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SOME RESULTS ON UNIQUENESS OF ENTIRE FUNCTIONS
CONCERNING DIFFERENCE POLYNOMIALS

PULAK SAHOO AND GURUDAS BISWAS

Abstract. In the paper we use the notion of weakly weighted sharing and relaxed weighted
sharing to investigate the uniqueness problems when two difference products of entire
functions share a small function. The results of the paper improve and extend some re-
cent results due to the present first author [Commu. Math. Stat., 3 (2015), 227-238].

1. Introduction, Definitions and Results

In this paper, by meromorphic function we will always mean meromorphic function in
the complex plane. We assume that the reader is familiar with the basic notions of Nevanlinna
value distribution theory (see [9], [12] and [24]). For a nonconstant meromorphic function f,
we denote by T(r, f) the Nevanlinna characteristic function of f and by S(r, f) any quantity
satisfying S(r, f) = o{T(r, f)} as r — oo outside of an exceptional set of finite linear mea-
sure. We say that a(z) is a small function of f, if a(z) is a meromorphic function satisfying
T(r,a(z)) =S(r, ).

Let k be a positive integer or infinity and a € C U {oo}. Set E(a, f) = {z : f(z) —a = 0},
where a zero with multiplicity k is counted k times. If the zeros are counted only once, then
we denote the set by E(a, f). Let f and g be two nonconstant meromorphic functions. If
E(a, f) = E(a, g), then we say that f and g share the value a CM (counting multiplicities). If
E(a, f) = E(a, g), then we say that f and g share the value a IM (ignoring multiplicities). We
denote by Ej(a, f) the set of all a-points of f with multiplicities not exceeding k, where an
a-point is counted according to its multiplicity. Also we denote by Ey, (a, f) the set of distinct
a-points of f with multiplicities not exceeding k. Throughout the paper, we denote by p(f)
the order of f (see [9], [12] and [24]). In addition, we need the following definitions.

Definition 1 ([10]). Let a € CU{oo}. We denote by N(r, a; f |= 1) the counting function of sim-

ple a-points of f. For a positive integer k we denote by N(r, a; f |< k) the counting function of
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those a-points of f (counted with proper multiplicities) whose multiplicities are not greater
than k. By N(r, a; f |= k) we denote the corresponding reduced counting function. Analo-
gously we can define N(r, a; f |= k) and N(r, a; f |= k).

Definition 2 ([11]). Let k be a positive integer or infinity. We denote by N(r, a; f) the counting
function of a-points of f, where an a-point of multiplicity m is counted m times if m < k and
k times if m > k. Then

Ni(r,a; f) =N(r, a; f) + N(r, a fl=2) +--+N(r, a; f |z k).
Clearly N (r,a; f) = N(r, a; f).

Definition 3. Let a € CU {oo}. We denote by Ng(r, a; f,g) (Ng(r, a; f, ) by the counting func-
tion (reduced counting function) of all common zeros of f —a and g — a with the same multi-
plicities and by Ny(r, a; f, g) (No(r, a; f, g)) the counting function (reduced counting function)
of all common zeros of f — a and g — a ignoring multiplicities. If

N(r, a; f) + N(r, a; g) —2Ng(r, af,g)=S H+Srg),
then we say that f and g share the value a “CM”. If

N(r, a; f) + N(r, a; g) —2Ny(r, a f,g) =8 fH+Srg),
then we say that f and g share the value a “IM”.

Definition 4 ([14]). Let f and g share the value a “IM” and k be a positive integer or infinity.
Then Nf) (r,a; f, g) denotes the reduced counting function of those a-points of f whose mul-
tiplicities are equal to the corresponding a-points of g, and both of their multiplicities are not
greater than k. ﬁ?k(r, a; f, g) denotes the reduced counting function of those a-points of f

which are a-points of g, and both of their multiplicities are not less than k.

We now introduce the following definition of weakly weighted sharing which is a scaling
between sharing IM and sharing CM.

Definition 5 ([14]). Let a € CU {oo} and k be a positive integer or infinity. If

N(r,a; f 1< k) - Ny (ra f,8) = S(r, ),

N(r,a;g|< k) - Ny (r,a f,8) = S, 8),

N(r,a; f 12 k+1) = Ny (1, a3 f,8) = S(r, f),

N(r,a;gl=k+1) —N?kﬂ(r, a,f,g)=Srg),
orif k=0and
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N(r,a; f) - No(r,a; f,8) = S(r, f),
N(r,a;8) - No(r,a; f,8) = S(r, 8),

then we say that f and g share the value a weakly with weight k and we write f and g share
« (a, k) n.

In 2007, A. Banerjee and S. Mukherjee [1] introduced a new type of sharing known as

relaxed weighted sharing, weaker than weakly weighted sharing and is defined as follows.

Definition 6 ([1]). We denote by N(r, a; f |= p; g |= q) the reduced counting function of com-
mon a-points of f and g with multiplicities p and g respectively.

Definition 7 ([1]). Let a € CU {oo} and k be a positive integer or infinity. Suppose that f and g
share the value a “IM”. If for p # g,

Y. Nafl=p;gl=q) =Sr),
p.qsk
then we say that f and g share the value a with weight k in a relaxed manner and in that case

we write f and g share (a, k)*.

Many research works on entire and meromorphic functions whose differential polyno-
mials share certain value, small function or fixed points have been done by many mathemati-
cians in the world (see [5], [6], [15], [20], [22], [23]). Recently, value distribution in difference
analogue has become a subject of great interest among the researchers. In 2006, R.G. Halburd
and R.J. Korhonen [7] established a version of Nevanlinna theory based on difference opera-
tors. The difference logarithmic derivative lemma, given by R.G. Halburd and R.J. Korhonen
[8] in 2006, Y.M. Chiang and S.J. Feng [4] in 2008 plays an important role in considering the
difference analogues of Nevanlinna theory. With the development of difference analogue of
Nevanlinna theory, many mathematicians paid their attention on the distribution of zeros
of different types of difference polynomials. In 2007, I. Laine and C.C. Yang [13] proved the
following result.

Theorem A. Let f(z) be a transcendental entire function of finite order and 1 be a nonzero
complex constant. Then for n =2, f"(z) f(z +n) assumes every nonzero value a € C infinitely
often.

We recall the following two examples.

Example 1 ([13]). Let f(z) =1+ e° Then f(2)f(z+mi)—1= —e2%2 has no zeros. This shows
that Theorem A does not hold if n = 1.
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Example 2 ([17]). Let f(z) = =% . Then fz(z)f(z+1]) —2=-1and p(f) = oo, where 7 is the
nonzero constant satisfying e” = —2. Evidently, f2(z) f(z+n) — 2 has no zeros. This shows that

Theorem A does not remain valid if f is of infinite order.

In 2010, X.G. Qi, L.Z. Yang and K. Liu [19] proved the following uniqueness result corre-
sponding to Theorem A.

Theorem B. Let f(z) and g(z) be two transcendental entire functions of finite order, andn be a
nonzero complex constant, and let n = 6 be an integer. If f"* (2) f(z+n) and g" (z)g(z+n) share
1 CM, then either fg = t or f = t,g for some constants t; and t, satisfying t]"* = tf*! = 1.

In the same year J.L. Zhang [25] considered the zeros of one certain type of difference

polynomial and proved the following result.

Theorem C. Let f(z) be a transcendental entire function of finite order, a(z)(Z 0) be a small
function with respect to f(z) andn be a nonzero complex constant. If n = 2 is an integer then

(2 (f(2) - 1) f(z+n) — a(z) has infinitely many zeros.

In the same paper the author also proved the following uniqueness result.

Theorem D. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (Z
0) be a small function with respect to both f(z) and g(z). Suppose thatn is a nonzero complex
constantandn =7 is an integer. If f" (2)(f(2)—1) f(z+n) and g" (2)(g(2) —1)g(z+n) share a(z)
CM, then f(z) = g(2).

Naturally one may ask the following question.

Question 1. Is it possible to relax the nature of sharing the small function in Theorem D ?

In 2014, using the idea of weakly weighted sharing and relaxed weighted sharing, C. Meng
[18] proved the following results which improve and supplement Theorem D in different di-

rections.

TheoremE. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function with respect to both f(z) and g(z). Suppose that 1 is a nonzero com-
plex constant, and n = 7 is an integer. If f"(z) (f (2)—1) f(z+n) and g"(2)(g(z)—1)g(z+n) share
“(a,2)", then f(z) = g(z).

TheoremF. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (Z
0,00) be a small function with respect to both f(z) and g(z). Suppose that 1 is a nonzero com-
plex constant and n = 10 is an integer. If f"(2)(f(2) —1)f(z+n) and g"(2)(g(z) —1)g(z+n)
share (a,2)*, then f(z) = g(2).
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Theorem G. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (Z
0,00) be a small function with respect to both f(z) and g(z). Suppose that1 is a nonzero com-
plex constant and n > 16 is an integer. If Ex) (a(z), f™(2)(f (2)-1) f (z+1)) = Ex (a(z), g"(2)(g(2)—
1)g(z+n)), then f(z) = g(2).

Observing the above results the following question is inevitable.

Question 2. What can be said about the relationship between two entire functions f and g if
one replace f"(z)(f(z)—1)f(z+n) by f"(2)(f"(z)—1) f (z+n) in Theorems E - G where m(= 1)
is any integer ?

In recent, the present first author [21] answered the above question and proved the fol-
lowing results which generalize Theorems E-G.

Theorem H. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function of both f(z) and g(z). Suppose thatn is a nonzero complex constant,
n and m(= 1) are integers such thatn=m+6. If f"(2)(f™(2) - 1) f(z+n) and g"(2)(g"(z) —
1)g(z+m) share “(a(z),2)", then f(z) = tg(z) where t" = 1.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function of both f(z) and g(z). Suppose that is a nonzero complex constant,
n and m(= 1) are integers such that n =2m+8. If f*(2)(f™(z) — 1) f(z+n) and g"(2)(g" (z) —
1)g(z+n) share (a(z),2)*, then f(z) = tg(z) wheret™ =1.

Theorem]. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function of both f(z) and g(z). Suppose that 1 is a nonzero complex con-
stant, n and m(= 1) are integers such that n = 4m+12. Iffz)(a(z),f”(z) (f"2-1)f(z+m) =
Ey(a(z),g"(2)(g™(z) - 1)g(z+n)), then f(z) = tg(z) wheret™ =1.

Regarding Theorems H—J, one may ask the following question which is the motivation of
the present paper.

Question 3. What can be said about the entire functions f and g if we consider the difference
polynomials of the form (f"(2)(f"(2) - 1) f(z + n))(k) where k(= 0) is an integer ?

In the paper, our main purpose is to find out the possible answer of the above question.
We prove following three theorems which improve and extend Theorems H—J respectively.
The following theorems are the main results of the paper.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (Z
0,00) be a small function of both f(z) and g(z) with finitely many zeros. Suppose that n is
a nonzero complex constant, n, k(= 0) and m(= 1) are integers such that n = 2k+ m+6. If
@D ™(@ -1 f (z+m)® and (g"(2) (g™ (2)-1)g(z+m) ) share“(a(2),2)", then f(2) = tg(2)
wheret™ = 1.
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Theorem 2. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function of both f(z) and g(z) with finitely many zeros. Suppose thatn is a
nonzero complex constant, n, k(= 0) and m(= 1) are integers such that n = 3k +2m+8. If
(" @@ =D f (z+n) P and (8" (2)(g" (2)-1)g(z+n)® share (a(2),2)*, then f(2) = tg(2)
where t™ = 1.

Theorem 3. Let f(z) and g(z) be two transcendental entire functions of finite order, and a(z) (#
0,00) be a small function with respect to both f(z) and g(z) with finitely many zeros. Suppose
that n is a nonzero complex constant, n, k(= 0) and m(= 1) are integers such that n = 5k +
4m+12. If By (a(2), (f*(@(f" (@) - Df(z+m)P) = By (a(2),(g"(2)(g"(2) - Dglz +mM)P),
then f(z) = tg(z) wheret™ =1.

Remark 1. Since Theorems H—J are the special cases of Theorems 1-3 respectively for k =0,

Theorems 1-3 improve and extend Theorems H-]J respectively.

2. Lemmas

In this section, we state some lemmas which will be needed in the sequel. We denote by

H the following function:

F// 2F/ G// ZG/
H=|—- - = ],
7-7=1)- (7o)

where F and G are nonconstant meromorphic functions defined in the complex plane C.

Lemma 1 ([4]). Let f(z) be a meromorphic function of order p(f) < oo, and letn be a nonzero

complex constant. Then for each € > 0, we have
T(r, f(z+m) = T(r, f) + O{rP P71+ 4 Oflog 7).

Lemma 2 ([3]). Let f(z) be an entire function of order p(f) < oo, and F = f"(2)(f"(2)-1)f (z+
1). Then

T(r,F)=(n+m+1DT(, )+ 0P P14 51, f).

Lemma 3 ([26]). Let f be a nonconstant meromorphic function, and p, k be positive integers.
Then

N, (r,O;f(k)) <T (r,f(k)) — T, )+ Npi (1,0, )+ S(r, ), @.1)

Ny (1,0: F0) = kN (003 1)+ Ny (r,0: )+ S f). 2.2)
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Lemma4 ([1]). Let F and G be two nonconstant meromorphic functions that share “(1,2)" and
H#Q0. Then

oo G/
T(r,F) < Na(r,0; F)+ N2 (r,0; G) + No (,00; F) + No (1,00, G)— ) N(r,0; e = p)+S(r, F)+S(r,G),

p=3
and the same inequality holds for T (r, G).

Lemma5 ([1]). Let F and G be two nonconstant meromorphic functions that share (1,2)* and
H#Q0. Then

T(r,F) < No(1,0; F) + No(1,0; G) + N (r,00; F) + N (r,00; G) + N(r, 0; F) + N(r,00; F) — m(r, 1; G) +
S(r,F)+S(r,G),

and the same inequality is true for T (r, G).

Lemma 6 ([16]). Let F and G be two nonconstant entire functions, and p = 2 be an integer. If
E,)(1,F) = E,(1,G) and H#0, then

T(r,F) < No(r,0; F) + No(1,0; G) + 2N (r,0; F) + N(r,0; G) + S(r, F) + S(, G),

and the same inequality holds for T (r,G).

Lemma 7. Let f and g be two entire functions, n(= 1), m(= 1), k(= 0) be integers, and let
F=({f"("@-Dfz+m®, 6= (g"@g" (@ -Dglz+m®.

If there exists nonzero constants ¢, and c, such that N(r, c;F) = N(r,0;G) and N(r, c;G) =
N(r,0;F), then n <2k + m+3.

Proof. We put F; = f"(2)(f"(2) — 1) f(z+n) and G, = g"(2)(g" (z) — 1)g(z +n). By the second

fundamental theorem of Nevanlinna we have

T(r,F) < N(r,0;F) + N(r, c1; F) + S(r, F)
< N(r,0; F) + N(r,0;G) + S(r, F). (2.3

Using (2.1), (2.2), (2.3) and Lemmas 1 and 2 we obtain

(n+m+1)T(r, f) < T(r,F) = N(1,0; F) + Niy1 (1, 0; Fy) + S(1,, )
< N(1,0;G) + Njy1 (1,0; F1) + S(1,, )
< Ni41(1r,0; F1) + Ny 1(1,0; Gy) + S(r, f) + S(1, 8)
< (k+D(N(1,0;f)+ N(1,0;8) + N(r, 1; f™) + N(r,1; ™)
+N(1,0; f(z+1)+ N(,0;g(z+n)+ S(r, f)+S(r, 8)
< (k+m+2)(T(r, f)+ T(r,g) + O{rPN=1+&
+O{rP®~ 1 L (1, f) + S(1, 9). (2.4)
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Similarly

(n+m+1T(rg) < (k+m+2)(T(r, )+ T(r,) + 0frP N1+
+O{rP® 4 S(r, ) + S(r, 8). 2.5)

Combining (2.4) and (2.5) we obtain
(n—2k—-m=3)(T(r, f)+ T(r,g) < O(rP D=1+ L 0P8 L §(r, ) + S(1, ),
which gives n < 2k + m + 3. This proves the lemma. (]

Lemma 8 ([2]). Let f(z) and g(z) be two transcendental entire functions of finite order, and let
1 be a nonzero complex constant, and n, m be positive integers such thatn = m+5. If

TR -Df(z+n) =g"(2)(g"(2) - 1)g(z+1)
then f(z) = tg(z), where t is a constant satisfying t™ =1

Note 1. Though the authors [2] claimed that the result holds for n = m + 6, from the proofit is
easily seen that the result holds if n = m +5.

3. Proof of the Theorems

(k) G(k)

Proof of Theorem 1. Let F = i and G = — where F; = f"(2)(f"(2) - 1) f(z+n) and G; =

a(z) a(z)
g"(2)(g™(2)—1)g(z+mn). Then F and G are transcendental meromorphic functions that share

“(1,2)” except the zeros and poles of a(z). From Lemma 2 we see that

T(rF) = (n+m+1T(r f)+ 0P D1 1 50, ), (3.1)
T(r,G) = (n+m+1T(r,g) + OrP & 11 L §(r, g). (3.2)

If possible, we may assume that H # 0. Using (2.1), (3.1) and Lemma 2 we get

Ny(1,0; F) < No(r,0; (F)®) + S(r, f)
< T(r, FD)®) = (n+m+ 1T, f) + Nso(r,0; F1) + S(r, f)
<sT(rF)—(n+m+1)T(r, )+ Nii2(r,0; F1) + S(1, f).

From this we get
(n+m+1)T(r,f) < T(r,F)— Ny(r,0; F) + Ni42(r,0; F1) + S(1, f). 3.3)
Also by (2.2) we obtain

Na(r,0; F) < N (r,0; (F)™) + S(r, f)
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< Ni42(r,0; F1) + S(r, f). (3.4)
Similarly,
Ny (1,0;G) < Ni12(r,0;G1) + S(1, 8). 3.5
Using (3.4), (3.5) and Lemmas 1 and 4 we obtain from (3.3)

(n+m+1)T(r, f) < Na(r,0;G) + Na(r,00; F) + No (r,00; G) + N42(1,0; F)
+S(r, f)+S(r, g
< Ni42(1,0; F1) + Niy2 (1,0, G1) + S(r, f) + S(1, 8)
< (k+m+3){T(r, f) + T(r, @)} + OfrP 71+
+O{rP®~ 4 4 S(r, f) + S(r, 8). (3.6)

In a similar manner we obtain

(n+m+1)T(r,g) < (k+m+3){T(r, )+ T(r,g)}+0frrH =17
+O{rP @16 L S(r, )+ S(1, 9). 3.7)

(3.6) and (3.7) together yields

(n—2k-m=5){T(r, f) + T(r,8)} < OrPV~1*e} 4 O(rP®~1+¢}
+8(r, f)+S(r,8),

a contradiction with the assumption that n = 2k + m + 6. Therefore we must have H = 0. Then

FH 2F/ GH 2Gl
(F_F—l)_(a_(;—l):
Integrating both side twice we get from above

L _ 4 +B (3.8)
F-1 G-1 ' ’

where A(# 0) and B are constants. From (3.8) it is clear that F, G share 1 CM and hence they
share “(1,2)". Therefore n = 2k + m + 6. We now discuss the following three cases separately.

Case 1. Suppose that B #0 and A = B. Then from (3.8) we obtain

1 BG
F-1 G-1

IfB = -1, then from (3.9) we obtain FG = 1. Then

(3.9

"2 -1 fe+m® (g "2 Em @) -1gz+n)® = a?.
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Since the number of zeros of a(z) is finite, it follows that f as well as g has finitely many ze-
ros. We put f(z) = h(z)eP@, where h(z) is a nonzero polynomial and B(z) is a nonconstant

polynomial. Now replacing f(z +n) by y(z) and h(z+n) by u(z) we deduce that

(f" @ (™2 - 1) flz+m)®
— (hn(Z) enﬁ(z) (hm(Z) emﬁ(z) —~Dh(z+ n)eﬁ(z+n))(k)
= (h"(2)u(z)e"PETTE (M (z)emPE) _ 1))
— (hn+m(z)u(z) e(n+m),6(z)+y(z) _ hn(Z)/J(Z) enﬂ(z)ﬂf(z))(k)
= TP Py (B(2),7(2), h(2), 12),. .., fP (2,70 (2), hO (=), P (2))

"I Py (B(2), y(2), (@), w(2),....., B (2), 70 (2), h¥ (2), P (2)
— enﬁ(Z)ﬂ/(Z) (Plemﬂ(z) - Py).

Obviously Pye™P\? — P, has infinite number of zeros, which contradicts with the fact that g is
an entire function.

If B # -1, from (3.9), we have% = % and so N(r,ﬁ;G) = N(r,0;F). Using (2.1),

(2.2), (3.2) and the second fundamental theorem of Nevanlinna, we deduce that

T(r,G) < Nr,0,G)+ N

1 _
r,—;G) + N(r,00;G) + S(r, G)
1+B

< N(,0;F) + N(1,0;G) + N(r,00;G) + S(1, G)
< Ni1(,0; F1) + T(r,G) + Niy1 (1,0, G1) — (n+m+1)T(r, 8) + S(1, ).

This gives

(m+m+1)T(r,g) < (k+m+2{T(r, f)+ T(r,g)}+OfrP =178

+O{rP®7 1" 1+ 5(r, g).
Thus we obtain

(n—2k—-m=3){T(r, )+ T(r,g)} < O{rP -1 L ofrr@-1+e
+S(r, ) +S(r, 9),

a contradiction sincen =2k + m+6.

Case2. Let B#0and A # B. Then from (3.8) we get F = % andso N(r, Bl_gffl;G) =

N(r,0; F). Arguing similarly as in case 1 we arrive at a contradiction.
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Case3. Let B=0and A+# 0. Then from (3.8) we get F = “*4=1 and G = AF - (A-1). IfA#1,
it follows that N(r, %;F) = N(r,0;G) and N(r,1- A;G) = N(r,0; F). Now applying Lemma 7 it
can be shown that n <2k + m+ 3, a contradiction. Thus A=1 and then F = G. Then

@@ - fz+m® = (g"(2)(g™(2) - Dgz+n)®.
Integrating once we obtain
" @™ 2 -1 fe+m)* Y = (g"(2)(g™ (@) - Dglz+m) % + ¢y,

where ci— is a constant. If cx—1 # 0, using Lemma 7 it follows that n < 2k + m+ 1, a contradic-
tion. Hence ci—1 = 0. Repeating the process k-times, we deduce that

M@ ("2 -Df(z+n) =g"(2)(g"(2)-1)g(z+n),
which by Lemma 8 gives f = tg, where t is a constant satisfying t"" = 1

This completes the proof of Theorem 1. O

Proof of Theorem 2. Let F, G, F; and G; be defined as in Theorem 1. Then F and G are
transcendental meromorphic functions that share (1,2)* except the zeros and poles of a(z).
Let H #0. Then using (2.2) for p =1, (3.5) and Lemmas 1 and 5 we obtain from (3.3)

(n+m+1)T(r, f) < Nao(r,0;G) + Ny (r,00; F) + N (r,00; G) +ﬁ(r,0;F)
+N(r,00; F) + Ni42(r,0; F1) + S(r, f) + S(r, g)
< Ni42(r,0; F1) + N42(1,0; G1) + Nigy 1 (1,0; F1) + S(r, f) + S(1, @)
< Rk+2m+5)T(r, f) + (k+m+3)T(r,g) + O{rP )1+
+O{rP®~ 1 L (7, f) + S(1, 8). (3.10)

In a similar manner we obtain

(n+m+ DT g) < @k+2m+5)T(r,g) + (k+m+3)T(r, ) + 0PI 71+¢)
+O{rP @~ 4+ S(r, ) + S(1, ). @.11)

From (3.10) and (3.11) we get

(n=3k-2m="7{T(r, f) + T(r,g)} = OfrP V)" 1*e} 4 Ofr P& 14y
+8(r, f)+S(r,8),

contradicting with the fact that n = 3k + 2m + 8. Thus we must have H = 0. Then the result

follows from the proof of Theorem 1. This completes the proof of Theorem 2. O
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Proof of Theorem 3. Let F, G, F; and G; be similar as in Theorem 1. Then F and G are
transcendental meromorphic functions such that Ey)(1,F) = E»)(1,G) except the zeros and
poles of a(z). Let H # 0. Then by (2.2), (3.5) and Lemmas 1 and 6 we obtain from (3.3)
(n+m+1T(r, f) < Na(r,0;G) + 2N(r,0; F) + N(r,0; G) + N42(r, 0; Fy)
+S(r, f)+S(r, g
< Ni42(1,0; F1) + N4 2(1,0; Gp) + 2Nj i1 (1,0; F1) + Nie11 (1,0; Gy)
+S(r, )+ S(r, 8)
< Bk+3m+7T(, )+ QRk+2m+5)T(r,g) + O{rPH-1+&
+0{rP® 1 4 S(r, £) + S(r, 8). (3.12)

Similarly,

(n+m+1)T(r,g) < Bk+3m+7)T(r,g) + 2k+2m+5)T(r, f) + OfrPH 714}
+O{rP®~ 1 £ S(r, ) + S(r, 8. (3.13)

Combining (3.12) and (3.13) we obtain
(n—5k—4m—1D{Tr, )+ T(r, @)} < OfrP V7178 4+ 0P @148 L S(r, /) + S(r, 8),

a contradiction with the assumption that n = 5k +4m + 12. Thus H = 0 and the rest of the
theorem follows from the proof of Theorem 1. This completes the proof of Theorem 3. a

Open Problems. In the paper, we give two open questions for further research.

Question 4. What can we get if we consider transcendental meromorphic functions in Theo-
rems 1-37

Question 5. Can we relax the lower bound of 7 in Theorems 1-3 ?
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