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NORMAL EDGE-TRANSITIVE AND 1
2
−ARC−TRANSITIVE

CAYLEY GRAPHS ON NON-ABELIAN GROUPS OF ODD ORDER 3pq ,

p AND q ARE PRIMES

BIJAN SOLEIMANI AND ALI REZA ASHRAFI

Abstract. Suppose p and q are odd prime numbers. In this paper, the connected Cayley

graph of groups of order 3pq , for primes p and q , are investigated and all connected

normal 1
2
−arc-transitive Cayley graphs of group of these orders will be classified.

1. Introduction

Throughout this paper all groups are assumed to be finite. Terms and definitions not

defined here are follow from Biggs [2]. Suppose Γ = (V ,E ) is a simple graph with vertex set

V = V (Γ) and edge set E = E (Γ). The automorphism group Aut (Γ) is acting naturally on the

set of all vertices, edges and arcs of Γ. If this action is transitive on vertices, edges or arcs of

Γ, then the graph Γ is said to be vertex−, edge− or arc−transitive, respectively. If Γ is vertex−

and edge−transitive but not arc−transitive, then Γ is called 1/2−arc−transitive.

Suppose G is a finite group and S ⊆G is non-empty. We assume further that S = S−1 and

S ⊆G \{1}. The Cayley graph Γ=C a y(G ,S) is defined by V (Γ) =G and E (Γ) = {{g , sg }|g ∈G , s ∈

S}. It is easy to see that for each element g ∈G , the mapping ρg : G →G given by ρg (x) = xg is

an automorphism of Γ. This implies that R(G) = {ρg | g ∈G} is a subgroup of Aut (Γ) isomor-

phic to G . Moreover, Aut (G ,S) = {α ∈ Aut (G) | α(S) = S} is a subgroup of Aut (Γ). Following

Xu [13], the Cayley graph Γ = C a y(G ,S) is called normal, if R(G)E Aut (Γ). A Cayley graph Γ

is called normal edge−transitive or normal arc−transitive if NAut (Γ)(R(G)) acts transitively on

the set of edges or arcs of Γ, respectively. If Γ =C a y(G ,S) is normal edge−transitive, but not

normal arc−transitive, then Γ is called normal 1/2−arc−transitive. Wang et al. [12] in their

seminal paper, constructed all disconnected normal Cayley graphs on a finite group and so

for studying the problem of normality in Cayley graphs, it suffices to consider the connected

Cayley graphs. For the sake of completeness, we mention here a collection of results which

are crucial throughout this paper:
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Theorem 1.1. Let Γ=C a y(G ,S) and A = Aut (Γ), then the following hold:

1. ([6]) NA(R(G)) = R(G)⋊Aut (G ,S). The group R(G) is normal in A if and only if A = R(G)⋊

Aut (G ,S).

2. ([6]) Γ is normal if and only if A1 = Aut (G ,S);

3. ([11]) Let Γ=C a y(G ,S) be a connected Cayley graph on S. Then Γ is normal edge-transitive

if and only if Aut (G ,S) is either transitive on S, or has two orbits in S in the form of T and

T −1, where T is a non-empty subset of S such that S = T
⋃

T −1;

4. ([3, Corollary 2.3]) Let Γ=C a y(G ,S) and H be the subset of all involutions of the group G.

If < H >6=G and Γ is connected normal edge−transitive, then its valency is even;

5. ([6]) If Γ = C a y(G ,S) is a connected Cayley graph on S then Γ is normal arc−transitive if

and only if Aut (G ,S) acts transitively on S;

6. ([3, Corollary 2.5]) If G is a Cayley graph of an abelian group, then G is not a normal 1
2−arc-

transitive Cayley graph.

It is well-known that there are two non-abelian groups of order 27 presented as follows:

G1 = 〈a,b | a9
= b3

= 1,b−1ab = a4
〉,

G2 = 〈a,b,c | a3
= b3

= c3
= 1,[a,b]= c , [a,c]= [b,c]= 1〉.

Suppose Un denotes the group of units of the ring Zn . Then,

Theorem 1.2 (See [7]). Up to isomorphism, there are three non-abelian groups of order 9p, for

a prime p > 3. These are presented as follows:

G3 = 〈a,b | ap
= b9

= 1,b−1ab = ar
〉, wher e r ∈Up and o(r )= 3;

G4 = 〈a,b | ap
= b9

= 1,b−1ab = as
〉, wher e s ∈Up and o(s) = 9;

G5 = 〈a,b,c | ap
= b3

= c3
= [b,c]= [a,b]= 1,c−1ac = at

〉, wher e t ∈Up and o(t )= 3.

The automorphism groups of these five groups can be computed as follows:

Aut (G1) = {σi , j ,k |σi , j ,k(a) = ai b j ,σi , j ,k (b)= a3kb, (i ,9) = 1,0 ≤ j ≤ 2,0 ≤ k ≤ 2},

Aut (G2) = 〈α1,α2 | α1(a) = b, α1(b)= a−1, α1(c)= c ,α2(a)= b, α2(b)= a, α2(c) = c〉

∼= D8,

Aut (G3) = {σi , j ,k |σi , j ,k(a) = ai ,σi , j ,k(b) = a j b3k+1,1 ≤ i ≤ p −1,0 ≤ j ≤ p −1,0 ≤ k ≤ 2},

Aut (G4) = {σi , j |σi , j (a)= ai ,σi , j (b)= a j b,1 ≤ i ≤ p −1,0 ≤ j ≤ p −1},
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Aut (G5) = {σi , j ,k ,l |σi , j ,k ,l (a)= ai ,σi , j ,k ,l (b)= b j ,σi , j ,k ,l (c)= ak bl c , 1 ≤ i ≤ p −1,

1 ≤ j ≤ 2,0 ≤ k ≤ p −1,0 ≤ l ≤ 2}.

If p is a prime and q |p −1, then we define Fp,q to be a group of order pq presented by

Fp,q = 〈a,b | ap = bq = 1,b−1ab = au〉, where u is an element of order q in Up , see [9] for

details. We denote this group by Tp,q , when q is also prime. Ghorbani and Nowroozi Laraki

[5] calculated all groups of order 3pq and their automorphism groups, p and q are distinct

primes. They proved that:

Theorem 1.3. A group of order 3pq, p > q are primes, is isomorphic to one of the following

groups:

H1 = Z3pq ,

H2 = Z3 ×Tp,q (q | p −1),

H3 = Zq ×Tp,3 (3 | p −1),

H4 = Fp,3q (3q | p −1),

H5 = Zp ×Tq,3 (3 | q −1),

H6 = 〈a,b,c | ap
= bq

= c3
= 1,[a,b]= 1,c−1bc = bw ,c−1ac = as

〉,

H7 = 〈a,b,c | ap
= bq

= c3
= 1,[a,b]= 1,c−1bc = bw 2

,c−1ac = as
〉,

where s and w are elements of order 3 in Up and Uq , respectively.

By [5, Theorem 2.7] and some easy calculations, one can see that:

Theorem 1.4. The automorphism groups of H2, H3, H4, H5, H6 and H7 are computed as follows:

Aut (H2) = {σi , j ,k |σi , j ,k(a) = ai ,σi , j ,k(b) = ba j ,σi , j ,k (c)= ck ,1 ≤ i ≤ p −1,0 ≤ j ≤ p −1,

1 ≤ k ≤ 2} ∼= Z2 ×Fp,p−1,

Aut (H3) = {σi , j ,k |σi , j ,k(a) = ai ,σi , j ,k(b) = b j ,σi , j ,k(c) = cak ,1 ≤ i ≤ p −1,1 ≤ j ≤ q −1,

0 ≤ k ≤ p −1} ∼= Zq−1 ×Fp,p−1,

Aut (H4) = {σi , j |σi , j (a)= ai ,σi , j (b)= ba j ,1 ≤ i ≤ p −1,0 ≤ j ≤ p −1,0 ≤ k ≤ p −1}

∼= Fp,p−1,

Aut (H5) = {σi , j ,k |σi , j ,k(a) = ai ,σi , j ,k(b) = b j ,σi , j ,k(c) = cbk ,1 ≤ i ≤ p −1,1 ≤ j ≤ q −1,

0 ≤ k ≤ q −1} ∼= Zp−1 ×Fq,q−1,

Aut (H6) = {σi , j ,k ,l |σi , j ,k ,l (a) = ai ,σi , j ,k(b) = b j ,σi , j ,k (c)= cakbl ,1 ≤ i ≤ p −1,1 ≤ j ≤ q −1,

0 ≤ k ≤ p −1,0 ≤ l ≤ p −1} ∼= Fp,p−1 ×Fq,q−1.

Note that Aut (H6)∼= Aut (H7) ∼= Fp,p−1 ×Fq,q−1.
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We encourage the interested readers to consult [4, 7, 8, 10] for more information on this

topic. Our work is a continuation of recent papers [3, 1]. We will classify all normal edge-

transitive and 1
2
−arc−transitive Cayley graphs on non-abelian groups of orders 9p and 3pq ,

when p and q are distinct odd primes.

2. Cayley graphs on groups of odd order 9p, p is prime

It is clear that a Cayley graph Γ =C a y(G ,S) is connected if and only if G is generated by

S. In this section, the connected Cayley graphs of groups of odd order 9p , p is prime, are

investigated. All Cayley graphs considered here are assumed to be undirected.

Theorem 2.1. The Cayley graph Γ1 = C a y(G1,S) is normal 1
2−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, G1 = 〈S〉 and S = S−1,

2. S = T ∪T −1, where T is an orbit of Aut (G1,S) and T ⊆ {ai b | (i ,9) = 1} or T ⊆ {ai b | i =

3k ,k = 1,2}.

Moreover, if Γ1 =C a y(G1,S) is normal 1
2−arc transitive and |S| = 2d then d |54.

Proof. Since G1 does not have elements of order two, by Theorem 1.1(4), |S| is an even integer.

If |S| = 2 then G1 is cyclic which is not possible. So, we can assume that |S| > 2. By Table 1,

there is no automorphism that maps ai b j to a3k b j ′, where (i ,9) = 1. On the other hand, there

is no automorphism that maps al b to (al b)−1. To prove, we first note that (al b)−1 = a−4l b2 =

b2a−43l and σi , j ,k(al b) = bl j+1a4(i (4l j+···4+1))+3k . Suppose bl j+1a4(i (4l j+···+4+1))+3k = b2a−43l .

Then b2−l j−1 = a4(i (4l j+···+4+1))+3k+43l = a4(i (4l j+···+4+1)+42l)+3k which implies by Table 1 that

2− l j −1 ≡ 0 mod 3) and 4(i (4l j +·· ·+4+1)+42l )+3k ≡ 0 mod 9). Thus, l j ≡ 1 mod 3) and

the following cases can be occurred:















j = 1, l = 1

j = 1, l = 4

j = 1, l = 7

and















j = 2, l = 2

j = 2, l = 5

j = 2, l = 8

; 0 ≤ j ≤ 2 & 1 ≤ l ≤ 8

We now consider the following cases:

1. j = l = 1. Since 4(i (4l j + ·· · + 4+ 1)+ 42l )+ 3k ≡ 0 mod 9), 2i + 3k + 1 ≡ 0 mod 9). So,

we have the following three cases: k = 0, i = 4; k = 1, i = 7 or k = 2, i = 1. If k = 0,

i = 4 then σ4,1,0(a−4b2) = σ4,1,0(a5b2) = b7a43(45+···+4+1) = ab = ba4 and so a2 = 1, a con-

tradiction. We now assume that k = 1 and i = 7. Then σ7,1,1(a−4b2) = σ7,1,1(a5b2) =
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Table 1: The Orders of Elements in Gi , 1 ≤ i ≤ 5.

Order G1 G2 G3 G4 G5

ai

{

9 (i ,9) = 1

3 3|i
3 p p p

b j 3 3 9

{

9 ( j ,9) = 1

3 3| j
3

ai b j

{

9 (i ,9) = 1

3 3|i
3

{

9 ( j ,9) = 1

3 3| j
9 3p

ai ck − 3 − − 3

b j ck − 3 − − 3

ai b j ck − 3 − − 3

ck − 3 − − 3

b7a7·42(45+···+4+1)+6 = ab = ba4 leaded us to a = 1 which is impossible. Finally, we assume

that k = 2 and i = 1. Then σ1,1,2(a−4b2) = σ1,1,2(a5b2) = b7a42(45+···+4+1)+120 = ab = ba4

that implies our final contradiction a5 = 1.

2. j = 1, l = 4. In this case, 5i +3k +4 ≡ 0 mod 9) that leaded us to the following subcases:

k = 0, i = 1; k = 1, i = 4 and k = 2, i = 7. If k = 0, i = 1 then σ1,1,0(a−16b2) = σ1,1,0(a2b2) =

b4a43·5 = ba7 and so a2 = 1, a contradiction. If k = 2, i = 7 then σ4,1,1(a2b2) = b4a8 =

ba7 which leads to the contradiction a = 1. Finally, we assume that k = 2, i = 7. Hence

σ7,1,2(a2b2)= b4a2 = ba7 and so a5 = 1 which is our final contradiction.

3. By a similar argument as above, the cases j = 1, l = 7; j = l = 2; j = 2, l = 5 and j = 2, l = 8

cannot be occurred.

This proves that there is no automorphism that maps al b to (al b)−1. Since Aut (G1,S) ≤

Aut (G1), each orbit of Aut (G1,S) under its natural action on S is a subset of an orbit of

Aut (G1) under its action on G1. So, S = T ∪T −1, where T ⊆ {ai b | (i ,9) = 1} or T ⊆ {ai b |

i = 3k ,k = 1,2}. If |S| = 2d then since Aut (G1,S) has a transitive action on T ,

|T | | |Aut (G1,S) | | |Aut (G1)| = 2.33. On the other hand, the equation |S| = |T | + |T −1| = 2|T |

implies that |T | = d and so d | 2.33. ���

In the following example, we apply previous theorem to prove that C a y(G1,S), |S| = 4, is

normal 1
2
−arc transitive.

Example 2.2. Suppose S = {ai b, a−i b, (ai b)−1, (a−i b)−1}. Since (ai b)(a−i b)−1 = ai ba4i b2 =

a2i ∈ 〈S〉, a−4i ∈ 〈S〉. This shows that a−4i a4i b2 ∈ 〈S〉 and so b2 ∈ 〈S〉. Thus, b−1 ∈ 〈S〉. On the

other hand, ai bb−1 = ai ∈ 〈S〉 and so a ∈ 〈S〉. Hence G = 〈S〉 which proves that C a y(G1,S) is

connected. Consider the automorphism σ−1,0,0. Since σ−1,0,0(ai b) = a−i b, σ−1,0,0(a4i b2) =
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a−4i b2, σ−1,0,0(a−i b) = ai b and σ−1,0,0(a−4i b2) = a4i b2, T = {ai b, a−i b} and T −1 = {a4i b2,

a−4i b2} are orbits of Aut (G1,S) on S. So, by previous theorem, C a y(G1,S) is normal 1
2−arc

transitive.

Theorem 2.3. The Cayley graph Γ2 = C a y(G2,S) is normal 1
2−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, G2 = 〈S〉 and S = S−1,

2. S = T ∪T −1, where T is an orbit of Aut (G2,S) and T ⊆ {cai b j | i 6= j ; 1 ≤ i , j ≤ 2} or

T ⊆ {c2ai bi | 1 ≤ i ≤ 2} or T = {ca,ca2,cb,cb2}.

Moreover, if Γ2 =C a y(G2,S) is normal 1
2−arc transitive and |S| = 2d then d = 2, 4.

Proof. The proof of Part (1) is similar to Theorem 2.1 and so it is omitted. To prove (2), we

note that the orbits of Aut (G2) on G2 are as follows:

{1}, {c}, {c2}, {cab,ca2b,cab2,ca2b2}, {c2ab,c2a2b,c2ab2,c2a2b2},

{ca,ca2,cb,cb2}, {c2a,c2a2,c2b,c2b2}, {ab, a2b, ab2, a2b2}, {a, a2,b,b2}.

Since there is no orbit L of size four such that G = 〈L〉 and L = L−1, by Theorem 1.1 (3)

S has the form T ∪T −1 for an orbit T . Finally, we assume that Γ2 = C a y(G2,S) is normal
1
2−arc transitive and |S| = 2d . Since |S| = |T | + |T −1| and T is an orbit of Aut (G2,S) on S,

|T | | |Aut (G2,S)| | |Aut (G2)| = 8. Therefore, |T | = 2,4,8. But T is a subset of an orbit of Aut (G2)

on G2, so |T | = 2 or 4. Hence the result. ���

To explain the previous theorem, we investigates the case of |S| = 4.

Example 2.4. Suppose S = {ca2b,cab2, a2b, ab2}. Since α
2
1(ca2b) = cab2, α

2
1(a2b) = ab2,

α
2
1(cab2) = ca2b and α

2
1(ab2) = a2b, α2

1 ∈ Aut (G2,S). Thus, if T = {ca2b,cab2} then S =

T ∪T −1 and so C a y(G2,S) is normal 1
2
−arc transitive.

Theorem 2.5. The Cayley graph Γ3 = C a y(G3,S) is normal 1
2−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, G3 = 〈S〉 and S = S−1,

2. S = T ∪T −1, where T is an orbit of Aut (G3,S) and

T ⊆ {al b, ak b4, at b7
| 1 ≤ l , t ,k ≤ p −1 ; l 6= t ; l 6= k ; t 6= k},

T ⊆ {al b3, ak b3
| 1≤ l ,k ≤ p −1 ; l 6= k}.
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Moreover, if Γ3 =C a y(G3,S) is normal 1
2−arc transitive and |S| = 2d then d |3p(p −1).

Proof. Since each orbit of Aut (G3,S) on S is a subset of an orbit of Aut (G3) under its natu-

ral action on G3 and there is no orbit containing elements of the form x and x−1, a similar

argument like Theorem 2.1 leaded us to the proof of this theorem. ���

Example 2.6. Set S = {al b, al b4, al b7, (al b)−1, (al b4)−1, (al b7)−1} and T = {al b, al b4, al b7}.

Since,

σ1,0,1(al b)= al b4
σ1,0,1(al b4) = al b7

σ1,0,1(al b7) = al b σ1,0,1(a−l(r 2+1)b8)= a−l(r 2+1)b5

σ1,0,1(a−l(r 2+1)b5) = a−l(r 2+1)b2
σ1,0,1(a−l(r 2+1)b2)= a−l(r 2+1)b8

σ1,0,2(al b)= al b7
σ1,0,2(al b4) = al b

σ1,0,2(al b7) = al b4
σ1,0,2(a−l(r 2+1)b8)= a−l(r 2+1)b2

σ1,0,2(a−l(r 2+1)b5) = a−l(r 2+1)b8
σ1,0,2(a−l(r 2+1)b2)= a−l(r 2+1)b5

by consdiering S = T ∪T −1, Γ3 =C a y(G3,S) is normal 1
2−arc transitive Cayley graph.

Example 2.7. Set S = {ai b3, a−i b3, ai b6, a−i b6} and T = {ai b3, a−i b3}. Since S = T ∪ T −1,

σ−1,0,1(ai b3) = a−i b3, σ−1,0,1(a−i b3) = ai b3, σ−1,0,1(ai b6) = a−i b6 and σ−1,0,1(a−i b6) = ai b6,

Γ3 =C a y(G3,S) is normal 1
2
−arc transitive Cayley graph.

Using a similar argument as Theorems 2.1, it is possible to investigate the normal 1
2
−arc

transitive Cayley graphs constructed by groups G4 and G5. We mention here these results

without proof.

Theorem 2.8. The Cayley graph Γ4 = C a y(G4,S) is normal 1
2−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, G4 = 〈S〉 and S = S−1,

2. S = T ∪T −1, where T is an orbit of Aut (G4,S) and for a fix positive integer j , 1 ≤ j ≤ 9, we

have T ⊆ {al b j | 1 ≤ l ≤ p −1}.

Moreover, if Γ4 =C a y(G4,S) is normal 1
2
−arc transitive and |S| = 2d then d = p or d |p −1.

Theorem 2.9. The Cayley graph Γ5 = C a y(G5,S) is normal 1
2
−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, G5 = 〈S〉 and S = S−1,

2. S =T ∪T −1, where T is an orbit of Aut (G5,S) and T ⊆ {ai b j c | 1 ≤ i ≤ p −1 ; 1 ≤ j ≤ 2}
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Table 2: The Orbits of Aut (H2).

{1}, {ai | 1 ≤ i ≤ p −1}, {cb,cba, · · · ,cbap−1}∪ {c2b,c2ba, · · · ,c2bap−1}

{c ,c2}, {cai ,c2ai | 1 ≤ i ≤ p −1}, {cb2,cb2a, · · · ,cb2ap−1}∪ {c2b2,c2b2a, · · · ,c2b2ap−1}

{b,ba,ba2, · · · ,bap−1}, {cb3,cb3a, · · · ,cb3ap−1}∪ {c2b3,c2b3a, · · · ,c2b3ap−1}
...

...

{bq−1,bq−1a,bq−1a2, · · · ,bq−1ap−1}, {c i bq−1,c i bq−1a, · · · ,c i bq−1ap−1 | i = 1,2}

Moreover, if Γ5 =C a y(G5,S) is normal 1
2−arc transitive and |S| = 2d then d |6p(p −1).

3. Cayley graphs on groups of odd order 3pq , p and q are distinct primes

In this section, the connected Cayley graphs of groups of odd order 3pq , p and q are

distinct primes, are investigated. All Cayley graphs considered here are assumed to be undi-

rected.

Apply Theorem 1.4 to compute the orbits of Aut (Hi ) under natural action on Hi , 3 ≤ i ≤

7. Suppose ni , 3 ≤ i ≤ 7, denote the number of orbits of Aut (Hi ) on Hi . Then by a tedious

calculation, one can see that n3 = 7, n4 = 3q +2, n5 = 8, n6 = n7 = 6. Moreover, we assume

that Ω
j

i
, 3 ≤ j ≤ 7 and 1 ≤ i ≤ n j , denote the i t h orbit of Aut (H j ) on H j . Our calculations are

recorded in Table 4.

Theorem 3.1. The Cayley graph ∆2 = C a y(H2,S) is normal 1
2−arc transitive if and only if the

following conditions are satisfied:

1. |S| > 2 is even, H2 = 〈S〉 and S = S−1,

2. S = T ∪T −1, where T is an orbit of Aut (H2,S) and for a fixed j , T ⊆ {c i b j ak | 1 ≤ i ≤ 2 ; 0 ≤

k ≤ p −1}.

Moreover, if ∆2 =C a y(H2,S) is normal 1
2−arc transitive and |S| = 2d then d = p or d |2(p −1).

Proof. It is clear that each orbit of Aut (H2,S) under its natural action on S is a subset of an

orbit of Aut (H2) on H2. Note that the orbits in the second column of Table 2, is generated the

group H2.

Since for each orbit O in the second column, O ∩O−1 = ;, S can be written as T ∪T −1,

where T is an orbit of Aut (H2,S). Thus, ∆2 is normal 1
2−arc transitive. To prove (2), we notice

that |Aut (H2)| = 2p(p −1) and by a similar argument as Theorem 2.1(2), d = p or d |2(p −1).���

Since each orbit of Aut (Hi ,Si ) under natural action on Si is a subset of the orbits of

Aut (Hi ) on Hi and Tables 3 and 4, we have the following theorem:
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Table 3: The Orders of Elements in Hi ,1 ≤ i ≤ 7.

Orders H2 H3 H4 H5 H6 H7

O(ai ) p p p p p p

O(b j ) q q
3q

(3q, j ) pq q q

O(ck ) 3 3 – 3 3 3

O(ai b j ) q – – pq pq pq

O(ai ck ) 3p – – 3p – –

O(b j ck ) 3q – – – – –

O(b j ai ) – pq







3p (j,3q) = q

3q (j,3q) = 1

q (j,3q) = 3

– – –

O(ck ai ) – 3 – – 3 3

O(ck b j ai ) – 3q – – 3 3

O(ai b j ck ) 3q – – – –

O(ai ck b j ) – – – 3p – –

Theorem 3.2. The Cayley graph ∆i =C a y(Hi ,S), 3 ≤ i ≤ 7, is normal 1
2
−arc−transitive if and

only if the following conditions are satisfied:

1. |S| > 2 is even, Hi = 〈S〉 and S = S−1,

2. S = Ti ∪T −1
i

, where Ti is an orbit of Aut (Hi ,S), T3 ⊆ {cbi a j | 1 ≤ j ≤ p −1}, 1 ≤ i ≤ q −1,

T4 ⊆ {bi a j | 1 ≤ j ≤ p −1}, 1 ≤ i ≤ 3q −1, T5 ⊆ {cai b j | 1 ≤ j ≤ q −1}, 1 ≤ i ≤ p −1, and

T6,T7 ⊆ {cai b j | 1 ≤ i ≤ p −1&1 ≤ j ≤ q −1}.

Moreover, if |Si | = 2di and∆i =C a y(Hi ,Si ), 3 ≤ i ≤ 7, is normal 1
2−arc−transitive then d3|p(p−

1)(q −1), d4|p(p −1), d5|q(p −1)(q −1) and d6,d7|pq(p −1)(q −1).

Proposition 3.3. Suppose S = {c i bak ,c i bal , (c i bak)−1, (c i bal )−1}, l 6= k. Then C a y(H2,S) is

normal 1
2
−arc−transitive and Aut (H2,S) is a cyclic group of order 2.

Proof. It is clear that,

σ−1,l+k ,1(c i bak ) = c i bal ,

σ−1,l+k ,1(c i bal ) = c i bak ,

σ−1,l+k ,1(c3−i bq−1a−k(uq−1)) = c3−i bq−1a−l(uq−1),

σ−1,l+k ,1(c3−i bq−1a−l(uq−1)) = c3−i bq−1a−k(uq−1).

There is no automorphism α ∈ Aut (H2) with this property that for an element t ∈ S,

α(t ) = t−1. Thus, if T = {c i bak ,c i bal } then S = T ∪T −1 where T is an orbit of Aut (H2,S) and
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Table 4: The Orbits of Aut (Hi ) on Hi under Natural Group Action, 3 ≤ i ≤ 7.

Ω
3
1 = Ω

4
1 =Ω

5
1 =Ω

6
1 =Ω

7
1 = {1},

Ω
3
2 = {c2ai

| 0 ≤ i ≤ p −1}, Ω
3
3 = {cai

| 0 ≤ i ≤ p −1},

Ω
3
4 = {bi a j

| 1 ≤ i ≤ q −1,1 ≤ j ≤ p −1},

Ω
3
5 = {cbi a j

| 1 ≤ i ≤ q −1,1 ≤ j ≤ p −1},

Ω
3
6 = {c2bi a j

| 1 ≤ i ≤ q −1,1 ≤ j ≤ p −1}, Ω
4
2 = {ai

| 1≤ i ≤ p −1},

Ω
4
3 = {bai

| 0 ≤ i ≤ p −1}, . . . , Ω
4
3q+2 = {b3q−1ai

| 0 ≤ i ≤ p −1},

Ω
5
2 = {ai

| 1 ≤ i ≤ p −1}, Ω
5
3 = {bi

| 1 ≤ i ≤ q −1},

Ω
5
4 = {cb j

| 0 ≤ j ≤ q −1}, Ω
5
5 = {c2b j

| 0≤ j ≤ q −1},

Ω
5
6 = {ai b j

| 1 ≤ i ≤ p −1&1 ≤ j ≤ q −1}, Ω
5
7 = {cai b j

| 1 ≤ i ≤ p −1&0 ≤ j ≤ q −1},

Ω
5
8 = {c2ai b j

| 1 ≤ i ≤ p −1&0 ≤ j ≤ q −1},

Ω
6
2 = {ai

| 1 ≤ i ≤ p −1}, Ω
6
3 = {b j

| 1 ≤ j ≤ q −1},

Ω
6
4 = {ai b j

| 1 ≤ i ≤ p −1 & 1 ≤ j ≤ q −1}, Ω
6
5 = {cai b j

| 0 ≤ i ≤ p −1 & 0 ≤ j ≤ q −1},

Ω
6
6 = {c2ai b j

| 0 ≤ i ≤ p −1 & 0 ≤ j ≤ q −1},

Ω
7
2 = {ai

| 1 ≤ i ≤ p −1}, Ω
7
3 = {b j

| 1 ≤ j ≤ q −1},

Ω
7
4 = {ai b j

| 1 ≤ i ≤ p −1 & 1 ≤ j ≤ q −1}, Ω
7
5 = {cai b j

| 0 ≤ i ≤ p −1 & 0 ≤ j ≤ q −1},

Ω
7
6 = {c2ai b j

| 0 ≤ i ≤ p −1 & 0 ≤ j ≤ q −1}.

so C a y(H2,S) is normal 1
2−arc−transitive. To prove Aut (H2,S) ∼= Z2, we notice that H2 = 〈S〉

and Aut (H2,S) has a faithful action on S. This implies that Aut (H2,S) is isomorphic to a sub-

group of H2. We first prove that Aut (H2,S) does not have an element of order 3 and 4. If σ ∈

Aut (H2,S) has order 3, then the automorphism σ is fixed an element y ∈ S. This implies that

y−1 is another fixed element of σ, which is impossible. We now assume that σ ∈ Aut (H2,S)

has order 4, x = c i bal and y = c i bak . Then σ has the forms g = (x y−1x−1 y) or h = (x y x−1 y−1).

Next σ ∈ Aut (H2,S) ⊆ Aut (H2) and so there exist r, s, t , 1 ≤ r ≤ p − 1 , 0 ≤ s ≤ p − 1 and

1 ≤ t ≤ 2 such that σ = σr,s,t . If σ = g then σ(x) = y−1 which implies that σr,s,t (c i bal ) =

c3−i bq−1a−k(uq−1). But σr,s,t (c i bal ) = c i t bas+lr and so c i t bas+lr = c3−i bq−1a−k(uq−1). Thus,

we have c3−i−i t = b2−q as+lr+k(uq−1) and therefore b2−q as+lr+k(uq−1) 6= e . Othewise, b2−q =

as+lr+k(uq−1). Since q > 3, bq−2 6= e and O(b2−q ) 6= O(as+lr+k(uq−1)), c3−i−i t 6= e . On the other

hand, O(c3−i−i t ) = 3 and O(b2−q as+lr+kuq−1

) = q that leaded us to another contradiction. If

h =σr,s,t then a similar argument as above gives a contradiction. This proves that there is no

automorphism of order 4.

We now prove that Aut (H2,S) = 〈σ−1,l+k ,1〉. Suppose σr,s,t is an arbitrary element of

Aut (H2,S). Since there is no automorphismα in Aut (H2) such thatαmaps c i b j ak to c i ′b j ′ak ′

,
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j 6= j ′, σr,s,t (c i bal ) = c i bak and σr,s,t (c i bak )= c i bal . Therefore,

σr,s,t (c3−i bq−1a−k(uq−1)) = c3−i bq−1a−l(uq−1),

σr,s,t (c3−i bq−1a−l(uq−1)) = c3−i bq−1a−k(uq−1),

σr,s,t (c i bal ) = c i t bas+lr ,

σr,s,t (c i bak) = c i t bas+kr ,

σr,s,t (c3−i bq−1a−l(uq−1)) = c t (3−i )bq−1as(uq−2+···+u+1)−lr uq−1

,

σr,s,t (c3−i bq−1a−k(uq−1)) = c t (3−i )bq−1as(uq−2+···+u+1)−kr uq−1

.

Thus, the following equalities are satisfied:

c i bal
= c i t bas+lr and c i bal

= c i t bas+lr ,

c3−i bq−1a−k(uq−1)
= c t (3−i )bq−1as(uq−2+···+u+1)−kr uq−1

,

c3−i bq−1a−l(uq−1)
= c t (3−i )bq−1as(uq−2+···+u+1)−lr uq−1

.

This shows that c i (1−t ) = as+kr−l . Therefore, t ≡ 1 mod 3) and s+kr −l ≡ 0 mod p). On the

other hand, as(uq−2+···+u+1)−kr uq−1

= a−l(uq−1) and as(uq−2+···+u+1)−lr uq−1

= a−k(uq−1). These con-

gruences and above equalities imply that r ≡−1 mod p) and s ≡ k+l mod p) which completes

our proof. ���

By a similar argument as Proposition 3.3, one can prove the following result:

Proposition 3.4. Define

S = {cb j ak ,cb j al , (cb j ak )−1, (cb j al )−1},

S ′
= {bal ,bak , (bal )−1, (bak )−1},

where l 6= k. Then C a y(H3,S) and C a y(H4,S ′) are normal 1
2−arc−transitive. Moreover,

Aut (H3,S) and Aut (H4,S ′) are cyclic groups of order 2.
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