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GENERALIZATION OF FIXED POINT THEOREMS RELATING TO

THE DIAMETER OF ORBITS BY USING A CONTROL FUNCTION

G. V. R. BABU

Abstract. The main purpose of this paper is to obtain fixed points for a selfmap T of a metric

space which is T -orbitally complete under a more general contraction type condition by using a

certain continuous control function. Further generalization relating to the diameter of orbits is

given.

1. Introduction

The study of fixed point theory has been increased due to its wide applications in prov-

ing the existence and uniqueness of solutions of differential, integral, integro-differential

and impulsive differential equations and in obtaining solutions of optimization problems;

and hence its development is in the following three main directions:

(i) generalization of conditions which ensure the existence, and if possible, uniqueness

of fixed points;

(ii) investigation of the character of the sequence of iterates {T nx}∞n=0 where T : X →
X , X a metric or complete metric space, x ∈ X is the map under consideration;

and

(iii) study of the topological properties of the set of fixed points, whenever T has more

than one fixed point.

This paper deals with the directions mentioned in (i) and (ii) above.

A new technique of generalization of conditions and obtaining fixed point theorems is

known as altering distances between the points of the underlying space by using a certain

function. Delbosco [3] and Skof [9] initiated this technique with the use of a function

ψ : R+ → R+ (R+ = [0,∞)) satisfying the following properties:

(1) ψ is continuous

(2) ψ is strictly increasing in R+

(3) ψ(t) = 0 if and only if t = 0

(4) ψ(t) ≥Mtµ for every t > 0, where M > 0, µ > 0 are constants,
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and established fixed point theorems in complete metric spaces.
Park [6, 7] established some fixed point theorems in this direction and it became

famous by Khan, Swaleh and Sessa [4]. Sastry and Babu [8] discussed in detail and
established the existence of fixed points in metric spaces for a single selfmap and pair
of selfmaps by using a function ψ : R+ → R+ satisfying (1) and (3) only, with several
examples. The benefit of using a control function is that it unifies and generalizes many
known results.

The purpose of this paper is to obtain fixed points for a selfmap T of a metric space
which is T -orbitally complete under a more general contraction type condition (2.2.1)
by using a certain continuous control function (Theorem 3.1). Further generalization
relating to the diameter of orbits is obtained (Theorem 3.6).

Notation, some definitions and known results are given in Section 2. In Section 3, we
present main results. Examples are given in Section 4.

2. Notation, Definition and Some Known Results

Let (X, d) be a metric space, T a selfmap ofX . For any x∈X , O(x)={x, Tx, T 2x, . . .}
denotes the orbit of x. Throughout this paper, we assume O(x) is bounded.

For any subset A of X , δ[A] = sup{d(x, y) : x, y ∈ A} is the diameter of A.
R+ denotes the set of all nonnegative reals and N the set of all natural numbers. We

write

Ψ =

{

ψ : R+ → R+

/

(i) ψ is continuous, (ii) ψ is nondecreasing

and (iii) ψ(t) = 0 if and only if t = 0

}

.

We used to call an element ψ ∈ Ψ, a continuous control function.
We observe that if ψ is an element of Ψ and d is a metric on X then the composition

of ψ and d, namely ψ ◦ d defined on X ×X by (ψ ◦ d)(x, y) = ψ(d(x, y)), x, y ∈ X need
not be a metric; for example, let X = R, the real line and define ψ on R+ by ψ(t) = t2.
Then, for x, y ∈ R, (ψ ◦ d)(x, y) = ψ(|x − y|) = |x − y|2, and ψ ◦ d does not satisfy the
triangle inequality of the definition of metric when x = 0, y = 5 and z = 1,

(ψ ◦ d)(x, y) = 25 6≤ (ψ ◦ d)(x, z) + (ψ ◦ d)(z, y) = 1 + 16 = 17.

For any A ⊂ X and ψ ∈ Ψ, ψ(A) is defined as ψ(A) = {ψ(d(x, y)) : x, y ∈ A}. We
write δ[ψ(A)] = sup{ψ(d(x, y)) : x, y ∈ A}.

Note that if A is bounded then δ[ψ(A)] is finite.

Definition 2.1. (Ciric, [2]). A metric space (X, d) is said to be T -orbitally complete

iff for every Cauchy sequence which is contained in O(x) for some x ∈ X converges in X .

Definition 2.2. A selfmap T of X is said to be ψ-quasi-contraction where ψ ∈ Ψ iff
there is a number q ∈ [0, 1) such that

ψ(d(Tx, T y)) ≤ qmax{ψ(d(x, y)), ψ(d(x, Tx)), ψ(d(y, T y)), ψ(d(y, Tx)), ψ(d(x, T y))}
(2.2.1)
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holds for every x, y in X .

Example 2.3. Let X = [0, 4−1] × [0, 4−1] with ℓ2-norm, ‖.‖2 being defined by

‖(u, v)‖2 =
√
u2 + v2 for (u, v) ∈ X . We defined a metric d∗ on X by d∗(x, y) = ‖x−y‖2

for x, y ∈ X . We define ψ : R+ → R+ by ψ(t) = t2, t ≥ 0 so that ψ ∈ Ψ. We define

T : X → X by

T (u, v) = (u2, v2) for (u, v) ∈ X. (2.3.1)

Then, for x = (x1, y1) ∈ X and y = (x2, y2) ∈ X , we have

ψ(d∗(x, y)) = ‖x− y‖2
2 = (x1 − x2)

2 + (y1 − y2)
2.

Now

ψ(d∗(Tx, T y)) = ψ(d∗((x2
1, y

2
1), (x

2
2, y

2
2)))

= ‖(x2
1, y

2
1) − (x2

2, y
2
2)‖2

2

= (x2
1 − x2

2)
2 + (y2

1 − y2
2)

2

= (x1 + x2)
2(x1 − x2)

2 + (y1 + y2)
2(y1 − y2)

2

≤ 4−1[(x1 − x2)
2 + (y1 − y2)

2]

= 4−1ψ(d∗(x, y))

≤ 4−1 max{ψ(d∗(x, y)), ψ(d∗(x, Tx)), ψ(d∗(y, T y)), ψ(d∗(x, T y)),

ψ(d∗(y, Tx))}

so that T is a ψ-quasi-contraction with q = 4−1.

When ψ is the identity mapping on R+ in Definition 2.2, then we say that T is a

quasi-contraction (Definition 1 of Circ [2]).

Ciric proved the following theorem.

Theorem 2.4. (Circ [2], Theorem 1, p.270). Let T be as quasi-contraction map on a

metric space (X, d) and let X be T -orbitally complete. Then, for any x ∈ X, the sequence

{T nx}∞n=1 is Cauchy, limn→∞ T nx = z for some z in X and z is the unique fixed point

of T .

Ohta and Nikaido [5] established the following theorem relating to the diameter of

orbits.

Theorem 2.5. (Ohta and Nikaido [5], Theorem 3, p.288). Let (X, d) be a bounded

complete metric space and assume that T is a continuous selfmap of X with the following

property: there exists a nonnegative integer k and q ∈ [0, 1) such that

d(T kx, T ky) ≤ qδ[O(x) ∪O(y)] for all x, y in X.

Then T has a unique fixed point z in X and limn→∞ T nx = z for any x in X.
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Definition 2.6. A selfmap T on a metric spaceX is said to be T -orbitally continuous

at a point z of X if for any sequence {xn} ⊂ O(x) with xn → z as n → ∞ implies
Txn → Tz as n→ ∞.

Definition 2.7. (Browder and Petryshyn [1]). A selfmap T of a metric space X is
said to be asymptotically regular at a point x in X if d(T nx, T n+1x) → 0 as n → ∞. If
T is asymptotically regular at each point x of X , we say that T is asymptotically regular

on X .

3. Main Results

Theorem 3.1. Let T be a selfmap of a metric space (X, d). Assume that (X, d) is

T -orbitally complete. If T is a ψ-quasi-contaction for some ψ ∈ Ψ then for each x ∈ X,

the sequence {T nx}∞n=1 is Cauchy, limn→∞ T nx = z for some z in X and z is the unique

fixed point of T .

To prove Theorem 3.1, first we prove the following two Lemmas (Lemma 3.2 and
Lemma 3.4).

Lemma 3.2. Let T be a ψ-quasi-contraction on X for some ψ ∈ Ψ. Then for each

x ∈ X,

δ[ψ(O(T nx))] ≤ qnδ[ψ(O(x))], n = 1, 2, . . . . (3.2.1)

and hence

lim
n→∞

δ[ψ(O(T nx))] = 0. (3.2.2)

Proof. Let x be an arbitary point of X . Then for any i, j in N ,

ψ(d(T ix, T jx)) = ψ(d(T (T i−1x)), T (T j−1x)))

≤ qmax{ψ(d(T i−1x, T j−1x)), ψ(d(T i−1x, T ix)), ψ(d(T j−1x, T jx)),

ψ(d(T i−1x, T jx)), ψ(d(T ix, T j−1x))}
≤ qδ[ψ(O(x))].

This implies

δ[ψ(O(Tx))] ≤ qδ[ψ(O(x))], so that (3.2.1) is true for n = 1.

Assume that the inequality (3.2.1) is true for n = m. Hence

δ[ψ(O(Tmx))] ≤ qmδ[ψ(O(x))]. (3.2.3)

Now, for i = 1, 2, . . . and j = 1, 2, . . . consider

ψ(d(Tm+ix, Tm+jx)) = ψ(d(T (Tm+i−1x), T (Tm+j−1x)))

≤ qmax{ψ(d(Tm+i−1x, Tm+j−1x)), ψ(d(Tm+i−1x, Tm+ix)),

ψ(d(Tm+j−1x, Tm+jx)), ψ(d(Tm+i−1x, Tm+jx)),

ψ(d(Tm+ix, Tm+j−1x))}.
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Since Tm+i−1x, Tm+j−1x, Tm+ix, Tm+jx ∈ O(Tmx)

for each i = 1, 2, . . . and j = 1, 2, . . ., it follows by (3.2.3) that

ψ(d(Tm+ix, Tm+jx)) ≤ qδ[ψ(O(Tmx))] ≤ qm+1δ[ψ(O(x))].

This implies
δ[ψ(O(Tm+1x))] ≤ qm+1δ[ψ(O(x))].

Hence by mathematical induction, (3.2.1) follows, so that (3.2.2) holds.

Proposition 3.3. Under the assumptions of Lemma 3.2, T is asymptotically regular

on X.

Proof. From (3.2.1) it follows that

ψ(d(T nx, T n+1x)) ≤ δ[ψ(O(T nx))] ≤ qnδ[ψ(O(x))]

and hence limn→∞ ψ(d(T nx, T n+1x)) = 0.

Now by using the properties (i) and (iii) of ψ, we have T is asymptotically regular at
x. As x was an arbitrary point of X , Proposition 3.3 follows.

Lemma 3.4. Under the hypothesis of Lemma 3.2, for each x ∈ X, the sequence

{T nx}∞n=1 is Cauchy in X.

Proof. If {T nx}∞n=1 is not Cauchy in X , there exists an ǫ > 0 and a sequence of
positive integers m(k) and n(k) such that m(k) < n(k) with

d(T n(k)x, Tm(k)x) ≥ ǫ and d(T n(k)−1x, Tm(k)x) < ǫ. (3.4.1)

For this ǫ > 0,

ψ(ǫ) ≤ ψ(d(T n(k)x, Tm(k)x))

= ψ(d(T (T n(k)−1x), T (Tm(k)−1x)))

≤ qmax{ψ(d(T n(k)−1x, Tm(k)−1x)), ψ(d(T n(k)−1x, T n(k)(x)), ψ(d(Tm(k)−1x, Tm(k)x)),

ψ(d(T n(k)−1x, Tm(k)x)), ψ(d(T n(k)x, Tm(k)−1x))}. (3.4.2)

We now prove the following four equalities:

(i) lim
k→∞

d(T n(k)x, Tm(k)x) = ǫ (ii) lim
k→∞

d(T n(k)−1x, Tm(k)−1x) = ǫ

(iii) lim
k→∞

d(T n(k)−1x, Tm(k)x) = ǫ (iv) lim
k→∞

d(Tm(k)−1x, T n(k)x) = ǫ.

We have, by Proposition 3.3,

ǫ ≤ d(T n(k)x, Tm(k)x) ≤ d(T n(k)x, T n(k)−1x) + d(T n(k)−1x, Tm(k)x)

< d(T n(k)x, T n(k)−1x) + ǫ
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and by taking limits as k → ∞,

ǫ = lim
k→∞

d(T n(k)x, Tm(k)x),

so that (i) follows.
To prove (ii), we have

ǫ ≤ d(T n(k)x, Tm(k)x)

≤ d(T n(k)x, T n(k)−1x) + d(T n(k)−1x, Tm(k)−1x) + d(Tm(k)−1x, Tm(k)x).

Now by Proposition 3.3, letting k → ∞,

ǫ ≤ lim
k→∞

d(T n(k)−1x, Tm(k)−1x). (3.4.3)

Also

d(T n(k)−1x, Tm(k)−1x) ≤ d(T n(k)−1x, Tm(k)x) + d(Tm(k)x, Tm(k)−1x)

< ǫ+ d(Tm(k)x, Tm(k)−1x).

Hence

lim
k→∞

d(T n(k)−1x, Tm(k)−1x) ≤ ǫ. (3.4.4)

The inequalities (3.4.3) and (3.4.4) prove (ii).
To prove (iii),

ǫ ≤ d(T n(k)x, Tm(k)x) ≤ d(T n(k)x, T n(k)−1x) + d(T n(k)−1x, Tm(k)x)

< d(T n(k)x, T n(k)−1x) + ǫ.

Taking limits as k → ∞,

ǫ ≤ lim
k→∞

d(T n(k)x, Tm(k)x) ≤ ǫ

so that (iii) follows.

We now prove (iv).

ǫ ≤ d(T n(k)x, Tm(k)x) ≤ d(T n(k)x, Tm(k)−1x) + d(Tm(k)−1x, Tm(k)x)

and hence

ǫ ≤ lim
k→∞

d(T n(k)x, Tm(k)−1x). (3.4.5)

Now

d(T n(k)x, Tm(k)−1x) ≤ d(T n(k)x, Tm(k)x) + d(Tm(k)x, Tm(k)−1x).

Using (i), we get

lim
k→∞

d(T n(k)x, Tm(k)−1x) ≤ lim
k→∞

d(T n(k)x, Tm(k)x) = ǫ. (3.4.6)
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From (3.4.5) and (3.4.6), we get

ǫ = lim
k→∞

d(T n(k)x, Tm(k)−1x).

Hence (iv) follows.

By using (i)-(iv) in (3.4.2), we get

ψ(ǫ) ≤ qmax{ψ(ǫ), 0, 0, ψ(ǫ), ψ(ǫ)} < ψ(ǫ), a contradiction.

This proves that {T nx} is Cauchy in X and hence Lemma 3.4 follows.

Proof of Theorem 3.1. Let x ∈ X . From Lemma 3.2 and Lemma 3.4, it follows

that {T nx} is Cauchy and since X is T -orbitally complete, {T nx} has a limit, z (say) in

X .

We now show that this z is a fixed point of T . Otherwise, i.e., if Tz 6= z, consider

ψ(d(T n+1x, T z)) = ψ(d(T (T nx), T z))

≤ qmax{ψ(d(T nx, z)), ψ(d(T nx, T n+1x)), ψ(d(z, T z)),

ψ(d(T n+1x, z)), ψ(d(T nx, T z))}.

Taking limits as k → ∞,

ψ(d(z, T z)) = lim
n→∞

ψ(d(T n+1x), T z))

≤ qmax{ψ(d(z, z)), ψ(d(z, z)), ψ(d(z, T z)), ψ(d(z, z)), ψ(d(z, T z))}
= qψ(d(Tz, z)) < ψ(d(Tz, z)),

a contradiction. Hence ψ(d(Tz, z)) = 0 so that d(z, T z) = 0.

This proves that Tz = z.

Uniqueness of the fixed point z follows trivially from the ψ-quasi-contraction of T .

This proves Theorem 3.1.

Note. In Theorem 3.1, we were not assumed any continuity of T ; by taking ψ(t) = t,

t ≥ 0, Theorem 2.4 follows as a corollary to Theorem 3.1.

Theorem 3.5. Let (X, d) be a metric space, which is T -orbitally complete. Assume

that there is a positive integer k and q ∈ [0, 1) such that T k is ψ-quasi-contraction for

some ψ ∈ Ψ. Then T has a unique fixed point z in X. Also, for x ∈ X, limn→∞ T nx = z

provided T is continuous.

Proof. Since T k is ψ-quasi-contraction, by Lemma 3.4, {(T k)mx} is Cauchy and its

limit

lim
n→∞

(T k)mx = z (say), z ∈ X . (3.5.1)

By Theorem 3.1, z is the unique fixed point of T k.
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Hence T kz = z. Also T k(Tz) = T (T kz) = Tz, so that it follows that

Tz = z. (3.5.2)

Let n be any positive integer, n = mk + j, 0 ≤ j < k, m nonnegative integer. Let

x ∈ X . Then

T nx = Tmk+jx = (T k)mT jx = T j(T k)mx.

Letting m → ∞ and using the continuity of T , we have by (3.5.1) and (3.5.2), it

follows that

lim
n→∞

T nx = lim
m→∞

T j(T k)mx = T j lim
m→∞

(T k)mx

= T jz = z.

This completes the proof of the theorem.

In fact, we have the following generalization of Theorem 3.5.

Theorem 3.6. Let (X, d) be a metric space and let X be T -orbitally complete.

Assume that there is a ψ ∈ Ψ and for some positive integer k, and q ∈ [0, 1)

ψ(d(T kx, T ky)) ≤ qδ[ψ(O(x) ∪O(y))] (3.6.1)

for all x, y in X. Then for each x ∈ X, the sequence {T nx} is Cauchy in X, limn→∞ T nx

= z for some z in X and z is the unique fixed point of T provided T is orbitally continuous

at z.

Proof. Let x ∈ X . Let m > n ≥ k. Then, by (3.6.1), we have

ψ(d(Tmx, T nx)) = ψ(d(T k(Tm−kx), T k(T n−kx)))

≤ qδ[ψ(O(Tm−kx) ∪O(T n−kx))]

= qδ[ψ(O(T n−kx))]

≤ qδ[ψ(O(x))].

Hence

δ[ψ(O(T kx))] ≤ qδ[ψ(O(x))].

In general, it is trivial to see that, for n = 1, 2, . . ..

δ[ψ(T nkx))] ≤ qnδ[ψ(O(x))] (3.6.2)

holds.

We now show that the sequence {T nx} is Cauchy. Otherwise, there exists an ǫ > 0

and a sequence of positive integers {n(k)} and {m(k)} such that m(k) < n(k) with

d(T n(k)x, Tm(k)x) ≥ ǫ and d(T n(k)−1x, Tm(k)x) < ǫ. (3.6.3)
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From (3.6.2), there is a positive integer N1 such that

qnδ[ψO(x))] < ψ(ǫ) for all n ≥ N1. (3.6.4)

Choose a positive integer ℓ so large such that ℓ > N1k. Then for m(ℓ) > N1k, by

using (3.6.3) and (3.6.4),

ψ(ǫ) ≤ ψ(d(T n(ℓ)x, Tm(ℓ)x)) ≤ δ[ψ(O(TN1kx))] ≤ qN1δ[ψ(O(x))] < ψ(ǫ),

a contradiction.

Therefore {T nx} is Cauchy in X , and hence converges, say, to z in X . Hence by the

orbital continuity of T at z, it follows that

z = lim
n→∞

T n+1x = Tz.

Hence Theorem 3.6 follows.

Remark 3.7. By taking ψ(t) = t in Theorem 3.6, we obtain Theorem 2.5. In fact,

in Theorem 2.5 the orbital continuity of T at z is sufficient instead of the continuity of

T on X .

Remark 3.8. If we omit the orbital continuity of T at z in Theorem 3.6, then T

may not have a fixed point in X . Examples 4.2 and 4.3 of Section 4 illustrate this fact.

4. Examples

Example 4.1. From Example 2.3, the mapping T defined on X = [0, 4−1] × [0, 4−1]

by (2.3.1) satisfies all the conditions of Theorem 3.1 with ψ(t) = t2 and q = 4−1; also

(X, d∗) is T -orbitally complete; and T has the unique fixed point (0, 0) in X .

Example 4.2. Let X = {1, 0, 2−1, 2−2, 2−3, . . .} with the usual metric. Define

ψ : R+ → R+ by ψ(t) = t; and define T : X → X by T (0) = 1 and T (2−n) = 2−(n+1)

for n = 1, 2, 3, . . .. Then T satisfies the inequality (3.6.1) for all x, y in X , with k = 1,
q = 2−1 and T is not orbitally continuous at any point of X and T has no fixed point in

X .

Example 4.3. Let X be as in Example 4.2. Define T : X → X by T (0) = 0 and

T (2−n) = 2−(n+1) for n = 0, 1, 2, . . .. Then T satisfies all the conditions of Theorem 3.6

with ψ(t) = t2, k = 1, q = 4−1 and T is orbitally continuous at 0 and T has the unique

fixed point 0.

An open problem: Is it possible that the boundedness of the orbit of x, O(x) for each

x in X , can be relaxed in Theorems 3.1, 3.5 and 3.6?
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