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ON WEYL FRACTIONAL INTEGRAL OPERATORS

RASHMI JAIN AND M. A. PATHAN

Abstract. In this paper, we first establish an interesting theorem exhibiting a relationship
existing between the Laplace transform and Weyl fractional integral operator of related functions.
This theorem is sufficiently general in nature as it contains n series involving arbitrary complex
numbers Q(r1,...7,). We have obtained here as applications of the theorem, the Weyl fractional
integral operators of Kampé de Fériet function, Appell’s functions Fi, Fy, Humbert’s function
W, and Lauricella’s, triple hypergeometric series Fg. References of known results which follow
as special cases of our theorem are also cited. Finally, we obtain some transformations of F®

and Kampé de Fériet function with the application of our main theorem .

1. Introduction

The Weyl fractional integral is defined by

WA )is] = g [ =9 e Re() >0 (1.1)
The Laplace transform is defined by
L{f(t);s] = /OO e St f(t)dt, Re(s) > 0. (1.2)
0

In this paper, we establish a theorem exhibiting a relationship between (1.1) and (1.2).
This theorem provides more efficient tools which allow the straightforward derivation of
the Weyl fractional integral operators associated with hypergeometric functions of Appell,
Humbert, Kampé de Fériet and Lauricella.

2. Theorem

For bounded complex coefficients Q(r1,...,7,) (r; € No, j=1,...,7), let
- i T Rto—1
txe, . ) = Qr1, .. yr) . I yRto- 2.1
f(?xlﬂ 71' ) Z (Tl T )Tl! rn! ( )

71,0, =0

and
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g(s;x1, ... xn) = LIf(t 21, ..., 2n); 8] (2.2)
Then

WHE gt +0);21,. .., 2,); 8]

s T(a)0(0 + A —p) i (0)r(0+A—p)r

T (6+s° T+N s CE
o+ R ;
Qre,...orn) o1\ T, \" )
F 2.
% rilooory! <5+s> <5+5> 2 0+s (2:3)
c+A+R;

where R = > r;, Re(o + A — p) > 0, Re(d + s) > 0, Weyl fractional integral involved in
i=1
(2.3) exists and the series involved in its R.H.S is absolutely convergent.
Proof. We have [1, p.137(1)]

Lif(t;z1,. .. xn); 8] = g(s; 21, .., @)
IO $ (g Q) By 2y g

rlooory!
Also

g(s+0;21,...,2n) = L[ef‘”f(t;xl, ey Xn); 8] (2.5)
and by virtue of a known result [1, p.294(6)]

LIt +a) 8] = T(u) s~ 5 a5 %2 Wy, (as) = (as) (say)  (2.6)
1— A

where k = —5—=, m = ; , Re(p) > 0, | arg a |< m and Wy, p, is the usual Whittaker
function [2].
Again

e~ %p(as) = L[(t — a)* 1t H(t — a); ] (2.7)
where H(t) is Heaviside’s function.
Now applying operational pairs (2.5) and (2.7) in the Goldstein theorem for the

Laplace transform, using (2.4) and changing the order of integration and summation, we
get

/ Mt —a)* gt + 8 xy, .., xn)H(t — a)dt
0

T1 Tn

T oo
_ Z s, ) %/ (Rt s (2.8)

0

T1ye,Tn =0

n

where R = > 1y, Re(c + A — p) > 0, Re(d + a) > 0 and provided that the inversion of
i=1

summation and integration is permissible under the hypothesis of the theorem.
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On substituting the value of ¢ (at) from (2.6) in the R.H.S of (2.8), performing the
integration involved with the help of a known result [1, p.216(16)] and interpreating the
L.H.S of (2.8) in terms of Weyl fractional integral defined by (1.1), we arrive at the
required result (2.3) on replacing a by s.

3. Special Cases and Applications

1
If we take n = 1 and Q(r) = To+r in the main theorem, we arrive at a known
o+r

result [2, p.203(15)] after taking 6 — 0.
If we take n = 2 and § — 0, the main theorem reduces to a known theorem [3, p.52].
P
Again, if we take n = 1 and Q(r) = H% in the main theorem we get a known
j=1397T
result [2, p.212(77)] after taking 6 — 0.
| ECT RS | I | TS
[T @i TT7 B TT (i

Next, we choose n = 2 and Q(r1,7r2) = in the main

theorem to get the following result.

If
(ap) : (bq) i (er) s
f(t;l’l,l'g) = ta_lFf;Zi]:L 1’1t,1’2t (31)
(045) : (ﬁm) ;('Yn) )
and
(o) g, (ap) : (bq) ; (cx) ,I .
glssn,zz) = =GR = (32
() (Bm)s(m);
then
g, (ap) : (bq) s (ck) s 2 2
WH t_)\(t + 6)—0}7‘[{’2‘5&‘1% t + 5’ t + 5 )8
(a1) - (Bm) 5 () 5
D(o+A—p)s2
 T(o+ N (5 +s)
o ulap), (0 +A—p)5_;_:(bg) ;(ew) sp; 5
(3) x 2
r J+s5 6+s0+s (33)
o+ A () it (Bm) () 5

where FlpTZZ is generalized Kampé de Fériet series [4, p.27(28)], F®) stands for Srivas-

tava’s triple hypergeometric series [4, p.44(14)], min Re(o, i, s) > 0 and Re(d + s) > 0.
The result (3.3) can be specialized to four Appell series Fy, Fy, F5 and Fy, and
Humbert series ¢1, ¢, ¢3,%1,12, 21 and Z2. We list here only the following special cases
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of (3.3) involving F1, Fy and 1,

W“[t_)‘(t—i—é)_"Fl(a,b,c;a;ti—la,ti—%;s]
Do+ X —p)st
- T(e+ N0 +s)
o Do+ A—pu;_;_:biep;
F® T 22 90 (3.4)
d+s0+s0+s
o+« S ST
WHEA(t+6) "7 Fy (ma;ﬁﬁ; ti—la’ ti—Qa) ; 5]
Do+ —p)st
C T(o+A)(0+s)°
o (ot A-pha 555 5
X1 To
e b+s 0+s 0+s (3:5)
g+ A B
WHEA(t +6) 7 W1 (0, b; B, 7; ti—lé, t:fé;S]
Do+ —p)st
C T(o+A)(0+s)°
o = b 5
T To
e 0+s 045 0+s (3.6)
oA B

Next, we set n =3 and Q(ry,re,r3) = AB1)ry B2)rgry

= Db Lt o the main theorem to get

_ _ T T2 T3
W# t A t S °F . . .
|: ( + ) E<U’0’0’61’52752’%’72’73’t+5’t+5’t+6)’S]

— F(U +A- N) st io: (0')7“1+7'2+r3 (U + A — N)ﬁ +ro+rs (52)r2+r3 (ﬁl)m
F(U + >‘) (6 + S)J (0 + )\)""1 +ra+r3 (71)7“1 (72)7“2 (73)T3T1! 7’2! 7’3!

r1,72,r3=0

oTLHTF Ty

xl T1 l’Q T2 x3 T3 (S
F .
<5+5> <5+5> <5+5> 2 0+ s (3.7)

c+A+ri+ra+rs;

where Re(o, 41,9 + s) > 0 and Fg is Lauricella’s function [4, p.42(1)].
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It should be remarked in passing that our main theorem is capable of yielding a
number of transformations of hypergeometric functions of several variables, whenever
the integral on the left hand side of (2.3) can be evaluated, e.g. expanding E’:’;,l;lq;k
involved in (3.3) into double series, evaluating the integral with the help of the result 2,
p.201(8)] and using the definition of F(®), we get

a, b (ap) ;5 (bg) ;(ck) 5__;
F(S) II;IQa_é
¢ u(a)s_ 5 (Bm)i(m) i
a:(ap),b;___ 5 :(by) ;(ck);c—b; 5
= (148" F® T2 3.8
(1+9) 14+6"1+6"1+46 (38)
cufou) 5 (Bm) 5 (m) 5 5
For zg — 0, (3.8) reduces to
2iptai0 a,b: (ap), (bg) ;_;
Fl:Aler’;O T, —0
c: (al)v (ﬂm) s
a:(ap),b,(by) ;¢ —b;
. . )
=(1 5 7(1F1‘p+q+1,1 T 0 3.9
( + ) 1:l14m;0 1+5’1+5 ( )
c:(a),(Bm) 5__ ;

Some straightforward generalizations of the results like [cf. Srivastava and Karlsson
(4, p.304(99) and p. 307(119)] follow from (3.8) and (3.9). Thus if we employ p = g =
I=m=01in (3.8), we get (4, p.304(99)) and if ¢ = 0, I = 1 then we get (4, p.307(119)).
There are numerous other transformations and reduction formulas which stem similarly
from such formulas as (3.8) and (3.9).
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