ON A FOUR-DIMENSIONAL BERWALD SPACE WITH VANISHING \boldsymbol{h}-CONNECTION VECTOR $\boldsymbol{k}_{\boldsymbol{i}}$

P. N. PANDEY AND MANISH KUMAR GUPTA

Abstract

M. Matsumoto and R. Miron [2] ${ }^{1)}$ constructed an orthonormal frame for an n-dimensional Finsler space and the frame was called 'Miron frame'. T. N. Pandey and D. K. Diwedi [3] and the present authors [4] studied fourdimensional Finsler spaces in terms of scalars. In the present paper, we study a four-dimensional Berwald space with vanishing h-connection vector k_{i}.

1. Orthonormal Frame and Connection Vectors

Let $L(x, y)$ be the fundamental function and $g_{i j}(x, y)$ be the fundamental metric tensor of a four-dimensional Finsler space F^{4}. Let $\delta_{\text {pqrs }}^{i j k l}$ be generalized Kronecker delta, and $\gamma_{i j k l}=$ $\delta_{i j k l}^{1234}$ and $\gamma^{i j k l}=\delta_{1234}^{i j k l}$, then the components of ϵ-tensor are defined by

$$
\epsilon_{i j k l}=\sqrt{|g|} \gamma_{i j k l} \quad \text { and } \quad \epsilon^{i j k l}=(\sqrt{|g|})^{-1} \gamma^{i j k l} ; \quad \text { where } g=\left|g_{i j}\right| .
$$

$\epsilon_{i j k l}$ is also called the Levi-Civita permutation symbol.
The Miron frame for a four-dimensional Finsler space is constructed by the unit vectors $\left(l^{i}, m^{i}, n^{i}, p^{i}\right)$, where l^{i} is the normalized supporting element and m^{i} is the normalized torsion vector.

In the orthonormal frame, an arbitrary tensor $T=\left(T_{j}^{i}\right)$ is expressed in terms of scalar components as follows:

$$
\begin{equation*}
T_{j}^{i}=T_{\alpha \beta} e_{\alpha)}^{i} e_{\beta) j} \tag{1.1}
\end{equation*}
$$

where $e_{1)}^{i}=l^{i}, e_{2)}^{i}=m^{i}, e_{3)}^{i}=n^{i}, e_{4)}^{i}=p^{i}$ and the summation convention is applied to Greek indices also.

The scalar components of the fundamental tensor $g_{i j}$ and ϵ-tensor $\epsilon_{i j k l}$ are given by $\delta_{\alpha \beta}$ and $\gamma_{\alpha \beta \gamma \delta}$ respectively.

Let $H_{\alpha) \beta \gamma}$ and $\frac{1}{L} V_{\alpha) \beta \gamma}$ be scalar components of the h - and v-covariant derivatives $e_{\alpha) \mid j}^{i}$ and $e_{\alpha)}^{i}{ }_{j}$ respectively of the vectors e_{α}, i.e.
a) $e_{\alpha)!j}^{i}=H_{\alpha) \beta \gamma} e_{\beta)}^{i} e_{\gamma) j}$,
b) $\left.L e_{\alpha)}^{i}\right|_{j}=V_{\alpha) \beta \gamma} e_{\beta)}^{i} e_{\gamma) j}$.

Received October 20, 2006.
2000 Mathematics Subject Classification. 53B40.
Key words and phrases. Finsler space, Berwald space, h-connection vector.
${ }^{1)}$ Numbers in square brackets refer to the references at the end of the paper.
$H_{\alpha) \beta \gamma}$ and $V_{\alpha) \beta \gamma}$ are called h - and v-connection scalars respectively and are (0) p-homogeneous ${ }^{2)}$. From the orthogonality of the frame, we have

$$
\begin{equation*}
H_{\alpha) \beta \gamma}=-H_{\beta) \alpha \gamma}, \quad V_{\alpha) \beta \gamma}=-V_{\beta) \alpha \gamma} . \tag{1.3}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
H_{1) \beta \gamma}=0, \quad V_{1) \beta \gamma}=\delta_{\beta \gamma}-\delta_{\beta}^{1} \delta_{\gamma}^{1} \tag{1.4}
\end{equation*}
$$

We now define vector fields:

$$
\begin{equation*}
h_{i}=H_{2) 3 \gamma} e_{\gamma) i}, \quad j_{i}=H_{4) 2 \gamma} e_{\gamma) i}, \quad k_{i}=H_{3) 4 \gamma} e_{\gamma) i} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}=V_{2) 3 \gamma} e_{\gamma) i}, \quad v_{i}=V_{4) 2 \gamma} e_{\gamma) i}, \quad w_{i}=V_{3) 4 \gamma} e_{\gamma) i} \tag{1.6}
\end{equation*}
$$

From (1.2), we get
a) $\quad e_{1) \mid j}^{i}=l_{\mid j}^{i}=0$,
b) $e_{2) \mid j}^{i}=m_{\mid j}^{i}=n^{i} h_{j}-p^{i} j_{j}$,
c) $e_{3) \mid j}^{i}=n_{\mid j, j}^{i}=p^{i} k_{j}-m^{i} h_{j}$,
d) $e_{4) \mid j}^{i}=p_{\mid j}^{i}=m^{i} j_{j}-n^{i} k_{j}$,
and
a) $\left.L e_{1)}^{i}\right|_{j}=\left.L l^{i}\right|_{j}=m^{i} m_{j}+n^{i} n_{j}+p^{i} p_{j}=h_{j}^{i}$,
b) $\left.L e_{2)}^{i}\right|_{j}=\left.L m^{i}\right|_{j}=-l^{i} m_{j}+n^{i} u_{j}-p^{i} v_{j}$,
c) $\left.L e_{3)}^{i}\right|_{j}=\left.L n^{i}\right|_{j}=-l^{i} n_{j}-m^{i} u_{j}+p^{i} w_{j}$,
d) $\left.L e_{4)}^{i}\right|_{j}=\left.L p^{i}\right|_{j}=-l^{i} p_{j}+m^{i} v_{j}-n^{i} w_{j}$.

The Finsler vector fields h_{i}, j_{i}, k_{i} are called h-connection vectors and the vector fields u_{i}, v_{i}, w_{i} are called v-connection vectors.

The scalars $H_{2) 3 \gamma}, H_{4) 2 \gamma}, H_{3) 4 \gamma}$ and $V_{2) 3 \gamma}, V_{4) 2 \gamma}, V_{3) 4 \gamma}$ are considered as the scalar components $h_{\gamma}, j_{\gamma}, k_{\gamma}$ and $u_{\gamma}, v_{\gamma}, w_{\gamma}$ of the h - and v-connection vectors respectively. Because of (0) p-homogeneity of $e_{\alpha)}^{i}$, (1.8) gives

$$
\begin{aligned}
& \left.L m^{i}\right|_{j} l^{j}=0=n^{i} u_{j} l^{j}-p^{i} v_{j} l^{j}, \\
& \left.L n^{i}\right|_{j} l^{j}=0=-m^{i} u_{j} l^{j}+p^{i} w_{j} l^{j}
\end{aligned}
$$

so that $u_{1}=u_{j} l^{j}=0, v_{1}=v_{j} l^{j}=0, w_{1}=w_{j} l^{j}=0$.
Consequently, we have:
Proposition 1.1. The first scalar components u_{1}, v_{1}, w_{1} of v-connection vectors u_{i}, v_{i}, w_{i} vanish identically.

[^0]
2. Main scalars

Let $\frac{1}{L} C_{\alpha \beta \gamma}$ be scalar components of $C_{i j k}$ with respect to the Miron frame, i.e.

$$
\begin{equation*}
L C_{i j k}=C_{\alpha \beta \gamma} e_{\alpha) i} e_{\beta) j} e_{\gamma) k} \tag{2.1}
\end{equation*}
$$

M. Matsumoto [1] showed that
(i) $C_{\alpha \beta \gamma}$ are completely symmetric,
(ii) $C_{1 \beta \gamma}=0$,
(iii) $C_{2 \mu \mu}=L \boldsymbol{C}=W, C_{3 \mu \mu}=C_{4 \mu \mu}=\cdots \cdots C_{n \mu \mu}=0$ for $n \geq 3$, where \boldsymbol{C} is the length of C^{i} and $W=L C$ is called the unified main scalar.
Therefore in a four-dimensional Finsler space, we have

$$
\left\{\begin{array}{l}
C_{1 \beta \gamma}=0 \tag{2.2}\\
C_{222}+C_{233}+C_{244}=L \boldsymbol{C}=W \\
C_{322}+C_{333}+C_{344}=0 \\
C_{422}+C_{433}+C_{444}=0 \\
C_{234} \neq 0 \text { in general. }
\end{array}\right.
$$

Thus putting

$$
\begin{array}{llll}
C_{222}=A, & C_{233}=B, & C_{244}=C, & C_{322}=D \tag{2.3}\\
C_{333}=E, & C_{422}=F, & C_{433}=G, & C_{234}=H,
\end{array}
$$

we have

$$
C_{344}=-(D+E), \quad C_{444}=-(F+G)
$$

Eight scalars $A, B, \ldots \ldots G, H$ given by (2.3) are called the main scalars of a four-dimensional Finsler space.

3. Scalar derivatives

Taking h-covariant differentiation of (1.1), we get

$$
\begin{equation*}
T_{j \mid k}^{i}=\left(\delta_{k} T_{\alpha \beta}\right) e_{\alpha)}^{i} e_{\beta) j}+T_{\alpha \beta} e_{\alpha) \mid k}^{i} e_{\beta) j}+T_{\alpha \beta} e_{\alpha)}^{i} e_{\beta) j \mid k} \tag{3.1}
\end{equation*}
$$

If $T_{\alpha \beta, \gamma}$ are scalar components of $T_{j \mid k}^{i}$, i.e.

$$
\begin{equation*}
T_{j \mid k}^{i}=T_{\alpha \beta, \gamma} e_{\alpha)}^{i} e_{\beta) j} e_{\gamma) k} \tag{3.2}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
T_{\alpha \beta, \gamma}=\left(\delta_{k} T_{\alpha \beta}\right) e_{\gamma)}^{k}+T_{\mu \beta} H_{\mu) \alpha \gamma}+T_{\alpha \mu} H_{\mu) \beta \gamma} \tag{3.3}
\end{equation*}
$$

Similarly the scalar components $T_{\alpha \beta ; \gamma}$ of $L T_{j}^{i} \mid k$ are given by

$$
\begin{equation*}
T_{\alpha \beta ; \gamma}=L\left(\dot{\partial}_{k} T_{\alpha \beta}\right) e_{\gamma)}^{k}+T_{\mu \beta} V_{\mu) \alpha \gamma}+T_{\alpha \mu} V_{\mu) \beta \gamma} \tag{3.4}
\end{equation*}
$$

The scalar components $T_{\alpha \beta, \gamma}$ and $T_{\alpha \beta ; \gamma}$ respectively are called h - and v-scalar derivatives of scalar components $T_{\alpha \beta}$ of T.

4. Berwald space

A Berwald space is characterized by $C_{h i j \mid k}=0$, which is given by $C_{\alpha \beta \gamma, \delta}=0$ in terms of scalars.

We are concerned with the tensor $C_{h i j \mid k}$. From (2.1) and (3.2), it follows that

$$
\begin{equation*}
L C_{h i j \mid k}=C_{\alpha \beta \gamma, \delta} e_{\alpha) h} e_{\beta) i} e_{\gamma) j} e_{\delta) k} \tag{4.1}
\end{equation*}
$$

According to the formula (3.3), $C_{\alpha \beta \gamma, \delta}$ are given by

$$
C_{\alpha \beta \gamma, \delta}=\delta_{k} C_{\alpha \beta \gamma} e_{\delta)}^{k}+C_{\mu \beta \gamma} H_{\mu) \alpha \delta}+C_{\alpha \mu \gamma} H_{\mu) \beta \delta}+C_{\alpha \beta \mu} H_{\mu) \gamma \delta}
$$

The explicit form of $C_{\alpha \beta \gamma, \delta}$ is obtained as follows:

$$
\begin{align*}
C_{222, \delta} & =\left(\delta_{k} C_{222}\right) e_{\delta)}^{k}+3 C_{\mu 22} H_{\mu) 2 \delta} \\
& =\left(\delta_{k} A\right) e_{\delta)}^{k}+3 C_{322} H_{3) 2 \delta}+3 C_{422} H_{4) 2 \delta} \\
& =A_{, \delta}-3 D h_{\delta}+3 F j_{\delta} ; \tag{4.2a}
\end{align*}
$$

where $A_{, \delta}=\left(\delta_{k} A\right) e_{\delta)}^{k}$.
Remark. As we put $C_{222}=A$, we should notice the difference between $A_{, \delta}$ and $C_{222, \delta}$.
Similarly, we get

$$
\begin{align*}
& C_{233, \delta}=B_{, \delta}+(2 D-E) h_{\delta}+G j_{\delta}-2 H k_{\delta} \tag{4.2b}\\
& C_{244, \delta}=C_{, \delta}+(D+E) h_{\delta}-(3 F+G) j_{\delta}+2 H k_{\delta}, \tag{4.2c}\\
& C_{322, \delta}=D_{, \delta}+(A-2 B) h_{\delta}+2 H j_{\delta}-F k_{\delta}, \tag{4.2d}\\
& C_{333, \delta}=E_{, \delta}+3 B h_{\delta}-3 G k_{\delta}, \tag{4.2e}\\
& C_{422, \delta}=F_{, \delta}-2 H h_{\delta}-(A-2 C) j_{\delta}+D k_{\delta}, \tag{4.2f}\\
& C_{433, \delta}=G_{, \delta}+2 H h_{\delta}-B j_{\delta}+(2 D+3 E) k_{\delta}, \tag{4.2~g}\\
& C_{234, \delta}=H_{, \delta}+(F-G) h_{\delta}-(2 D+E) j_{\delta}+(B-C) k_{\delta} \tag{4.2h}\\
& C_{344, \delta}=-D_{, \delta}-E_{, \delta}+C h_{\delta}-2 H j_{\delta}+(F+3 G) k_{\delta}, \tag{4.2i}\\
& C_{444, \delta}=-F_{, \delta}-G_{, \delta}-3 C j_{\delta}-(3 D+3 E) k_{\delta}, \tag{4.2j}\\
& C_{1 \beta \gamma, \delta}=0 \tag{4.2k}
\end{align*}
$$

Adding (4.2d), (4.2e), (4.2i) and using (2.2), we get

$$
\begin{equation*}
C_{322, \delta}+C_{333, \delta}+C_{344, \delta}=(A+B+C) h_{\delta}=L \boldsymbol{C} h_{\delta}=W h_{\delta} . \tag{4.3}
\end{equation*}
$$

Adding (4.2f), (4.2g), (4.2j) and using (2.2), we get

$$
\begin{equation*}
C_{422, \delta}+C_{433, \delta}+C_{444, \delta}=-(A+B+C) j_{\delta}=-L \boldsymbol{C} j_{\delta}=-W j_{\delta} . \tag{4.4}
\end{equation*}
$$

Adding (4.2a), (4.2b), (4.2c) and using (2.2), we get

$$
\begin{equation*}
C_{222, \delta}+C_{233, \delta}+C_{244, \delta}=A_{, \delta}+B_{, \delta}+C_{, \delta}=(A+B+C)_{, \delta}=W_{, \delta} \tag{4.5}
\end{equation*}
$$

Thus, from (4.2), (4.3), (4.4) and (4.5), we have
Theorem 4.1. In a four dimensional Berwald space, the h-connection vectors h_{i} and j_{i} vanish identically. Also main scalar A and the unified main scalar $W=L C$ are h-covariant constants. Furthermore, if h-connection vector k_{i} vanishes then all the main scalars are h covariant constants.

5. Ricci identities

Now, we are concerned with the tensors $e_{\alpha|j| k}^{i},\left.e_{\alpha) \mid j}^{i}\right|_{k}$ and $\left.e_{\alpha)}^{i}\right|_{j \mid k}$. From (1.2), we have

$$
\begin{align*}
e_{\alpha)|j| k}^{i} & =H_{\alpha) \beta \gamma, \delta} e_{\beta)}^{i} e_{\gamma) j} e_{\delta) k} \tag{5.1}\\
\left.L e_{\alpha) \mid j}^{i}\right|_{k} & =H_{\alpha) \beta \gamma ; \delta} e_{\beta)}^{i} e_{\gamma) j} e_{\delta) k} \tag{5.2}\\
\left.L e_{\alpha)}^{i}\right|_{j \mid k} & =V_{\alpha) \beta \gamma, \delta} e_{\beta)}^{i} e_{\gamma) j} e_{\delta) k} \tag{5.3}
\end{align*}
$$

According to the formulae (3.3) and (3.4), $H_{\alpha) \beta \gamma, \delta}, H_{\alpha) \beta \gamma ; \delta}, V_{\alpha) \beta \gamma, \delta}$ are given by

$$
\begin{aligned}
H_{\alpha) \beta \gamma, \delta} & =\left(\delta_{k} H_{\alpha) \beta \gamma}\right) e_{\delta)}^{k}+H_{\alpha) \mu \gamma} H_{\mu) \beta \delta}+H_{\alpha) \beta \mu} H_{\mu) \gamma \delta} \\
H_{\alpha) \beta \gamma ; \delta} & =L\left(\dot{\partial}_{k} H_{\alpha) \beta \gamma}\right) e_{\delta)}^{k}+H_{\alpha) \mu \gamma} V_{\mu) \beta \delta}+H_{\alpha) \beta \mu} V_{\mu) \gamma \delta} \\
V_{\alpha) \beta \gamma, \delta} & =\left(\delta_{k} V_{\alpha) \beta \gamma}\right) e_{\delta)}^{k}+V_{\alpha) \mu \gamma} H_{\mu) \beta \delta}+V_{\alpha) \beta \mu} H_{\mu) \gamma \delta}
\end{aligned}
$$

The explicit forms of these are obtained as follows:

$$
\begin{aligned}
H_{2) 3 \gamma, \delta} & =\left(\delta_{k} H_{2) 3 \gamma}\right) e_{\delta}^{k}+H_{2) \mu \gamma} H_{\mu) 3 \delta}+H_{2) 3 \mu} H_{\mu) \gamma \delta} \\
& =\left(\delta_{k} h_{\gamma}\right) e_{\delta)}^{k}+H_{2) 4 \gamma} H_{4) 3 \delta}+h_{\mu} H_{\mu) \gamma \delta} \\
& =h_{\gamma, \delta}+j_{\gamma} k_{\delta} ;
\end{aligned}
$$

where $h_{\gamma, \delta}=\left(\delta_{k} h_{\gamma}\right) e_{\delta)}^{k}+h_{\mu} H_{\mu) \gamma \delta}$.
Similarly, we get

$$
\begin{array}{r}
H_{4) 2 \gamma, \delta}=j_{\gamma, \delta}+k_{\gamma} h_{\delta}, \\
H_{3) 4 \gamma, \delta}=k_{\gamma, \delta}+h_{\gamma} j_{\delta}, \\
H_{2) 3 \gamma ; \delta}=h_{\gamma ; \delta}+j_{\gamma} w_{\delta}, \\
H_{4) 2 \gamma ; \delta}=j_{\gamma ; \delta}+k_{\gamma} u_{\delta}, \\
H_{3) 4 \gamma ; \delta}=k_{\gamma ; \delta}+h_{\gamma} v_{\delta},
\end{array}
$$

and

$$
\begin{aligned}
& V_{2) 3 \gamma, \delta}=u_{\gamma, \delta}+v_{\gamma} k_{\delta} \\
& V_{4) 2 \gamma, \delta}=v_{\gamma, \delta}+w_{\gamma} h_{\delta} \\
& V_{3) 4 \gamma, \delta}=w_{\gamma, \delta}+u_{\gamma} j_{\delta}
\end{aligned}
$$

In terms of scalar components, the Ricci identity

$$
\begin{equation*}
\left.e_{\alpha) \mid j}^{i}\right|_{k}-\left.e_{\alpha)}^{i}\right|_{k \mid j}=e_{\alpha)}^{r} P_{r j k}^{i}-e_{\alpha) \mid r}^{i} C_{j k}^{r}-\left.e_{\alpha)}^{i}\right|_{r} C_{j k \mid 0}^{r} \tag{5.4}
\end{equation*}
$$

is expressed as

$$
\begin{equation*}
H_{\alpha) \beta \gamma ; \delta}-V_{\alpha) \beta \delta, \gamma}=P_{\alpha \beta \gamma \delta}-H_{\alpha) \beta \mu} C_{\mu \gamma \delta}-V_{\alpha) \beta \mu} P_{\mu \gamma \delta} . \tag{5.5}
\end{equation*}
$$

For Berwald space $P_{h i j k}=0$, therefore (5.5) becomes

$$
H_{\alpha) \beta \gamma ; \delta}-V_{\alpha) \beta \delta, \gamma}=-H_{\alpha) \beta \mu} C_{\mu \gamma \delta}
$$

which is explicitly written as

$$
\begin{aligned}
& \left(h_{\gamma ; \delta}+j_{\gamma} w_{\delta}\right)-\left(u_{\delta, \gamma}+v_{\delta} k_{\gamma}\right)=-h_{\mu} C_{\mu \gamma \delta} \\
& \left(j_{\gamma ; \delta}+k_{\gamma} u_{\delta}\right)-\left(v_{\delta, \gamma}+w_{\delta} h_{\gamma}\right)=-j_{\mu} C_{\mu \gamma \delta} \\
& \left(k_{\gamma ; \delta}+h_{\gamma} v_{\delta}\right)-\left(w_{\delta, \gamma}+u_{\delta} j_{\gamma}\right)=-k_{\mu} C_{\mu \gamma \delta}
\end{aligned}
$$

From Theorem 4.1, we see that in a Berwald space $h_{i}=j_{i}=0$. If we take $k_{i}=0$, then above equations become $u_{\delta, \gamma}=v_{\delta, \gamma}=w_{\delta, \gamma}=0$.

Thus we have:
Theorem 5.1. In a four-dimensional Berwald space with vanishing h-connection vector k_{i}, the v-connection vectors u_{i}, v_{i}, w_{i} are h-covariant constants.

From the Ricci identity

$$
\begin{equation*}
T_{j|k| h}^{i}-T_{j|h| k}^{i}=T_{j}^{r} R_{r k h}^{i}-T_{r}^{i} R_{j k h}^{r}-\left.T_{j}^{i}\right|_{r} R_{k h}^{r} \tag{5.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
e_{\alpha)|j| k}^{i}-e_{\alpha)|k| j}^{i}=e_{\alpha)}^{r} R_{r j k}^{i}-\left.e_{\alpha \mid}^{i}\right|_{r} R_{j k}^{r} ; \tag{5.7}
\end{equation*}
$$

which is expressed as

$$
\begin{equation*}
H_{\alpha) \beta \gamma, \delta}-H_{\alpha) \beta \delta, \gamma}=R_{\alpha \beta \gamma \delta}-V_{\alpha) \beta \pi} R_{1 \pi \gamma \delta} \tag{5.8}
\end{equation*}
$$

Now, we propose:
Proposition 5.1. Let $T_{i j}$ be a skew-symmetric tensor of a four-dimensional Finsler space. If we put ${ }^{*} T^{i j}=\frac{1}{4} \epsilon^{i j k l} T_{k l}$, then we obtain $T_{p q}=\epsilon_{p q i j}{ }^{*} T^{i j}$.

Proof. ${ }^{*} T^{i j}=\frac{1}{4} \epsilon^{i j k l} T_{k l}$ implies

$$
{ }^{*} T^{i j} \epsilon_{p q i j}=\frac{1}{4} \epsilon^{i j k l} \epsilon_{p q i j} T_{k l}=\frac{1}{4} \delta_{p q i j}^{i j k l} T_{k l}=T_{p q .} .
$$

This completes the proof.
Since $R_{h i j k}$ is skew-symmetric in h and i as well as in j and k, in view of Proposition 5.1, $R_{h i j k}$ may be written as

$$
\begin{equation*}
R_{h i j k}=\epsilon_{h i r s} \epsilon_{j k p q}{ }^{*} R^{r s p q}, \tag{5.9}
\end{equation*}
$$

where we put

$$
\begin{equation*}
{ }^{*} R^{r s p q}=\frac{1}{16} \epsilon^{r s h i} \epsilon^{p q l m} R_{h i l m} . \tag{5.10}
\end{equation*}
$$

The scalar components $R_{\alpha \beta \gamma \delta}$ of $R_{h i j k}$ are written as

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=\gamma_{\alpha \beta \mu \lambda} \gamma_{\gamma \delta \theta \tau}{ }^{*} R^{\mu \lambda \theta \tau} \tag{5.11}
\end{equation*}
$$

in terms of scalar components ${ }^{*} R_{\mu \lambda \theta \tau}$ of ${ }^{*} R^{r s p q}$.
The scalar components $R_{\beta \gamma \delta}$ of $\frac{1}{L} R_{i j k}$ are given by

$$
\begin{equation*}
R_{\beta \gamma \delta}=\gamma_{1 \beta \mu \lambda} \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau} . \tag{5.12}
\end{equation*}
$$

Therefore (5.8) may be written as

$$
H_{\alpha) \beta \gamma, \delta}-H_{\alpha) \beta \delta, \gamma}=\left(\gamma_{\alpha \beta \mu \lambda}-V_{\alpha) \beta \pi} \gamma_{1 \pi \mu \lambda}\right) \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau} .
$$

For different values of α, β this gives only three equations:

$$
\begin{aligned}
& \left(h_{\gamma, \delta}+j_{\gamma} k_{\delta}\right)-\left(h_{\delta, \gamma}+j_{\delta} k_{\gamma}\right)=\left(\delta_{\mu \lambda}^{14}-u_{2} \delta_{\mu \lambda}^{34}-u_{3} \delta_{\mu \lambda}^{42}-u_{4} \delta_{\mu \lambda}^{23}\right) \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau}, \\
& \left(j_{\gamma, \delta}+k_{\gamma} h_{\delta}\right)-\left(j_{\delta, \gamma}+k_{\delta} h_{\gamma}\right)=\left(\delta_{\mu \lambda}^{13}-v_{2} \delta_{\mu \lambda}^{34}-v_{3} \delta_{\mu \lambda}^{42}-v_{4} \delta_{\mu \lambda}^{23}\right) \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau}, \\
& \left(k_{\gamma, \delta}+h_{\gamma} j_{\delta}\right)-\left(k_{\delta, \gamma}+h_{\delta} j_{\gamma}\right)=\left(\delta_{\mu \lambda}^{12}-w_{2} \delta_{\mu \lambda}^{34}-w_{3} \delta_{\mu \lambda}^{42}-w_{4} \delta_{\mu \lambda}^{23}\right) \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau} .
\end{aligned}
$$

For Berwald space with $k_{i}=0$, above equations become

$$
\left\{\begin{array}{l}
\left(\delta_{\mu \lambda}^{14}-u_{2} \delta_{\mu \lambda}^{34}-u_{3} \delta_{\mu \lambda}^{42}-u_{4} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0, \tag{5.13}\\
\left(\delta_{\mu \lambda}^{13}-v_{2} \delta_{\mu \lambda}^{34}-v_{3} \delta_{\mu \lambda}^{22}-v_{4} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0, \\
\left(\delta_{\mu \lambda}^{12}-w_{2} \delta_{\mu \lambda}^{34}-w_{3} \delta_{\mu \lambda}^{42}-w_{4} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0 .
\end{array}\right.
$$

Now applying the Ricci identity (5.6) to v-connection vectors $v_{i}^{(p)}$, we have

$$
\begin{equation*}
v_{i|j| k}^{(p)}-v_{i|k| j}^{(p)}=-v_{r}^{(p)} R_{i j k}^{r}-\left.v_{i}^{(p)}\right|_{r} R_{j k}^{r} ; \tag{5.14}
\end{equation*}
$$

where $\left(v_{i}^{(1)}, v_{i}^{(2)}, v_{i}^{(3)}\right)=\left(u_{i}, v_{i}, w_{i}\right)$.
In terms of scalars, (5.14) may be written as:

$$
v_{\beta, \gamma, \delta}^{(p)}-v_{\beta, \delta, \gamma}^{(p)}=-\left(v_{\pi}^{(p)} \gamma_{\beta \pi \mu \lambda}+v_{\beta ; \pi}^{(p)} \gamma_{1 \pi \mu \lambda}\right) \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau} .
$$

We have shown in Theorem 5.1 that in a Berwald space with $k_{i}=0$, the v-connection vectors are h-covariant constants, therefore above equation becomes

$$
\begin{equation*}
\left(v_{\pi}^{(p)} \gamma_{\beta \pi \mu \lambda}+v_{\beta ; \pi}^{(p)} \gamma_{1 \pi \mu \lambda}\right)^{*} R_{\mu \lambda \theta \tau}=0 \tag{5.15}
\end{equation*}
$$

Because of $v_{1 ; \pi}^{(p)}=-v_{\pi}^{(p)}$, the above is trivial for $\beta=1$ and thus from the above we obtain only

$$
\begin{aligned}
& \left(v_{3}^{(p)} \delta_{\mu \lambda}^{14}+v_{4}^{(p)} \delta_{\mu \lambda}^{31}+v_{2 ; 2}^{(p)} \delta_{\mu \lambda}^{34}+v_{2 ; 3}^{(p)} \delta_{\mu \lambda}^{42}+v_{2 ; 4}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0, \\
& \left(v_{2}^{(p)} \delta_{\mu \lambda}^{41}+v_{4}^{(p)} \delta_{\mu \lambda}^{12}+v_{3 ; 2}^{(p)} \delta_{\mu \lambda}^{34}+v_{3 ; 3}^{(p)} \delta_{\mu \lambda}^{42}+v_{3 ; 4}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0, \\
& \left(v_{2}^{(p)} \delta_{\mu \lambda}^{13}+v_{3}^{(p)} \delta_{\mu \lambda}^{21}+v_{4 ; 2}^{(p)} \delta_{\mu \lambda}^{34}+v_{4 ; 3}^{(p)} \delta_{\mu \lambda}^{42}+v_{4 ; 4}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0 .
\end{aligned}
$$

In view of (5.13), these equations take the forms:

$$
\left\{\begin{array} { r l }
{ \{ (v _ { 2 ; 2 } ^ { (p) } + v _ { 3 } ^ { (p) } u _ { 2 } - v _ { 4 } ^ { (p) } v _ { 2 }) } & { \delta _ { \mu \lambda } ^ { 3 4 } + (v _ { 2 ; 3 } ^ { (p) } + v _ { 3 } ^ { (p) } u _ { 3 } - v _ { 4 } ^ { (p) } v _ { 3 }) \delta _ { \mu \lambda } ^ { 4 2 } } \tag{5.16}\\
{ } & { + (v _ { 2 ; 4 } ^ { (p) } + v _ { 3 } ^ { (p) } u _ { 4 } - v _ { 4 } ^ { (p) } v _ { 4 }) \delta _ { \mu \lambda } ^ { 2 3 } \} ^ { * } R _ { \mu \lambda \theta \tau } = 0 } \\
{ \{ (v _ { 3 ; 2 } ^ { (p) } - v _ { 2 } ^ { (p) } u _ { 2 } + v _ { 4 } ^ { (p) } w _ { 2 }) \delta _ { \mu \lambda } ^ { 3 4 } + (v _ { 3 ; 3 } ^ { (p) } - v _ { 2 } ^ { (p) } u _ { 3 } + v _ { 4 } ^ { (p) } w _ { 3 }) \delta _ { \mu \lambda } ^ { 4 2 } }
\end{array} \quad \begin{array} { r l }
{ } & { + (v _ { 3 ; 4 } ^ { (p) } - v _ { 2 } ^ { (p) } u _ { 4 } + v _ { 4 } ^ { (p) } w _ { 4 }) \delta _ { \mu \lambda } ^ { 2 3 } \} ^ { * } R _ { \mu \lambda \theta \tau } = 0 }
\end{array} \left\{\begin{array}{rl}
\left(v_{4 ; 2}^{(p)}+v_{2}^{(p)} v_{2}-v_{3}^{(p)} w_{2}\right) \delta_{\mu \lambda}^{34}+\left(v_{4 ; 3}^{(p)}+v_{2}^{(p)} v_{3}-v_{3}^{(p)} w_{3}\right) \delta_{\mu \lambda}^{42} \\
& \left.+\left(v_{4 ; 4}^{(p)}+v_{2}^{(p)} v_{4}-v_{3}^{(p)} w_{4}\right) \delta_{\mu \lambda}^{23}\right\}^{*} R_{\mu \lambda \theta \tau}=0
\end{array}\right.\right.
$$

Put $v_{\alpha \beta}^{(p)}=v_{\alpha ; \beta}^{(p)}+v_{\mu}^{(p)} V_{\alpha) \mu \beta}$, then equations (5.16) become

$$
\left\{\begin{array}{l}
\left(v_{22}^{(p)} \delta_{\mu \lambda}^{34}+v_{23}^{(p)} \delta_{\mu \lambda}^{42}+v_{24}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0 \tag{5.17}\\
\left(v_{32}^{(p)} \delta_{\mu \lambda}^{34}+v_{33}^{(p)} \delta_{\mu \lambda}^{42}+v_{34}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0 \\
\left(v_{42}^{(p)} \delta_{\mu \lambda}^{34}+v_{43}^{(p)} \delta_{\mu \lambda}^{42}+v_{44}^{(p)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0
\end{array}\right.
$$

Again, applying the Ricci identity (5.6) to the main scalars $A^{(q)}$, we have

$$
\begin{equation*}
A_{|j| k}^{(q)}-A_{|k| j}^{(q)}=-\left.A^{(q)}\right|_{r} R_{j k}^{r} \tag{5.18}
\end{equation*}
$$

where $\left(A^{(1)}, A^{(2)}, A^{(3)}, A^{(4)}, A^{(5)}, A^{(6)}, A^{(7)}, A^{(8)}\right)=(A, B, C, D, E, F, G, H)$.
In terms of scalars, (5.18) assumes the form:

$$
A_{, \gamma, \delta}^{(q)}-A_{, \delta, \gamma}^{(q)}=-A_{; \pi}^{(q)} \gamma_{1 \pi \mu \lambda} \gamma_{\gamma \delta \theta \tau}{ }^{*} R_{\mu \lambda \theta \tau}=0
$$

We have seen in Theorem 4.1 that all the main scalars are h-covariant constants in a Berwald space with $k_{i}=0$. Therefore above equation becomes

$$
\begin{equation*}
\left(A_{; 2}^{(q)} \delta_{\mu \lambda}^{34}+A_{; 3}^{(q)} \delta_{\mu \lambda}^{42}+A_{; 4}^{(q)} \delta_{\mu \lambda}^{23}\right)^{*} R_{\mu \lambda \theta \tau}=0 \tag{5.19}
\end{equation*}
$$

We now discuss Berwald space with vanishing h-connection vectors, considering the rank ρ of the matrix (${ }^{*} R_{\mu \lambda \theta \tau}$), where ($\mu \lambda$) and $(\theta \tau)$ show the number of rows and columns respectively. From (5.13), it is clear that the rank ρ is less than four,
(i) if $\rho=0$ then ${ }^{*} R_{\mu \lambda \theta \tau}=0$. This means ${ }^{*} R_{h i j k}=0$ and therefore the space is locally Minkowskian.
(ii) if $\rho=1$, then from (5.17) ad (5.19), we have

$$
\begin{array}{r}
A_{; 2}^{(q)}: A_{; 3}^{(q)}: A_{; 4}^{(q)}=v_{22}^{(p)}: v_{23}^{(p)}: v_{24}^{(p)}=v_{32}^{(p)}: v_{33}^{(p)}: v_{34}^{(p)}=v_{42}^{(p)}: v_{43}^{(p)}: v_{44}^{(p)} \\
(p=1,2,3 ; q=1,2, \ldots, 8) \tag{5.20}
\end{array}
$$

(iii) if $\rho=2$, then from (5.17), $\left|\begin{array}{lll}v_{22}^{(p)} & v_{23}^{(p)} & v_{24}^{(p)} \\ v_{32}^{(p)} & v_{33}^{(p)} & v_{34}^{(p)} \\ v_{42}^{(p)} & v_{43}^{(p)} & v_{44}^{(p)}\end{array}\right|=0$ such that conditions (5.20) do not hold.
(iv) if $\rho=3$, then from (5.17) and (5.19), $v_{\alpha \beta}^{(p)}=0 ; \alpha, \beta=2,3,4$ and $A_{; 2}^{(q)}=A_{; 3}^{(q)}=A_{; 4}^{(q)}=0$ so that all the main scalars are v-covariant constants and therefore they are constants.
Summarizing the above, we conclude:
Theorem 5.2. In a four-dimensional Berwald space with vanishing h-connection vector k_{i}, the rank ρ of the matrix $\left(R_{h i j k}\right)$, where (hi) and ($j k$) show the number of rows and columns respectively, is less than four. Further
(i) if $\rho=0$, the space is locally Minkowskian.
(ii) if $\rho=1$, we have the conditions (5.20).
(iii) if $\rho=2,\left|\begin{array}{ccc}v_{22}^{(p)} & v_{23}^{(p)} & v_{24}^{(p)} \\ v_{32}^{(p)} & v_{33}^{(p)} & v_{34}^{(p)} \\ v_{42}^{(p)} & v_{43}^{(p)} & v_{44}^{(p)}\end{array}\right|=0$ and conditions (5.20) do not hold.
(iv) if $\rho=3$, all the main scalars are constants and $v_{\alpha \beta}^{(p)}=0,(p=1,2,3 ; \alpha, \beta=2,3,4)$.

References

[1] M. Matsumoto, Foundations of Finsler geometry and special Finsler Spaces, Kaiseisha press, Saikawa, Otsu 520(1986), Japan.
[2] M. Matsumoto and R. Miron, On an invariant theory of the Finsler spaces, Period. Math. Hungar. 8(1977), 73-82.
[3] T. N. Pandey and D. K. Diwedi, A theory offour-dimensional Finsler spaces in terms of scalars, J. Nat. Acad. Math. 11(1997), 176-190.
[4] P. N. Pandey and Manish Kumar Gupta, On certain special Finsler spaces of dimension four, J. Internat. Acad. Phy. Sci. 8(2004), 17-23.

Department of Mathematics, University of Allahabad, Allahabad, India.
E-mail: pnpiaps@rediffmail.com
Department of Mathematics, University of Allahabad, Allahabad, India.
E-mail: :manishkg_1982@yahoo.com

[^0]: 2) "(0) p-homogeneous" is an abbreviation of "positively homogeneous of degree 0 in y ".
