to some u0 ∈ T (x0) as

t → 0+. Since

‖vt −u0‖ ≤ ‖vt −ut‖+‖ut −u0‖ ≤ dH (T (yt ),T (x0))+‖ut −u0‖,
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by the H-hemicontinuity of T we deduce that vt → u0 as t → 0+. Also, since A is continuous

in the second variable, we know that A(x0, vt ) → A(x0,u0) as t → 0+, which together with the

continuity ofΦ in the first variable, implies that

lim
t→0+

‖Φ(A(x0, vt ), x0, y) →Φ(A(x0,u0), x0, y)‖ = 0. (3.5)

Since Y \ (−intC (x0)) is closed, we have by Eq. (3.4) that

Φ(A(x0,u0), x0, y)+ f (y)− f (x0) ∈ Y \ (−intC (x0)).

Hence

Φ(A(x0,u0), x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .

That is, there exists w0(= A(x0,u0)) ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .

This completes the proof. ���

We are now in a position to discuss the solvability of GVEPs for monotone mappings.

Theorem 3.1. Let X be a real reflexive Banach space, Y be a real Banach space, K be a nonempty

bounded closed convex subset of X , Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function,

C : K → 2Y , D : K → 2Y and T : K → 2L (X ,Y ) be three multifunctions, where D is defined by

D(x) = Y \ (−intC (x)), and f : K → Y and A : K ×L (X ,Y ) → L (X ,Y ) be two single-valued

functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has weakly closed graph;

(iii) T is H-hemicontinuous with nonempty compact values;

(iv) f is weakly sequentially continuous and C−-convex;

(v) A is completely continuous in the first variable and continuous in the second variable;

(vi) Φ is Lipschitz continuous in the first variable, weakly sequentially continuous and C−-

concave in the second variable, and C−-convex in the third variable;

(vii) Φ is C−-monotone with respect to T and A.

Then there exist x0 ∈ K and w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .
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Proof. Let E ,F : K → 2K be two multifunctions defined by, for y ∈ K ,

E (y) = {x ∈ K :Φ(ŵ , x, y)+ f (y)− f (x) 6≤intC (x) 0, for some ŵ ∈ A(x,T (x))}

and

F (y) = {x ∈ K :Φ(w, x, y)+ f (y)− f (x) 6≤intC (x) 0, for all w ∈ A(x,T (y))}.

Then E (y) and F (y) are nonempty due to y ∈ E (y)∩F (y). We claim that E is a KKM map-

ping. Assume on the contrary that there exist a finite subset {x1, . . . , xn} of K and nonnegative

numbers t1, . . . , tn with
∑n

i=1 ti = 1 such that

x =

n
∑

i=1

ti xi 6∈

n
⋃

i=1

E (xi ).

Then for any ŵ ∈ A(x,T (x)),

Φ(ŵ , x, xi )+ f (xi )− f (x) ≤intC (x) 0, i = 1,2, . . . ,n;

hence by the C−-convexity of f and C−-concavity of Φ in the second variable,

0 =Φ(ŵ , x, x)+ f (x)− f (x)

≥C (x)

n
∑

i=1

tiΦ(ŵ , xi , x)+ f (x)−
n
∑

i=1

ti f (xi )

=

n
∑

i=1

ti [Φ(ŵ , xi , x)+ f (x)− f (xi )]

≥intC (x) 0,

which leads to a contradiction that C (x) = Y . So E is a KKM mapping. Further E (y)⊂ F (y) for

every y ∈ K . Furthermore, if x ∈ E (y), then there exists ŵ ∈ A(x,T (x)) such that

Φ(ŵ , x, y)+ f (y)− f (x) 6≤intC (x) 0.

Since Φ is C−-monotone with respect to T and A, it follows that

Φ(w, x, y)+Φ(ŵ , y, x)≥C−
0, for all y ∈ K , w ∈ A(x,T (y)).

Also, sinceΦ is a equilibrium-like function, we have

Φ(w, x, y)≥C−
Φ(ŵ , x, y), for all y ∈ K , w ∈ A(x,T (y)),

and so

Φ(w, x, y)+ f (y)− f (x) ≥C−
Φ(ŵ , x, y)+ f (y)− f (x), for all y ∈ K , w ∈ A(x,T (y)),

which immediately leads to

Φ(w, x, y)+ f (y)− f (x) ≥C (x) Φ(ŵ , x, y)+ f (y)− f (x), for all y ∈ K , w ∈ A(x,T (y)).
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Hence Lemma 3.2 asserts that

Φ(w, x, y)+ f (y)− f (x) 6≤intC (x) 0, for all y ∈ K , w ∈ A(x,T (y)).

This shows that E (y)⊂ F (y) for all y ∈ K , and so F is also a KKM mapping.

We next prove that for each y ∈ K , the set F (y) is closed in the weak topology of X . Note

that the weak closure F (y)
w

of F (y) is weakly compact because K is weakly compact. Thus for

any x ∈ F (y)
w

, there is a sequence {xn} in F (y) which converges weakly to x. The definition of

F (y) assures that for all n ∈ N, v ∈ T (y),

Φ(A(xn , v), xn , y)+ f (y)− f (xn) ∈ D(xn) = Y \ (−intC (xn)). (3.6)

For any fixed v ∈ T (y), we observe that

Φ(A(xn , v), xn , y)−Φ(A(x, v), x, y)

=Φ(A(xn , v), xn , y)−Φ(A(x, v), xn , y)+Φ(A(x, v), xn , y)−Φ(A(x, v), x, y).

SinceΦ is Lipschitz continuous in the first variable and A is completely continuous in the first

variable, there exists a constant L > 0 such that

‖Φ(A(xn , v), xn , y)−Φ(A(x, v), xn , y)‖≤ L‖A(xn , v)− A(x, v)‖→ 0, as n →∞.

Also, Φ(A(x, v), xn , y) → Φ(A(x, v), x, y) weakly as n → ∞ because Φ is weakly sequentially

continuous in the second variable. Now the weak-to-weak sequential continuity of f implies

that the sequence {Φ(A(xn , v), xn , y)+ f (y)− f (xn)} converges weakly toΦ(A(x, v), x, y)+ f (y)−

f (x). Since the graph of D is weakly closed, it follows from Eq. (3.6) that

Φ(A(x, v), x, y)+ f (y)− f (x) ∈ D(x), for all v ∈ T (y).

That is,

Φ(w, x, y)+ f (y)− f (x) ∈ D(x), for all w ∈ A(x,T (y)).

We conclude that x ∈ F (y). Therefore for each y ∈ K , F (y) is weakly closed and so is weakly

compact. According to the KKM-Fan Theorem (Lemma 3.1),

⋂

y∈K
F (y) 6= ;;

hence there exists x0 ∈ K such that

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K , w ∈ A(x0,T (y)).

Equivalently, by Lemma 3.3 there exists w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .
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This completes the proof. ���

When the underlying space X is a finite dimensional normed space, the norm and weak

topologies of X coincide, and the continuity and sequential continuity from X into a topo-

logical space are also the same. In this case, each F (y) is compact if we assume that f is

continuous. In addition, the same argument of Theorem 3.1 works provided that D has the

closed graph. This result is stated as follows.

Corollary 3.1. Let Y be a real Banach space, K be a nonempty bounded closed convex subset

of Rn, Φ : L (Rn,Y )×K ×K → Y be a equilibrium-like function, C : K → 2Y , D : K → 2Y and

T : K → 2L (Rn ,Y ) be three multifunctions, where D is defined by D(x) = Y \ (−intC (x)), and

f : K → Y and A : K ×L (Rn,Y ) →L (Rn,Y ) be two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has closed graph;

(iii) T is H-hemicontinuous with nonempty compact values;

(iv) f is continuous and C−-convex;

(v) A is continuous;

(vi) Φ is Lipschitz continuous in the first variable, continuous and C−-concave in the second

variable, and C−-convex in the third variable;

(vii) Φ is C−-monotone with respect to T and A.

Then the GVEP has a strong solution.

To guarantee the existence of strong solutions to the GVEP for a weak-to-norm upper

semicontinuous mapping D, we require that A is a function from K ×L (X ,Y ) into Lcc (X ,Y ),

instead of L (X ,Y ).

Theorem 3.2. Let X be a real reflexive Banach space, Y be a real Banach space, K be a nonempty

bounded closed convex subset of X , Φ : Lcc (X ,Y )×K ×K → Y be a equilibrium-like function,

C : K → 2Y , D : K → 2Y and T : K → 2L (X ,Y ) be three multifunctions, where D is defined by

D(x) = Y \ (−intC (x)), and f : K → Y and A : K ×L (X ,Y ) → Lcc (X ,Y ) be two single-valued

functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D is weak-to-norm upper semicontinuous;

(iii) T is H-hemicontinuous with nonempty compact values;

(iv) f is completely continuous and C−-convex;

(v) A is completely continuous in the first variable and continuous in the second variable;
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(vi) Φ is Lipschitz continuous in the first variable, completely continuous and C−-concave in

the second variable, and C−-convex in the third variable;

(vii) Φ is C−-monotone with respect to T and A.

Then the GVEP has a strong solution.

Proof. This result can be proved from similar arguments to those employed in the proof of

Theorem 3.1. Denote the space X endowed with the weak topology by X w . Since D is a

closed-valued weak-to-norm upper semicontinuous multifunction with the a regular range

space, it follows that G (D) is a closed subset of X w ×Y . By adapting the same notation as in

Theorem 3.1, we see from Eq. (??) that for each n ∈ N,

‖Φ(A(xn , v), xn , y)−Φ(A(x, v), x, y)‖

≤ ‖Φ(A(xn , v), xn , y)−Φ(A(x, v), xn , y)‖+‖Φ(A(x, v), xn , y)−Φ(A(x, v), x, y)‖

≤ L‖A(xn , v)− A(x, v)‖+‖Φ(A(x, v), xn , y)−Φ(A(x, v), x, y)‖.

Since A(·, v), Φ(A(x, v), ·, y) and f are completely continuous, the above inequality implies

that the sequence {Φ(A(xn , v), xn , y)+ f (y)− f (xn)} converges strongly toΦ(A(x, v), x, y). This

shows that F (y) is weakly closed. The remaining claims in the theorem are proved by the same

arguments of Theorem 3.1. ���

We can extend the previous results to the case where the set K is closed and convex but

not necessarily bounded under a coercive condition.

Theorem 3.3. Let X be a real reflexive Banach space, Y be a real Banach space, K be a nonempty

closed convex subset of X such that K ∩Br 6= ;, for some r > 0, where Br = {x ∈ X : ‖x‖ ≤ r },

Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function, C : K → 2Y , D : K → 2Y and T : K →

2L (X ,Y ) be three multifunctions, where D is defined by D(x) = Y \ (−intC (x)), and f : K → Y

and A : K ×L (X ,Y ) →L (X ,Y ) be two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has weakly closed graph;

(iii) T is H-hemicontinuous with nonempty compact values;

(iv) f is weakly sequentially continuous and C−-convex;

(v) A is completely continuous in the first variable and continuous in the second variable;

(vi) for each x ∈ K with ‖x‖= r and each w ∈ A(x,T (x)), there exists y ∈ K ∩Br such that

Φ(w, x, y)+ f (y)− f (x) ≤intC (x) 0;
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(vii) Φ is Lipschitz continuous in the first variable, weakly sequentially continuous and C−-

concave in the second variable, and C−-convex in the third variable;

(viii) Φ is C−-monotone with respect to T and A.

Then there exist x0 ∈ K and w0 ∈ A(x0,T (x0)) such that

Φ(w0, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0, for all y ∈ K .

Proof. By Theorem 3.1, there exist xr ∈ K ∩Br and wr ∈ A(xr ,T (xr )) such that

Φ(wr , xr , y)+ f (y)− f (xr ) 6≤intC (xr ) 0, for all y ∈ K ∩Br . (3.7)

It follows from assumption (vi) that ‖xr ‖< r . To prove that xr is a strong solution, let z ∈ K and

choose t ∈ (0,1) small enough such that (1− t )xr + t z ∈ K ∩Br . In Eq. (3.7), using (1− t )xr + t z

in place of y yields

Φ(wr , xr , (1− t )xr + t z)+ f ((1− t )xr + t z)− f (xr ) 6≤intC (xr ) 0. (3.8)

Since Φ is C−-convex in the third variable and f is C−-convex, we have

Φ(wr , xr , (1− t )xr + t z)+ f ((1− t )xr + t z)− f (xr )

≤C (xr ) (1− t )Φ(wr , xr , xr )+ tΦ(wr , xr , z)+ (1− t ) f (xr )+ t f (z)− f (xr )

= t [Φ(wr , xr , z)+ f (z)− f (xr )]. (3.9)

Therefore, Eqs. (3.8), (3.9) and Lemma 3.2 imply that

Φ(wr , xr , z)+ f (z)− f (xr ) 6≤intC (xr ) 0,

as required. ���

Corollary 3.2. Let Y be a real Banach space, K be a nonempty closed convex subset of Rn such

that K ∩Br 6= ;, for some r > 0, where Br = {x ∈ Rn : ‖x‖ ≤ r }, Φ : L (X ,Y )×K ×K → Y be a

equilibrium-like function, C : K → 2Y , D : K → 2Y and T : K → 2L (Rn ,Y ) be three multifunc-

tions, where D is defined by D(x) = Y \ (−intC (x)), and f : K → Y and A : K ×L (Rn,Y ) →

L (Rn,Y ) be two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has closed graph;

(iii) T is H-hemicontinuous with nonempty compact values;

(iv) f is continuous and C−-convex;

(v) A is continuous;
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(vi) for each x ∈ K with ‖x‖= r and each w ∈ A(x,T (x)), there exists y ∈ K ∩Br such that

Φ(w, x, y)+ f (y)− f (x) ≤intC (x) 0;

(vii) Φ is Lipschitz continuous in the first variable, continuous and C−-concave in the second

variable, and C−-convex in the third variable;

(viii) Φ is C−-monotone with respect to T and A.

Then the GVEP has a strong solution.

Proof. This follows immediately from Theorem 3.2. ���

We shall give an example in finite dimensional Euclidean spaces where the multifunction

T : K → 2L (X ,Y ) and the single-valued function A : K ×L (X ,Y ) →L (X ,Y ) satisfy conditions

(iii) and (v)-(vii) in Theorem 3.1.

Example 3.1. Let X = Y =R2, K = [0,1]× [0,1] and C : K → 2R2

be a multifunction defined by

C (x) =C (x1, x2) = {(r cosθ,r sinθ) ∈ R2 : r ≥ 0,0 ≤ θ≤
π

8
(x1 +x2 +4)},

for x = (x1, x2) ∈ K . Then C is a cone mapping and C− =
⋂

x∈K C (x) = {x = (x1, x2) ∈ R2 : x1 ≥

0, x2 ≥ 0}. Given any matrix v =

(

a b

c d

)

∈L (R2,R2), we define ‖v‖ = |a|+ |b|+ |c |+ |d | so that

‖ ·‖ induces a norm on L (R2,R2). Let A : K ×L (R2,R2) →L (R2,R2) be defined by

A(x,u)=

(

u11 x1

x2 u22

)

,

where x = (x1, x2) ∈ K and u =

(

u11 u12

u21 u22

)

∈L (R2,R2), and let T : K → 2L (R2 ,R2) be defined by

T x =

{(

x1 x2

x1 x2

)

,

(

x1 x1

x2 x2

)}

,

where x = (x1, x2) ∈ K .

LetΦ : L (R2,R2)×K ×K → R2 be defined by

Φ(u, x, y) = 〈u, y −x〉= 〈u, (y1, y2)− (x1, x2)〉

= ((y1 −x1)u11 + (y2 −x2)u21, (y1 −x1)u12 + (y2 −x2)u22),

where x = (x1, x2) ∈ K , y = (y1, y2) ∈ K and u =

(

u11 u12

u21 u22

)

∈ L (R2,R2). It is clear that Φ is a

equilibrium-like function.
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We first show that Φ is C−-monotone with respect to T and A. Indeed, take three points

x = (x1, x2), y = (y1, y2) and z = (z1, z2) in K arbitrarily. If w̄ ∈ A(z,T x) and ŵ ∈ A(z,T y), then

there exist u ∈ T x and v ∈ T y such that w̄ = A(z,u) and ŵ = A(z, v). Hence we have

A(z,u)− A(z, v) = A((z1, z2),u)− A((z1, z2), v)=

(

x1 − y1 0

0 x2 − y2

)

,

and
Φ(w̄ , y, x)+Φ(ŵ , x, y) = 〈w̄ , x − y〉+〈ŵ , y −x〉

= 〈w̄ − ŵ , x − y〉 = 〈A(z,u)− A(z, v), x − y〉

= 〈A((z1, z2),u)− A((z1, z2), v), (x1, x2)− (y1, y2)〉

= ((x1 − y1)2, (x2 − y2)2)

≥C−
(0,0).

We claim that T is H-hemicontinuous. Indeed, if x = (x1, x2) ∈ K , y = (y1, y2) ∈ K and α > 0,

then

dH (T (x +αy),T x) = dH (T ((x1, x2)+α(y1, y2)),T (x1, x2)) ≤ 2α(y1 + y2)

which implies that dH (T (x +αy),T x) → 0 as α→ 0+.

On the other hand, for any fixed u ∈ L (R2,R2), if a sequence (xn , yn) in K converges

weakly (equivalently, strongly) to (a,b), we deduce that as n →∞

A((xn , yn),u)− A((a,b),u)= ‖

(

0 xn −a

yn −b 0

)

‖= |xn −a|+ |yn −b|→ 0.

Hence A is completely continuous in the first variable, and is of course continuous in the

second variable.

Finally, we show that Φ is Lipschitz continuous in the first variable, weakly sequentially

continuous and C−-concave in the second variable, and C−-convex in the third variable. In-

deed, since K is a bounded set in R2, from the definition of Φ it follows that Φ is Lipschitz

continuous in the first variable. In addition, according to the definition of Φ, it is easy to see

that Φ is weakly sequentially continuous (equivalently, continuous) and C−-concave in the

second variable, and C−-convex in the third variable.

4. Weak solutions of GVEP without monotonicity

We start with the Brouwer fixed point theorem which enables us to investigate the solv-

ability of the GVEP without monotonicity assumptions.

Lemma 4.1 (Brouwer’s fixed point theorem [1]). Let K be a nonempty compact convex subset

of Rn and let f : K → K be a continuous function. Then f has a fixed point, i.e., there exists

x ∈ K such that f (x) = x.
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Theorem 4.1. Let X be a real reflexive Banach space, Y be a real Banach space, K be a nonempty

bounded closed convex subset of X , Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function,

C : K → 2Y , D : K → 2Y and T : K → 2L (X ,Y ) be three multifunctions, where D is defined by

D(x) = Y \ (−intC (x)), and f : K → Y and A : K ×L (X ,Y ) → L (X ,Y ) be two single-valued

functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has weakly closed graph;

(iii) T is weakly upper semicontinuous with nonempty weakly compact values;

(iv) f is weakly sequentially continuous and C−-convex;

(v) A is completely continuous;

(vi) Φ is Lipschitz continuous in the first variable, and weakly sequentially continuous and

C−-concave in the second variable.

Then the GVEP has a weak solution x0 ∈ K , that is, for each y ∈ K there exists w ∈ A(x0,T (x0))

such that

Φ(w, x0, y)+ f (y)− f (x0) 6≤intC (x0) 0.

Proof. Suppose on the contrary that this GVEP has no weak solutions. Let N : K → 2K be a

multifunction defined by, for y ∈ K ,

N (y)= {x ∈ K :Φ(w, x, y)+ f (y)− f (x) ≤intC (x) 0, for all w ∈ A(x,T (x))}.

To prove each N (y) is weakly open, we consider the complement of N (y) and simply write

M (y) = K \ N (y). Fix y ∈ K . For any x in the weak closure M (y)
w

of M (y) which is weakly

compact, there is a sequence {xn} in M (y) converging weakly to x. Then, for each n ∈ N there

exists wn ∈ A(xn ,T (xn)) satisfying

Φ(wn , xn , y)+ f (y)− f (xn) ∈ D(xn).

It follows that there exists un ∈ T (xn) such that wn = A(xn ,un) and

Φ(A(xn ,un), xn , y)+ f (y)− f (xn) ∈ D(xn). (4.1)

Since T is weakly upper semicontinuous with weakly compact values, the sequence {un} has

a subsequence {un j } that converges weakly to some point u in T (x). For each n j , we have

Φ(A(xn j ,un j ), xn j , y)−Φ(A(x,u), x, y)

= Φ(A(xn j ,un j ), xn j , y)−Φ(A(x,u), xn j , y)+Φ(A(x,u), xn j , y)−Φ(A(x,u), x, y).
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Since Φ is Lipschitz continuous in the first variable, there exists a constant L > 0 such that

‖Φ(A(xn j ,un j ), xn j , y)−Φ(A(x,u), xn j , y)‖≤ L‖A(xn j ,un j )− A(x,u)‖,

which together with the complete continuity of A, implies that

lim
j→∞

‖Φ(A(xn j ,un j ), xn j , y)−Φ(A(x,u), xn j , y)‖= 0.

Also, since Φ is weakly sequentially continuous in the second variable and f is weakly se-

quentially continuous, the sequence {Φ(A(x,u), xn j , y)+ f (y)− f (xn j )} converges weakly to

Φ(A(x,u), x, y)+ f (y)− f (x). Consequently, the sequence {Φ(A(xn j ,un j ), xn j , y)+ f (y)− f (xn j )}

converges weakly toΦ(A(x,u), x, y)+ f (y)− f (x). Since the graph of D is weakly closed, it fol-

lows from Eq. (4.1) that

Φ(A(x,u), x, y)+ f (y)− f (x) ∈ D(x)

which means x ∈ M (y). This shows that M (y) is weakly closed and so N (y) is weakly open.

By our assumption for each x ∈ K there exists some y ∈ K such that x ∈ N (y); hence

K =
⋃

y∈K N (y) and {N (y) : y ∈ K } is a weakly open cover of K . Since K is weakly compact,

there exists a finite subset {y1, . . . , yn} of K such that

K =

n
⋃

i=1

N (yi ).

Then there exists a family of functions {β1, . . . ,βn} with the following properties:

(a) for each j , β j : K → [0,1] is continuous with respect to the weak topology τ of X ;

(b) β j vanishes on K \ N (y j );

(c)
∑n

j=1
β j (x) = 1, for all x ∈ K .

That is, {β1, . . . ,βn} is a τ-continuous partition of unity subordinated to this finite cover {N (y1 ),

. . . , N (yn)}. Define a function ϕ : K → X by

ϕ(x) =
n
∑

j=1

β j (x)y j , ∀x ∈ K ,

so that ϕ is τ-continuous. Let S = co{y1, . . . , yn} ⊂ K . Then S is a compact convex subset of a

finite dimensional space and ϕ maps S into S. By the Brouwer fixed point theorem (Lemma

4.1), there exists x0 ∈ S such that

x0 =ϕ(x0) =
n
∑

j=1

β j (x0)y j .

Let x ∈ K . Consider the nonempty set of natural numbers

k(x)= { j ∈ N : x ∈ N (y j )}.
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Since f is C−-convex andΦ is C−-concave in the second variable, for w ∈ A(x0,T (x0)) we have

0 =Φ(w, x0, x0)+ f (x0)− f (x0)

=Φ(w,
n
∑

j=1

β j (x0)y j , x0)+ f (x0)− f (
n
∑

j=1

β j (x0)y j )

≥C (x0)

n
∑

j=1

β j (x0)[Φ(w, y j , x0)+ f (x0)− f (y j )]

=
∑

j∈k(x0)

β j (x0)[Φ(w, y j , x0)+ f (x0)− f (y j )]

≥intC (x0) 0,

contrary to our hypothesis. Therefore the GVEP has a weak solution. ���

The same proof also yields the following result. Just notice that the range space of the

mapping A is not L (X ,Y ), but Lcc(X ,Y ) instead. Let X w denote the space X equipped with

the weak topology. We also remark that if D is weak-to-norm upper semicontinuous, then

G (D) is a closed subset of X w ×Y because Y is regular.

Theorem 4.2. Let X and Y be real Banach spaces, K be a nonempty compact convex subset

of X , Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function, C : K → 2Y , D : K → 2Y and

T : K → 2L (X ,Y ) be three multifunctions, where D is defined by D(x) = Y \ (−intC (x)), and

f : K → Y and A : K ×L (X ,Y ) →Lcc (X ,Y ) be two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) G (D) is closed in X w ×Y ;

(iii) T is weak-to-norm upper semicontinuous with nonempty compact values;

(iv) f is completely continuous and C−-convex;

(v) A is completely continuous;

(vi) Φ is Lipschitz continuous in the first variable, and completely continuous and C−-concave

in the second variable.

Then the GVEP has a weak solution.

We obtain the following as an immediate consequence of Theorem 4.1.

Corollary 4.1. Let Y be a real Banach space, K be a nonempty bounded closed convex subset

of Rn, Φ : L (Rn,Y )×K ×K → Y be a equilibrium-like function, C : K → 2Y , D : K → 2Y and

T : K → 2L (Rn ,Y ) be three multifunctions, where D is defined by D(x) = Y \ (−intC (x)), and

f : K → Y and A : K ×L (Rn,Y ) →L (Rn,Y ) be two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);
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(ii) D has closed graph;

(iii) T is upper semicontinuous with nonempty compact values;

(iv) f is continuous and C−-convex;

(v) A is continuous;

(vi) Φ is Lipschitz continuous in the first variable, and continuous and C−-concave in the

second variable.

Then the GVEP has a weak solution.

Theorem 4.1 can be generalized to the case where the set K is closed and convex but not

necessarily bounded under a coercive condition.

Theorem 4.3. Let X be a real reflexive Banach space, Y be a real Banach space, K be a nonempty

bounded closed convex subset of X , Φ : L (X ,Y )×K ×K → Y be a equilibrium-like function,

C : K → 2Y , D : K → 2Y and T : K → 2L (X ,Y ) be three multifunctions, where D is defined by

D(x) = Y \ (−intC (x)), and f : K → Y and A : K ×L (X ,Y ) → L (X ,Y ) be two single-valued

functions. Suppose that:

(i) C is a cone mapping such that intC− 6= ;, where C− =
⋂

x∈K C (x);

(ii) D has weakly closed graph;

(iii) T is weakly upper semicontinuous with nonempty weakly compact values;

(iv) f is weakly sequentially continuous and C−-convex;

(v) A is completely continuous;

(vi) for each x ∈ K with ‖x‖= r and each y ∈ K ∩Br , there exists w ∈ A(x,T (x)) such that

Φ(w, x, y)+ f (y)− f (x) ≤intC (x) 0;

(vii) Φ is Lipschitz continuous in the first variable, weakly sequentially continuous and C−-

concave in the second variable, and C−-convex in the third variable.

Then the GVEP has a weak solution.

Proof. By Theorem 4.1, there exists a point xr ∈ K ∩Br with the property that for each y ∈

K ∩Br , there exists w ∈ A(xr ,T (xr )) such that

Φ(w, xr , y)+ f (y)− f (xr ) 6≤intC (xr ) 0. (4.2)

It follows from assumption (vi) that ‖xr‖ < r . To prove that xr is a weak solution of the GVEP

on K , let z ∈ K and choose t ∈ (0,1) small enough such that (1− t )xr + t z ∈ K ∩Br . In Eq. (4.2),

substituting (1− t )xr + t z for y yields

Φ(w, xr , (1− t )xr + t z)+ f ((1− t )xr + t z)− f (xr ) 6≤intC (xr ) 0, (4.3)
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for some point w ∈ A(xr ,T (xr )). Since f is C−-convex andΦ is C−-convex in the third variable,

we have

Φ(w, xr , (1− t )xr + t z)+ f ((1− t )xr + t z)− f (xr )

≤C (xr ) (1− t )Φ(w, xr , xr )+ tΦ(w, xr , z)+ (1− t ) f (xr )+ t f (z)− f (xr )

= t [Φ(w, xr , z)+ f (z)− f (xr )]. (4.4)

Therefore Eqs. (4.3), (4.4) and Lemma 3.2 imply that

Φ(w, xr , z)+ f (z)− f (xr ) 6≤intC (xr ) 0.

This completes the proof. ���
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