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ON A FOUR-DIMENSIONAL BERWALD SPACE WITH

VANISHING h-CONNECTION VECTOR ki

P. N. PANDEY AND MANISH KUMAR GUPTA

Abstract. M. Matsumoto and R. Miron [2]1) constructed an orthonormal frame for an n-dimensional Finsler space

and the frame was called ‘Miron frame’. T. N. Pandey and D. K. Diwedi [3] and the present authors [4] studied four-

dimensional Finsler spaces in terms of scalars. In the present paper, we study a four-dimensional Berwald space

with vanishing h-connection vector ki .

1. Orthonormal Frame and Connection Vectors

Let L(x, y) be the fundamental function and gi j (x, y) be the fundamental metric tensor of

a four-dimensional Finsler space F 4. Let δ
i j kl
pqr s be generalized Kronecker delta, and γi j kl =

δ1234
i j kl

and γi j kl = δ
i j kl
1234, then the components of ∈-tensor are defined by

∈i j kl=
√

|g |γi j kl and ∈
i j kl

= (
√

|g |)−1γi j kl ; where g = |gi j |.

∈i j kl is also called the Levi-Civita permutation symbol.

The Miron frame for a four-dimensional Finsler space is constructed by the unit vectors

(l i ,mi ,ni , p i ), where l i is the normalized supporting element and mi is the normalized tor-

sion vector.

In the orthonormal frame, an arbitrary tensor T = (T i
j
) is expressed in terms of scalar com-

ponents as follows:

T i
j = Tαβei

α)eβ) j , (1.1)

where ei
1)
= l i , ei

2)
= mi , ei

3)
= ni , ei

4)
= p i and the summation convention is applied to Greek

indices also.

The scalar components of the fundamental tensor gi j and ∈-tensor ∈i j kl are given by δαβ
and γαβγδ respectively.

Let Hα)βγ and
1

L
Vα)βγ be scalar components of the h- and v-covariant derivatives ei

α)| j

and ei
α)
| j respectively of the vectors eα), i.e.

a) ei
α)| j

= Hα)βγ ei
β)

eγ) j ,

b) Lei
α)
| j =Vα)βγ ei

β)
eγ) j .

(1.2)
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Hα)βγ and Vα)βγ are called h- and v-connection scalars respectively and are (0)p-homogeneous2) .

From the orthogonality of the frame, we have

Hα)βγ =−Hβ)αγ, Vα)βγ =−Vβ)αγ. (1.3)

Also, we have

H1)βγ = 0, V1)βγ = δβγ−δ1
β δ1

γ. (1.4)

We now define vector fields:

hi = H2)3γ eγ)i , ji = H4)2γ eγ)i , ki = H3)4γ eγ)i , (1.5)

and

ui =V2)3γ eγ)i , vi =V4)2γ eγ)i , wi =V3)4γ eγ)i . (1.6)

From (1.2), we get

a) ei
1)| j

= l i
| j
= 0,

b) ei
2)| j

= mi
| j
= ni h j −p i j j ,

c) ei
3)| j

= ni
| j
= p i k j −mi h j ,

d) ei
4)| j

= p i
| j
= mi j j −ni k j ,

(1.7)

and
a) Lei

1)
| j = Ll i | j = mi m j +ni n j +p i p j = hi

j
,

b) Lei
2)
| j = Lmi | j =−l i m j +ni u j −p i v j ,

c) Lei
3)
| j = Lni | j =−l i n j −mi u j +p i w j ,

d) Lei
4)
| j = Lp i | j =−l i p j +mi v j −ni w j .

(1.8)

The Finsler vector fields hi , ji , ki are called h-connection vectors and the vector fields ui ,

vi , wi are called v-connection vectors.

The scalars H2)3γ, H4)2γ, H3)4γ and V2)3γ, V4)2γ, V3)4γ are considered as the scalar compo-

nents hγ, jγ, kγ and uγ, vγ, wγ of the h- and v-connection vectors respectively. Because of

(0)p-homogeneity of ei
α)

, (1.8) gives

Lmi
| j l j

= 0 = ni u j l j
−p i v j l j ,

Lni
| j l j

= 0 =−mi u j l j
+p i w j l j ,

so that u1 = u j l j = 0, v1 = v j l j = 0, w1 = w j l j = 0.

Consequently, we have:

Proposition 1.1. The first scalar components u1, v1, w1 of v-connection vectors ui , vi , wi

vanish identically.

2) “(0)p-homogeneous” is an abbreviation of “positively homogeneous of degree 0 in y”.
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2. Main scalars

Let
1

L
Cαβγ be scalar components of Ci j k with respect to the Miron frame, i.e.

L Ci j k =Cαβγeα)i eβ) j eγ)k . (2.1)

M. Matsumoto [1] showed that

(i) Cαβγ are completely symmetric,

(ii) C1βγ = 0,

(iii) C2µµ = LC = W , C3µµ = C4µµ = ·· · · · ·Cnµµ = 0 for n ≥ 3, where C is the length of C i and

W = LC is called the unified main scalar.

Therefore in a four-dimensional Finsler space, we have



























C1βγ = 0,

C222 +C233 +C244 = LC =W,

C322 +C333 +C344 = 0,

C422 +C433 +C444 = 0,

C234 6= 0 in general.

(2.2)

Thus putting

C222 = A, C233 = B, C244 =C , C322 = D,

C333 = E , C422 = F, C433 =G, C234 = H ,
(2.3)

we have

C344 =−(D +E ), C444 =−(F +G).

Eight scalars A,B, . . . . . .G, H given by (2.3) are called the main scalars of a four-dimensional

Finsler space.

3. Scalar derivatives

Taking h-covariant differentiation of (1.1), we get

T i
j |k = (δk Tαβ)ei

α)eβ) j +Tαβei
α)|k eβ) j +Tαβei

α)eβ) j |k . (3.1)

If Tαβ, γ are scalar components of T i
j |k

, i.e.

T i
j |k = Tαβ,γ ei

α)eβ) j eγ)k , (3.2)

then we obtain

Tαβ,γ = (δk Tαβ)ek
γ)+TµβHµ)αγ+TαµHµ)βγ. (3.3)

Similarly the scalar components Tαβ;γ of LT i
j
|k are given by

Tαβ;γ = L(∂̇k Tαβ)ek
γ) +TµβVµ)αγ+TαµVµ)βγ. (3.4)
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The scalar components Tαβ,γ and Tαβ;γ respectively are called h- and v- scalar derivatives

of scalar components Tαβ of T .

4. Berwald space

A Berwald space is characterized by Chi j |k = 0, which is given by Cαβγ,δ = 0 in terms of

scalars.

We are concerned with the tensor Chi j |k . From (2.1) and (3.2), it follows that

L Chi j |k =Cαβγ,δeα)heβ)i eγ) j eδ)k . (4.1)

According to the formula (3.3), Cαβγ,δ are given by

Cαβγ,δ = δkCαβγek
δ) +CµβγHµ)αδ+CαµγHµ)βδ+CαβµHµ)γδ.

The explicit form of Cαβγ,δ is obtained as follows:

C222,δ = (δkC222)ek
δ) +3Cµ22Hµ)2δ

= (δk A)ek
δ) +3C322H3)2δ+3C422H4)2δ

= A,δ−3Dhδ +3F jδ; (4.2a)

where A,δ = (δk A)ek
δ)

.

Remark. As we put C222 = A, we should notice the difference between A,δ and C222,δ.

Similarly, we get

C233,δ = B,δ+ (2D −E )hδ+G jδ−2Hkδ, (4.2b)

C244,δ = C,δ+ (D +E )hδ− (3F +G) jδ+2Hkδ, (4.2c)

C322,δ = D ,δ+ (A−2B)hδ+2H jδ−F kδ, (4.2d)

C333,δ = E,δ+3Bhδ −3Gkδ, (4.2e)

C422,δ = F,δ−2Hhδ− (A−2C ) jδ+Dkδ, (4.2f)

C433,δ = G,δ+2Hhδ −B jδ+ (2D +3E )kδ, (4.2g)

C234,δ = H,δ+ (F −G)hδ− (2D +E ) jδ+ (B −C )kδ, (4.2h)

C344,δ = −D ,δ−E,δ+Chδ−2H jδ+ (F +3G)kδ, (4.2i)

C444,δ = −F,δ−G,δ−3C jδ− (3D +3E )kδ, (4.2j)

C1βγ,δ = 0. (4.2k)

Adding (4.2d), (4.2e), (4.2i) and using (2.2), we get

C322,δ+C333,δ+C344,δ = (A+B +C )hδ = LC hδ =W hδ. (4.3)
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Adding (4.2f), (4.2g), (4.2j) and using (2.2), we get

C422,δ+C433,δ+C444,δ =−(A+B +C ) jδ =−LC jδ =−W jδ. (4.4)

Adding (4.2a), (4.2b), (4.2c) and using (2.2), we get

C222,δ+C233,δ+C244,δ = A,δ+B,δ+C,δ = (A+B +C ),δ =W,δ. (4.5)

Thus, from (4.2), (4.3), (4.4) and (4.5), we have

Theorem 4.1. In a four dimensional Berwald space, the h-connection vectors hi and ji

vanish identically. Also main scalar A and the unified main scalar W = LC are h-covariant

constants. Furthermore, if h-connection vector ki vanishes then all the main scalars are h-

covariant constants.

5. Ricci identities

Now, we are concerned with the tensors ei
α| j |k

, ei
α)| j

|k and ei
α)
| j |k . From (1.2), we have

ei
α)| j |k = Hα)βγ,δei

β)eγ) j eδ)k , (5.1)

Lei
α)| j |k = Hα)βγ;δei

β)eγ) j eδ)k , (5.2)

Lei
α)| j |k = Vα)βγ,δei

β)eγ) j eδ)k . (5.3)

According to the formulae (3.3) and (3.4), Hα)βγ,δ, Hα)βγ;δ, Vα)βγ,δ are given by

Hα)βγ,δ = (δk Hα)βγ)ek
δ) +Hα)µγHµ)βδ+Hα)βµHµ)γδ,

Hα)βγ;δ = L(∂̇k Hα)βγ)ek
δ) +Hα)µγVµ)βδ+Hα)βµVµ)γδ,

Vα)βγ,δ = (δkVα)βγ)ek
δ) +Vα)µγHµ)βδ+Vα)βµHµ)γδ.

The explicit forms of these are obtained as follows:

H2)3γ,δ = (δk H2)3γ)ek
δ) +H2)µγHµ)3δ+H2)3µHµ)γδ

= (δk hγ)ek
δ) +H2)4γH4)3δ+hµHµ)γδ

= hγ,δ+ jγkδ;

where hγ,δ = (δk hγ)ek
δ)
+hµHµ)γδ.

Similarly, we get

H4)2γ,δ = jγ,δ+kγhδ,

H3)4γ,δ = kγ,δ+hγ jδ,

H2)3γ;δ = hγ;δ+ jγwδ,

H4)2γ;δ = jγ;δ+kγuδ,

H3)4γ;δ = kγ;δ+hγvδ,

and
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V2)3γ,δ = uγ,δ+ vγkδ,

V4)2γ,δ = vγ,δ+wγhδ,

V3)4γ,δ = wγ,δ+uγ jδ.

In terms of scalar components, the Ricci identity

ei
α)| j |k −ei

α)|k | j = er
α)P

i
r j k −ei

α)|r C r
j k −ei

α)|r C r
j k |0, (5.4)

is expressed as

Hα)βγ;δ−Vα)βδ,γ = Pαβγδ−Hα)βµCµγδ−Vα)βµPµγδ. (5.5)

For Berwald space Phi j k = 0, therefore (5.5) becomes

Hα)βγ;δ−Vα)βδ,γ =−Hα)βµCµγδ;

which is explicitly written as

(hγ;δ+ jγwδ)− (uδ,γ+ vδkγ) = −hµCµγδ,

( jγ;δ+kγuδ)− (vδ,γ+wδhγ) = − jµCµγδ,

(kγ;δ+hγvδ)− (wδ,γ+uδ jγ) = −kµCµγδ.

From Theorem 4.1, we see that in a Berwald space hi = ji = 0. If we take ki = 0, then above

equations become uδ,γ = vδ,γ = wδ,γ = 0.

Thus we have:

Theorem 5.1. In a four-dimensional Berwald space with vanishing h-connection vector ki ,

the v-connection vectors ui , vi , wi are h-covariant constants.

From the Ricci identity

T i
j |k |h −T i

j |h|k = T r
j Ri

r kh −T i
r Rr

j kh −T i
j |r Rr

kh , (5.6)

we have

ei
α)| j |k −ei

α)|k | j = er
α)R

i
r j k −ei

α)|r Rr
j k ; (5.7)

which is expressed as

Hα)βγ,δ−Hα)βδ,γ = Rαβγδ−Vα)βπR1πγδ. (5.8)

Now, we propose:

Proposition 5.1. Let Ti j be a skew-symmetric tensor of a four-dimensional Finsler space. If

we put ∗T i j =
1

4
∈

i j kl Tkl , then we obtain Tpq =∈pqi j
∗T i j .

Proof. ∗T i j =
1

4
∈

i j kl Tkl implies

∗T i j
∈pqi j =

1

4
∈

i j kl
∈pqi j Tkl =

1

4
δ

i j kl

pqi j
Tkl = Tpq .
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This completes the proof.

Since Rhi j k is skew-symmetric in h and i as well as in j and k, in view of Proposition 5.1,

Rhi j k may be written as

Rhi j k =∈hir s ∈ j kpq
∗Rr spq , (5.9)

where we put

∗Rr spq
=

1

16
∈

r shi
∈

pqlm Rhilm . (5.10)

The scalar components Rαβγδ of Rhi j k are written as

Rαβγδ = γαβµλγγδθτ
∗Rµλθτ (5.11)

in terms of scalar components ∗Rµλθτ of ∗Rr spq .

The scalar components Rβγδ of
1

L
Ri j k are given by

Rβγδ = γ1βµλγγδθτ
∗Rµλθτ. (5.12)

Therefore (5.8) may be written as

Hα)βγ,δ−Hα)βδ,γ = (γαβµλ−Vα)βπγ1πµλ)γγδθτ
∗Rµλθτ.

For different values of α, β this gives only three equations:

(hγ,δ+ jγkδ)− (hδ,γ+ jδkγ) = (δ14
µλ−u2δ

34
µλ−u3δ

42
µλ−u4δ

23
µλ)γγδθτ

∗Rµλθτ,

( jγ,δ+kγhδ)− ( jδ,γ+kδhγ) = (δ13
µλ− v2δ

34
µλ− v3δ

42
µλ− v4δ

23
µλ)γγδθτ

∗Rµλθτ,

(kγ,δ+hγ jδ)− (kδ,γ+hδ jγ) = (δ12
µλ−w2δ

34
µλ−w3δ

42
µλ−w4δ

23
µλ)γγδθτ

∗Rµλθτ.

For Berwald space with ki = 0, above equations become



















(δ14
µλ

−u2δ
34
µλ

−u3δ
42
µλ

−u4δ
23
µλ

)∗Rµλθτ = 0,

(δ13
µλ

− v2δ
34
µλ

− v3δ
42
µλ

− v4δ
23
µλ

)∗Rµλθτ = 0,

(δ12
µλ

−w2δ
34
µλ

−w3δ
42
µλ

−w4δ
23
µλ

)∗Rµλθτ = 0.

(5.13)

Now applying the Ricci identity (5.6) to v-connection vectors v
(p)

i
, we have

v
(p)

i | j |k
− v

(p)

i |k | j
=−v

(p)
r Rr

i j k − v
(p)

i
|r Rr

j k ; (5.14)

where (v (1)
i

, v (2)
i

, v (3)
i

) = (ui , vi , wi ).

In terms of scalars, (5.14) may be written as:

v
(p)

β,γ,δ
− v

(p)

β,δ,γ
=−(v

(p)
π γβπµλ+ v

(p)

β;π
γ1πµλ)γγδθτ

∗Rµλθτ.
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We have shown in Theorem 5.1 that in a Berwald space with ki = 0, the v-connection

vectors are h-covariant constants, therefore above equation becomes

(v
(p)
π γβπµλ+ v

(p)

β;π
γ1πµλ)∗Rµλθτ = 0. (5.15)

Because of v
(p)
1;π = −v

(p)
π , the above is trivial for β = 1 and thus from the above we obtain

only
(

v
(p)
3 δ14

µλ+ v
(p)
4 δ31

µλ+ v
(p)
2;2δ

34
µλ+ v

(p)
2;3δ

42
µλ+ v

(p)
2;4δ

23
µλ

)

∗Rµλθτ = 0,
(

v
(p)
2 δ41

µλ+ v
(p)
4 δ12

µλ+ v
(p)
3;2δ

34
µλ+ v

(p)
3;3δ

42
µλ+ v

(p)
3;4δ

23
µλ

)

∗Rµλθτ = 0,
(

v
(p)
2 δ13

µλ+ v
(p)
3 δ21

µλ+ v
(p)
4;2δ

34
µλ+ v

(p)
4;3δ

42
µλ+ v

(p)
4;4δ

23
µλ

)

∗Rµλθτ = 0.

In view of (5.13), these equations take the forms:






















































{

(v
(p)
2;2 + v

(p)
3 u2 − v

(p)
4 v2)δ34

µλ
+ (v

(p)
2;3 + v

(p)
3 u3 − v

(p)
4 v3)δ42

µλ

+(v
(p)
2;4 + v

(p)
3 u4 − v

(p)
4 v4)δ23

µλ

}

∗Rµλθτ = 0,
{

(v
(p)
3;2 − v

(p)
2 u2 + v

(p)
4 w2)δ34

µλ
+ (v

(p)
3;3 − v

(p)
2 u3 + v

(p)
4 w3)δ42

µλ

+(v
(p)
3;4 − v

(p)
2 u4 + v

(p)
4 w4)δ23

µλ

}

∗Rµλθτ = 0,
{

(v
(p)
4;2 + v

(p)
2 v2 − v

(p)
3 w2)δ34

µλ
+ (v

(p)
4;3 + v

(p)
2 v3 − v

(p)
3 w3)δ42

µλ

+(v
(p)
4;4 + v

(p)
2 v4 − v

(p)
3 w4)δ23

µλ

}

∗Rµλθτ = 0.

(5.16)

Put v
(p)

αβ
= v

(p)

α;β
+ v

(p)
µ Vα)µβ, then equations (5.16) become



























(

v
(p)
22 δ34

µλ
+ v

(p)
23 δ42

µλ
+ v

(p)
24 δ23

µλ

)

∗Rµλθτ = 0,

(

v
(p)
32 δ34

µλ
+ v

(p)
33 δ42

µλ
+ v

(p)
34 δ23

µλ

)

∗Rµλθτ = 0,

(

v
(p)
42 δ34

µλ
+ v

(p)
43 δ42

µλ
+ v

(p)
44 δ23

µλ

)

∗Rµλθτ = 0.

(5.17)

Again, applying the Ricci identity (5.6) to the main scalars A(q), we have

A
(q)

| j |k
− A

(q)

|k | j
=−A(q)

|r Rr
j k ; (5.18)

where (A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8)) = (A,B,C ,D,E ,F,G, H).

In terms of scalars, (5.18) assumes the form:

A
(q)

,γ,δ
− A

(q)

,δ,γ
=−A

(q)
;π γ1πµλγγδθτ

∗Rµλθτ = 0.

We have seen in Theorem 4.1 that all the main scalars are h-covariant constants in a

Berwald space with ki = 0. Therefore above equation becomes

(A
(q)
;2 δ34

µλ+ A
(q)
;3 δ42

µλ+ A
(q)
;4 δ23

µλ)∗Rµλθτ = 0. (5.19)

We now discuss Berwald space with vanishing h-connection vectors, considering the rank

ρ of the matrix (∗Rµλθτ), where (µλ) and (θτ) show the number of rows and columns respec-

tively. From (5.13), it is clear that the rank ρ is less than four,
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(i) if ρ = 0 then ∗Rµλθτ = 0. This means ∗Rhi j k = 0 and therefore the space is locally

Minkowskian.

(ii) if ρ = 1, then from (5.17) ad (5.19), we have

A
(q)
;2 : A

(q)
;3 : A

(q)
;4 = v

(p)
22 : v

(p)
23 : v

(p)
24 = v

(p)
32 : v

(p)
33 : v

(p)
34 = v

(p)
42 : v

(p)
43 : v

(p)
44

(p = 1,2,3; q = 1,2, . . . ,8) (5.20)

(iii) if ρ = 2, then from (5.17),

∣

∣

∣

∣

∣

∣

∣

∣

∣

v
(p)
22 v

(p)
23 v

(p)
24

v
(p)
32 v

(p)
33 v

(p)
34

v
(p)
42 v

(p)
43 v

(p)
44

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 such that conditions (5.20) do not hold.

(iv) if ρ = 3, then from (5.17) and (5.19), v
(p)

αβ
= 0; α,β = 2,3,4 and A

(q)
;2 = A

(q)
;3 = A

(q)
;4 = 0 so

that all the main scalars are v-covariant constants and therefore they are constants.

Summarizing the above, we conclude:

Theorem 5.2. In a four-dimensional Berwald space with vanishing h-connection vector ki ,

the rank ρ of the matrix (Rhi j k ), where (hi ) and ( j k) show the number of rows and columns

respectively, is less than four. Further

(i) if ρ = 0, the space is locally Minkowskian.

(ii) if ρ = 1, we have the conditions (5.20).

(iii) if ρ = 2,

∣

∣

∣

∣

∣

∣

∣

∣

∣

v
(p)
22 v

(p)
23 v

(p)
24

v
(p)
32 v

(p)
33 v

(p)
34

v
(p)
42 v

(p)
43 v

(p)
44

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 and conditions (5.20) do not hold.

(iv) if ρ = 3, all the main scalars are constants and v
(p)

αβ
= 0, (p = 1,2,3; α,β= 2,3,4).
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