TAMKANG JOURNAL OF MATHEMATICS
Volume 39, Number 2, 121-130, Summer 2008

ON A FOUR-DIMENSIONAL BERWALD SPACE WITH
VANISHING h-CONNECTION VECTOR k;

P.N. PANDEY AND MANISH KUMAR GUPTA

Abstract. M. Matsumoto and R. Miron [2]V) constructed an orthonormal frame for an n-dimensional Finsler space
and the frame was called ‘Miron frame’. T. N. Pandey and D. K. Diwedi [3] and the present authors [4] studied four-
dimensional Finsler spaces in terms of scalars. In the present paper, we study a four-dimensional Berwald space

with vanishing h-connection vector k;.

1. Orthonormal Frame and Connection Vectors

Let L(x, y) be the fundamental function and g;; (x, y) be the fundamental metric tensor of
a four-dimensional Finsler space F*. Let 5;];,13 be generalized Kronecker delta, and y;jx; =

i ijkl
0 }]22‘; and y'/* =5 1]23 +» then the components of e-tensor are defined by

€ijki=V1glyiji and  €7¥=(/1gh7yk; where g =|g;jl.

€,k is also called the Levi-Civita permutation symbol.

The Miron frame for a four-dimensional Finsler space is constructed by the unit vectors
(i mt,nt, pi), where [’ is the normalized supporting element and m' is the normalized tor-
sion vector.

In the orthonormal frame, an arbitrary tensor T = (T;) is expressed in terms of scalar com-
ponents as follows:

T; = Taﬁe’a)eﬁ)j, (1.1)

i

) = m', el = n, ef;) = p' and the summation convention is applied to Greek

i _ i
Yvh(?re ey = I' e 3)
indices also.
The scalar components of the fundamental tensor g;; and €-tensor €;x; are given by 6 o

and yqpys respectively.

. . . l
Let Hypy and zVa) py be scalar components of the k- and v-covariant derivatives e a)lj

and eé) |; respectively of the vectors ey, i.e.

i _ i .
a) ea)“j = Ha)ﬁy eﬁ)‘ ey)j

(1.2)
b) Le;)lj =V py efm ey)j.
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Hg)py and Vg gy are called k- and v-connection scalars respectively and are (0) p-homogeneous? .

From the orthogonality of the frame, we have

Hoc)ﬁy = _Hﬁ)aw Va)ﬁy = _Vﬁ)ay- (1.3)
Also, we have
Hypy =0, Vipy=08py—0;0,. (1.4)
We now define vector fields:
hi = Ha)sy eyi,  ji = Hyoy epyi, ki = H3jay ey, (1.5)
and
Ui =Vaysy ey)i, Vi=Vaoy epi, W= Vauyey;. (1.6)

From (1.2), we get

a) {)U_li =0,
b) 2)\] m =n'hj-p'jj, 1.7
C) 3)‘] p k] m_h]’
d) e[l;)‘j p\] m ]] lk]"
and
a) Lel)lj—Ll |,—mm]+nn,+pp]—h’
b) Le)IJ—Lm |,=—lm]+n uj=p'vj, (1.8)

c) Le3)|]—Ln|]——an mu]+pw],
d) Le4)|]—Lp|]=—lp]+m vi—n'w;j.

The Finsler vector fields h;, j;, k; are called h-connection vectors and the vector fields u;,
v;, w; are called v-connection vectors.

The scalars Ha)3y, Hay2y, Hs)ay and Vz)3y, Vay2y, V3)4y are considered as the scalar compo-
nents hy, jy, ky and Uy, Uy, Wy of the h- and v-connection vectors respectively. Because of
(0) p-homogeneity of el’x), (1.8) gives

Lmi|jlj=0=niujlj—pivjlj,
Ln'|jl/ =0=-m'u;l/ + p'w;l’,
so that u; = ujlj =0,v;1 = vjlf =0, uwy = wjlf =0
Consequently, we have:

Proposition 1.1. The first scalar components uy, v1, wy of v-connection vectors u;, v;, W;j
vanish identically.

2) “(0)p-homogeneous” is an abbreviation of “positively homogeneous of degree 0 in y”.
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2. Main scalars

1
Let I Capy be scalar components of C; ;. with respect to the Miron frame, i.e.

LCijk = Capyemiep)jeyk- @2.1)

M. Matsumoto [1] showed that
() Cqpy are completely symmetric,
(i) Cipy =0,
(i) Copy=LC =W, C3pp = Cappy="-++- Cpup = 0 for n > 3, where C is the length of C’ and
W = LC is called the unified main scalar.
Therefore in a four-dimensional Finsler space, we have

Cipy =0,
Co22+ Co33+ Coaa = LC =W,
C322 + C333 + C344 = 0, (2.2)

Ca22 + Cy33 + C44 =0,
Cy34 #0 in general.

Thus putting
Cop=A, Cp33=B, Cous=C, Cz2=D, 2.3)
Cs33=E, Cyp=F Cu3=G, Cuu=H, '
we have
Cass=—(D+E), Cpus=-F+G).
Eightscalars A, B,...... G, H given by (2.3) are called the main scalars of a four-dimensional
Finsler space.
3. Scalar derivatives
Taking h-covariant differentiation of (1.1), we get
T;\k = (6kTaﬁ)e;)eﬁ)j + Taﬁefx)‘keﬁ)j + Taﬁe;)eﬁ)j‘k. 3.1)
If Typ, y are scalar components of T;lk, ie.
T;‘k =Tap,y €y €p)j ey (3.2)
then we obtain
Tapy =6k Taﬁ)e’;) + Ty Hpay + TapHypy- (3.3)

Similarly the scalar components Tyg;) of LT]? |k are given by

A k
Tapyy = LOk Tap)ely + TupVivay + TayVinpy- (3.4)
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The scalar components Ty, and Typ;, respectively are called k- and v- scalar derivatives
of scalar components Tpp of T.

4. Berwald space

A Berwald space is characterized by Cp;jjx = 0, which is given by Cypy,s = 0 in terms of
scalars.
We are concerned with the tensor Cp; jx. From (2.1) and (3.2), it follows that

L Chijik = Capy,s€aynep)iey) jesk- (4.1)

According to the formula (3.3), Cypy,5 are given by

Capys = 5kCaﬁye§) +CupyHyas + Capy Hups + Caputpyys-
The explicit form of Cypy s is obtained as follows:
Cozo 5 = (5kC222)€§) +3Cu22 Hyyos

= (6xA) e§) +3C322 H3)25 + 3Ca22 Hayas
= A5 —3Dhs +3F js; (4.2a)

where A5 = (01 A) eg).
Remark. As we put Cz2» = A, we should notice the difference between A 5 and Cypz 5.

Similarly, we get

Cp33s = B + 2D —E)hs + Gjs —2Hks, (4.2b)
Cosas = Cs+(D+E)hs — BF+G)js +2Hks, (4.2¢)
Ci225 = D g+ (A—2B)hs +2Hjs — Fks, (4.2d)
Csss,5 = Es +3Bhs —3Gks, (4.2e)
Ci25 = Fs —2Hhs — (A-2C)js + Dks, (4.2f)
Cuzzs = Gs+2Hhs — Bjs + (2D +3E) ks, (4.2g)
Cosa5 = Hs+ (F—G)hs — (2D +E) js + (B—C) ks, (4.2h)
Csa4 = —Dg— E+Chs—2Hjs + (F +3G) ks, (4.2i)
Cuss = —Fs—Gg—3Cjs— (3D +3E)ks, (4.2))
Cipys = 0. 4.2K)

Adding (4.2d), (4.2e), (4.2i) and using (2.2), we get

Cs22,6 + C333,5 + C3aa,5 = (A+B+C)hs = LChs = Whg. (4.3)
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Adding (4.2f), (4.2g), (4.2j) and using (2.2), we get
Ci22,5 + Cu335 + Caaa56 = —(A+ B+ C) js = —LCjs = =W js. (4.9)
Adding (4.2a), (4.2b), (4.2¢) and using (2.2), we get
Co22,6+Ca336+ Coaa5 =As+Bs+Cs=(A+B+C) s =Wp. (4.5)
Thus, from (4.2), (4.3), (4.4) and (4.5), we have

Theorem 4.1. In a four dimensional Berwald space, the h-connection vectors h; and j;
vanish identically. Also main scalar A and the unified main scalar W = LC are h-covariant
constants. Furthermore, if h-connection vector k; vanishes then all the main scalars are h-
covariant constants.

5. Ricci identities

Now, we are concerned with the tensors e;‘j‘k, eé)l | and eé) | jix- From (1.2), we have

]

e;)‘j‘k = Ha)ﬁwse;j)ey)jeg)k, (5.1)
Lefx)\ﬂk = Ha)ﬁy;5elﬁ) ey)jes)k (5.2)
Le(lx)|j|k = Va)ﬁy,ée;j) ey)jes)k- (5.3)

According to the formulae (3.3) and (3.4), Hy) By.5» Ha)py:s» Vo py,5 are given by

Haypy,5 = OxHaypy)es) + Haypy Hypo + Ha puHyys,
Haypyss = LOkHaypy)eh) + Hayy Viops + Hayp Vioys»
Vaypy.s = (0 Vamy)eé‘, + Vayuy Hu s + Vay puHppys-

The explicit forms of these are obtained as follows:

Hysy 6 = (5xHaay)el, + Hayuy Hyyso + Hayzu Hyyys
= (8khy)es, + Haay Hiyss + by Hyyys
= hys + jyks;
where hy 5 = (5khy)e§) + hy Hyyys.
Similarly, we get
H4)27/,5 = jy,é + kyhéy
H3)47/,5 = ky,5 + hyj(s;
Hyzy;6 = hy;s + jy Ws,
Hyyoys = Jyio + kyUs,
H3)47/;5 = ky;5 + hy Us,

and
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‘/2)37/,5 =Uys T+ Vyk(s;

V4)2y,5 =Uyst thg,

V3)ay,6 = Wy,5 + Uy 5.

In terms of scalar components, the Ricci identity
i i _ T pi i r i r
eayjlk = eqlklj = ey Prik € Cix = enlrCigor 6.4
is expressed as

Hapy:s = Vaypo,y = Papys = HaypuCuys = VaypuPuys- (5.5

For Berwald space Pp;ji = 0, therefore (5.5) becomes
Ha)ﬁy;& - Va)ﬁ&,y == a)ﬁucuyd;
which is explicitly written as
(hy;é + jyws) — (usy + Usky) = _hpcmféy

(Uys + kyus) — (vs,y + Ws hy) = = juCuys»
(ky;s + hyvs) = (Ws y + s jy) = —kuCpys-

From Theorem 4.1, we see that in a Berwald space h; = j; = 0. If we take k; = 0, then above
equations become usy = s,y = Ws,y = 0.
Thus we have:

Theorem 5.1. In a four-dimensional Berwald space with vanishing h-connection vector k;,
the v-connection vectors u;, v;, w; are h-covariant constants.

From the Ricci identity

i i _ T pi ipr i r
T;\klh_ T;\h\k_ I; R;kh_Terkh_ T;|kah’ (5.6)
we have
i i _ ,r pi i ro.
ea)\j\k_eank\j‘ea)Rrjk_ea)lijk’ (5.7)
which is expressed as
Ha)py,5 = Ha)ps,y = Rapys = VaypnRinys. (5.8)

Now, we propose:

Proposition 5.1. Let T;; be a skew-symmetric tensor of a four-dimensional Finsler space. If

1 .
we put*T" = " €T* Ty, then we obtain Tpq = € pqi;* T
wmij _ L ikl o
Proof. *T"/ = 1 € Ty implies

16ijkl

g 1 ..
* i L= 2 gljkl . S —
TV €pqij= 2 €V epqij Tri = 20paij Tri=Tpg.
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This completes the proof.

Since Ry;jk is skew-symmetric in & and i as well as in j and k, in view of Proposition 5.1,
Rpijx may be written as

Rhnijk =€nirs €jkpqg BP9, (5.9)
where we put
1 .
* RISPA — E Ershlepqlm Rhilm- (5.10)

The scalar components Ry gys of Rp; i are written as

Rapys = YapurYysor RFOT (5.11)
in terms of scalar components * R;;39; of *R"*P9.
The scalar components Rgys of %Ri ik are given by
Rpys = Y1purYys6r Rurgr- (5.12)
Therefore (5.8) may be written as
Haypy,s = Hayps,y = Yapur = VayprY1aun) Yysor Ruror-
For different values of «, §3 this gives only three equations:

(hys + jyks) = (hgy + jsky) = (5113 - uﬁfﬁ - u35;ﬁ - u45f31)7’y59r*Rpwr,
(Jy,s +kyhs) — (jsy + kshy) = (5}3 - v25fﬁ - Ugﬁ;ﬁ - v45i§1)Yy591*Rpwr,

(ky,5 + hyj&) - (ké,y + hﬁjy) = (61151 - w25l3ﬁ1 - w36;151 - w45ii)Yy6BT*RuABT-
For Berwald space with k; = 0, above equations become

(0,0 = u20 5 — usd,5 — uaBi)" Ruagr =0,
13 34 42 23 y% =
(0,2 = V20,3 ~ U303 = Va8 3)" Ruaor =0, 613

(6’131 - wzﬁzj - w;;é‘;ﬁ - w45ﬁ)*RMgT =0.

. e e . . (p)
Now applying the Ricci identity (5.6) to v-connection vectors v, , we have
2} P __ Ppr _ P pro.
Viljtk ™ Vitklj = T Vr Rijk v; Ierk, (5.14)

where (vﬁl), v?), v§3)) = (U, vi, w;).

In terms of scalars, (5.14) may be written as:

(P 02 02

(2]
vﬁ,y,5 - vﬁ,5,)’ =—(Uy Yprur + vﬁl?nY1np)L)Yy591*Rp/191-
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We have shown in Theorem 5.1 that in a Berwald space with k; = 0, the v-connection
vectors are h-covariant constants, therefore above equation becomes

WY pra + U0 Y1) Ruaor = . (5.15)

Because of UY,J; = —v,(Tp ) , the above is trivial for § = 1 and thus from the above we obtain

only
(078354 0P 830+ 03855+ VB 01 + 12163 R =0
(070 + 0515 + o534 + o208 + 0162 Ruror =0,
(o015 + w828+ 1J0%4 + 0525 + 0362 )* Rungr =0,

In view of (5.13), these equations take the forms:

(2] (2] (2] (2] (2] (2]
{(1}2';72 +0 up - v’ v2)6l3;; + (1/2';73 +v" us - v’ 1/3)5;‘5L
(2] (2] (2]
+(1/2';j4 + l/sp Uy — l/4p V4)5ﬁ}*war =0,
(P (P (P 34 (p) (P (p) 42
{(113;2 -V, Up+, 11/2)6Wl + (Vg3 — vy Uz + Uy 11/3)6Wl (5.16)
(p) (p) (p) '
+(v3’?4 v,  us+ v w;;)éﬁ}*RuwT =0,
(2] (2] (2] (2] (» (2]
{(1/4';72 + v, vp— v wz)ézj + (1/4';73 +v, v3— v’ w@éﬁ
(2] (2] (2]
+(v4';j4 + vzp Uy — v3p w;;)éﬁ}*waT =0.
(P _ (P (P .
Put vaﬁ = va;ﬁ + vy Vayup then equations (5.16) become
(p) ¢34 (p) c42 (p) 523 ) —
(sz 6M + Uyy 6,11/1 + Uy, 6M) Ryro: =0,
(p) ¢34 (p) c42 (p) 523 ) —
(055634 + vi8 642 + v 523 )* Ruagr =0, (5.17)
(P) 534 (P) s42 (P) 23 |+ —
(v42 6,11/1 + U5 6,11/1 + vy, 6/M) Ryrp: = 0.
Again, applying the Ricci identity (5.6) to the main scalars A, we have
@ 4@ _ A T,
A|j|k A\klj =-A |ijk’ (5.18)

where (A“),A(Z),A(3),A(4),A(5),A(6),A(7’,A(B)) =(A,B,C,D,E,F.G, H).
In terms of scalars, (5.18) assumes the form:
(@) (@ _ (q) _
A:Y:5 - A,5'Y - _A;n Ylnp/le&BT*Ru/wT =0.
We have seen in Theorem 4.1 that all the main scalars are h-covariant constants in a
Berwald space with k; = 0. Therefore above equation becomes

(9) ¢34 (q) 542 (q) 623 _
(A 6wl+A;3 6wl+A;4 5M) Rupgr =0. (5.19)
We now discuss Berwald space with vanishing i-connection vectors, considering the rank

p of the matrix (* Ruree), where (uA) and (07) show the number of rows and columns respec-
tively. From (5.13), it is clear that the rank p is less than four,
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(i) if p = 0 then "Rypp; = 0. This means *Rp;jr = 0 and therefore the space is locally
Minkowskian.
(i) if p =1, then from (5.17) ad (5.19), we have

@, @ . x(@ _ (. (. (p_ (. (. p__ (. (.. (/P
Ay tAg LAy = Vg Uy Uy = Ugy g tUgy = Uy U3 iUy

(P=1,2,3;g=1,2,...,8) (5.20)

m (p (P
Uyp Vpg VUpy
(i) if p = 2, then from (5.17), vé’;) yég) yé’f;) = 0 such that conditions (5.20) do not hold.

() (p)

42 Vaz Vas

(i) if p = 3, then from (5.17) and (5.19), v}}) = 0; &, f = 2,3, 4 and A’ = A = A =050
that all the main scalars are v-covariant constants and therefore they are constants.

Summarizing the above, we conclude:

Theorem 5.2. In a four-dimensional Berwald space with vanishing h-connection vector k;,
the rank p of the matrix (Rnijx), where (hi) and (jk) show the number of rows and columns
respectively, is less than four. Further

(i) ifp =0, the space is locally Minkowskian.

(ii) ifp =1, we have the conditions (5.20).

(» (p (P
Upp Vpg Vpy

(i) ifp=2, vé';) v vé’i) = 0 and conditions (5.20) do not hold.

(p () (p)
Ugp Vyg Uy

. . . (»
(iv) ifp =3, all the main scalars are constants and vapﬁ =0,(p=123; a,f=2,3,4).
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