ANTI-INTEGRAL EXTENSIONS \(R[\alpha]/R \)
AND INVERTIBILITY OF \(\alpha^n - a \)

KIYOSHI BABA AND KEN-ICHI YOSHIDA

Abstract. Let \(R \) be an integral domain and \(\alpha \) an anti-integral element of degree \(d \) over \(R \). In the paper [3] we give a condition for \(\alpha^2 - a \) to be a unit of \(R[\alpha] \). In this paper we will generalize the result to an arbitrary positive integer \(n \) and give a condition, in terms of the ideal \(I[\alpha]D(\sqrt[n]{\eta}) \) of \(R \), for \(\alpha^n - a \) to be a unit of \(R[\alpha] \).

1. Conditions of Invertibility of \(\alpha^n - a \)

Let \(R \) be an integral domain with quotient field \(K \) and \(R[X] \) a polynomial ring over \(R \) in an indeterminate \(X \). Let \(\alpha \) be an element of an algebraic field extension of \(K \) and \(\pi : R[X] \rightarrow R[\alpha] \) the \(R \)-algebra homomorphism defined by \(\pi(X) = \alpha \). Let \(\varphi_{\alpha}(X) \) be the minimal polynomial of \(\alpha \) over \(K \) with \(\deg \varphi_{\alpha}(X) = d \) and write \(\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d, (\eta_1, \ldots, \eta_d \in K) \). We will define \(I[\alpha] = \bigcap_{i=1}^{d} (R:R \eta_i) \) and \(J[\alpha] = I[\alpha](1, \eta_1, \ldots, \eta_d) \) where \((R:R \eta_i) = \{ c \in R; c \eta_i \in R \} \) and \((1, \eta_1, \ldots, \eta_d) \) is an \(R \)-module generated by \(1, \eta_1, \ldots, \eta_d \). An element \(\alpha \) is called an anti-integral element of degree \(d \) over \(R \) if

\[
\text{Ker} \pi = I[\alpha] \varphi_{\alpha}(X) R[X].
\]

We say that the extension \(R[\alpha]/R \) is an anti-integral extension if \(\alpha \) is an anti-integral element of degree \(d \) over \(R \).

Our notation is standard and our general reference for unexplained terms is [5].

We express our gratitude to Prof. T. Sugatani for his helpful comments.

We will frequently use the following lemma throughout this paper:

Lemma 1.1. Let \(R \subset S \) be a flat extension of integral domains. Let \(\alpha \) be an element of an algebraic field extension of the quotient field of \(S \).

1. Set \(I_{S, \alpha} = \bigcap_{i=1}^{d} (S : S \eta_i) \) and \(J_{S, \alpha} = I_{S, \alpha}(1, \eta_1, \ldots, \eta_d) \) where \((S : S \eta_i) = \{ b \in S; b \eta_i \in S \} \) and \((1, \eta_1, \ldots, \eta_d) \) is an \(S \)-module generated by \(1, \eta_1, \ldots, \eta_d \). Then \(I_{S, \alpha} = I[\alpha]S \) and \(J_{S, \alpha} = J[\alpha]S \).

2. If \(\alpha \) is an anti-integral element of degree \(d \) over \(R \), then \(\alpha \) is also an anti-integral element of degree \(d \) over \(S \).

Received November 26, 2001; revised November 14, 2002.

2000 Mathematics Subject Classification. Primary. 13B02. Secondary. 13A15.

Key words and phrases. Anti-integral element, cyclic determinant, denominator ideal.
Proof. (1) Since S is a flat extension over R, we have

$$I_{S, [\alpha]} = \bigcap_{i=1}^{d}(S : \eta_i) = \bigcap_{i=1}^{d}(R : R \eta_i)S = (\bigcap_{i=1}^{d}(R : R \eta_i))S = I_{[\alpha]}S$$

and

$$J_{S, [\alpha]} = I_{S, [\alpha]}(1, \eta_1, \ldots, \eta_d) = I_{[\alpha]}(1, \eta_1, \ldots, \eta_d)S = J_{[\alpha]}S.$$

(2) By tensoring S to the following exact sequence:

$$0 \rightarrow I_{[\alpha]} \varphi_\alpha(X)R[X] \rightarrow R[X] \rightarrow R[\alpha] \rightarrow 0,$$

we have an exact sequence:

$$0 \rightarrow I_{[\alpha]} \varphi_\alpha(X)S[X] \rightarrow S[X] \rightarrow S[\alpha] \rightarrow 0,$$

By (1), we know that $I_{[\alpha]}S = I_{S, [\alpha]}$. Hence α is also an anti-integral element of degree d over S.

We list some facts which will be used later for reference sake:

Lemma 1.2. ([10, Theorem 1] and [1, Theorem 4]) Let R be an integral domain and α an algebraic element over the quotient field of R. Let a be an element of R such that $\alpha - a$ is not zero. Then the following hold:

1. $I_{[\alpha-a]-1} = I_{[\alpha]} \varphi_\alpha(a)$.
2. If α is an anti-integral element over R, then so is $(\alpha - a)^{-1}$.

Remark 1.3. If $\alpha - a = 0$, then $\varphi_\alpha(X) = X - a$, and so $I_{[\alpha]} \varphi_\alpha(a) = (0)$ and $J_{[\alpha]} = R$. Hence $I_{[\alpha]} \varphi_\alpha(a) \subseteq J_{[\alpha]}$. Especially, $I_{[\alpha]} \varphi_\alpha(a) \neq R$.

Lemma 1.4. ([6, Theorem 2.2] and [8, Lemma 8]) Let R be an integral domain and γ an anti-integral element over R. Then the following conditions are equivalent:

1. γ is integral over R.
2. $I_{[\gamma]} = R$.

By making use of Lemmas 1.3 and 1.4 we have the following:

Lemma 1.5. (cf. [7, Theorem 6]) Let R be an integral domain and α an anti-integral element over R. Let a be an element of R. Then $\alpha - a$ is a unit of $R[\alpha]$ if and only if $I_{[\alpha]} \varphi_\alpha(a) = R$.

Proof. First we shall prove the ‘only if’ part. Since $\alpha - a$ is a unit of $R[\alpha]$, then there exist elements $f(X)$ of $R[X]$ and $g(X)$ of $I_{[\alpha]}R[X]$ such that $f(X)(X - a) - 1 = g(X) \varphi_\alpha(X)$. Hence $g(a)\varphi_\alpha(a) = -1$. This means that $I_{[\alpha]} \varphi_\alpha(a) = R$.

Next we shall prove the ‘if’ part. By Remark 1.3, $\alpha - a$ is not zero. Therefore we get $I_{[\alpha-a]-1} = R$ by Lemma 1.2 (1). Then Lemma 1.4 asserts that $(\alpha - a)^{-1}$ is integral over R. Therefore there exist elements c_1, \ldots, c_n of R such that

$$(\alpha - a)^{-1} + c_1((\alpha - a)^{-1})^{n-1} + \cdots + c_n = 0.$$
Hence $1 = -(c_1 + \cdots + c_n(\alpha - a)^{n-1})(\alpha - a)$. This shows that $\alpha - a$ is a unit of $R[\alpha]$.

Let n be a positive integer and a an element of R. Assume that the following three conditions hold:

1. α is an anti-integral element of degree d over R.
2. $[K(\sqrt[n]{a}) : K] = n$.
3. $[K(\sqrt[n]{a})/K(\sqrt[n]{a}(\alpha)) : K(\sqrt[n]{a})] = d$.

Set $B = R[\sqrt[n]{a}]$. By the condition (3), the minimal polynomial of α over $K(\sqrt[n]{a})$ coincides with $\varphi_{\alpha}(X)$. The condition (2) implies that B is a free R-module of rank n. Hence B is a flat extension over R. Therefore, by Lemma 1.1, $I_{B[\alpha]} = I_{B}(\alpha)B$, $J_{B[\alpha]} = J_{B}(\alpha)B$ and α is also an anti-integral element of degree d over B.

We give a condition for the element $\alpha^n - a$ to be a unit of $R[\alpha]$.

Theorem 1.6. Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Let a be an element of R. Assume that the following four conditions hold:

1. $\omega \in R$.
2. α is an anti-integral element of degree d over R.
3. $[K(\sqrt[n]{a}) : K] = n$.
4. $[K(\sqrt[n]{a})(\alpha) : K(\sqrt[n]{a})] = d$.

Set $A = R[\alpha]$ and $B = R[\sqrt[n]{a}]$. Then the following conditions are equivalent to each other:

(i) $\alpha^n - a$ is a unit of A.
(ii) $I_{B[\alpha]}\varphi_{\alpha}(\sqrt[n]{a}\omega^k)B = B$ for $k = 0, \ldots, n - 1$.

Proof. (i) \Rightarrow (ii). Since

$\alpha^n - a = (\alpha - \sqrt[n]{a})(\alpha - \sqrt[n]{a}\omega)\cdots(\alpha - \sqrt[n]{a}\omega^{n-1}),$

we see that $\alpha - \sqrt[n]{a}\omega^k$ is a unit of $B[\alpha]$ for $k = 0, 1, \ldots, n - 1$. Hence by Lemma 1.5 we get

$I_{B[\alpha]}\varphi_{\alpha}(\sqrt[n]{a}\omega^k)B = B$

for $k = 0, 1, \ldots, n - 1$.

(ii) \Rightarrow (i). By Lemma 1.5 we see that

$\alpha - \sqrt[n]{a}\omega^k$

is a unit of $B[\alpha]$ for $k = 0, 1, \ldots, n - 1$. Hence $\alpha^n - a$ is also a unit of $B[\alpha]$. Since $\alpha^n - a$ is an element of A and $B[\alpha]$ is an integral extension of A, we know that $\alpha^n - a$ is a unit of A.

Recall that $\varphi_{\alpha}(X) = X^d + \eta_1X^{d-1} + \cdots + \eta_d$. Let s be an integer such that $0 \leq s \leq n - 1$. Then we define

$\varphi_{\alpha,s}(X) = (\sum \eta_i X^{d-i})X^{-s}$
where $\eta_0 = 1$ and the sum is taken over i such that $0 \leq i \leq d$ and that the remainder of $d - i$ divided by n is s. Then it is easily verified:

$$\varphi_\alpha(X) = \sum_{s=0}^{n-1} X^s \varphi_{\alpha,s}(X)$$

and

$$\varphi_{\alpha,s}(X) \in R[\eta_1, \ldots, \eta_d][X^n].$$

Set $\beta_s = (\sqrt[n]{a})^{s} \varphi_{\alpha,s}(\sqrt[n]{a})$ for $s = 0, 1, \ldots, n-1$. The cyclic determinant

$$\begin{vmatrix}
\beta_0 & \beta_1 & \cdots & \beta_{n-1} \\
\beta_{n-1} & \beta_0 & \cdots & \beta_{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_1 & \beta_2 & \cdots & \beta_0
\end{vmatrix}$$

is denoted by $D(\sqrt[n]{a})$. Then

$$D(\sqrt[n]{a}) = \prod_{k=0}^{n-1} \left(\sum_{s=0}^{n-1} (\sqrt[n]{a} \omega^k)^s \varphi_{\alpha,s}(\sqrt[n]{a}) \right).$$

For cyclic determinants, see [9, p. 91].

Example 1.7. Let R be an integral domain with quotient field K. Let α be an element of K. Let a be an element of R and n a positive integer. Then $D(\sqrt[n]{a}) = (-1)^n (\alpha^n - a)$. Hence, if $I_{[a]} D(\sqrt[n]{a}) = R$, then $\alpha^n - a$ is a unit of $R[a]$.

Proof. Note that $\varphi_\alpha(X) = X - \alpha$. By the definition of $\varphi_{\alpha,s}(X)$, we get $\varphi_{\alpha,0}(X) = 1$, $\varphi_{\alpha,1}(X) = \cdots = \varphi_{\alpha,n-1}(X) = 0$. Hence $\beta_0 = -\alpha$, $\beta_1 = \sqrt[n]{a}$, $\beta_2 = \cdots = \beta_{n-1} = 0$. By expanding the first column of the determinant $D(\sqrt[n]{a})$, we have $D(\sqrt[n]{a}) = (-1)^n (\alpha^n - a)$.

Lemma 1.8. For every term $\pm \beta_{i_1} \beta_{i_2} \cdots \beta_{i_n}$ of the cyclic determinant (1), the following equality holds:

$$i_1 + i_2 + \cdots + i_n \equiv 0 \pmod{n}.$$

Proof. Let $|a_{i,j}|$ be the cyclic determinant defined by (1). Then there exists a permutation σ such that

$$\beta_{i_1} \beta_{i_2} \cdots \beta_{i_n} = a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

Then

$$i_1 \equiv \sigma(1) - 1 \pmod{n}, \ldots, i_n \equiv \sigma(n) - n \pmod{n}.$$
Therefore

\[i_1 + i_2 + \cdots + i_n \equiv \sigma(1) + \sigma(2) + \cdots + \sigma(n) - (1 + 2 + \cdots + n) \mod n \]

\[\equiv 0 \mod n. \]

Lemma 1.9. \(I_{\alpha}^n D(\sqrt[n]{a}) \) is an ideal of \(R \) and \(I_{\alpha}^n D(\sqrt[n]{a}) \subseteq J_{\alpha}^n. \)

Proof. First we shall show that \(I_{\alpha}^n D(\sqrt[n]{a}) \subseteq R. \) Let \(\pm \beta_1, \beta_2, \ldots, \beta_n \) be a term of the cyclic determinant \(D(\sqrt[n]{a}). \) By Lemma 1.8 there exists a non-negative integer \(q \) such that \(i_1 + i_2 + \cdots + i_n = nq. \) Then

\[
\beta_1 \beta_2 \cdots \beta_n = (\sqrt[n]{a})^q \varphi_{\alpha,i_1}(\sqrt[n]{a}) \cdots \varphi_{\alpha,i_n}(\sqrt[n]{a})
\]

By the definitions of \(I_{\alpha} \) and \(\varphi_{\alpha,i}(X), \) we have

\[I_{\alpha}^n \beta_1 \beta_2 \cdots \beta_n \subseteq R. \]

Therefore \(I_{\alpha}^n D(\sqrt[n]{a}) \subseteq R. \)

It is easily verified that \(I_{\alpha}^n D(\sqrt[n]{a}) \) is an ideal of \(R. \) Furthermore,

\[I_{\alpha}^n \beta_1 \beta_2 \cdots \beta_n \subseteq J_{\alpha}^n. \]

Hence \(I_{\alpha}^n D(\sqrt[n]{a}) \subseteq J_{\alpha}^n. \)

Proposition 1.10. Let \(R \) be an integral domain with quotient field \(K. \) Let \(n \) be a positive integer and \(a \) an element of \(R. \) Let \(\omega \) be a primitive \(n \)-th root of unity. Assume that the following six conditions hold:

1. \(\alpha \) is an anti-integral element of degree \(d \) over \(R. \)
2. \(R[\omega] \) is a flat extension over \(R. \)
3. \([K(\sqrt[n]{a}) : K] = n. \)
4. \([K(\sqrt[n]{a})(\alpha) : K(\sqrt[n]{a})] = d. \)
5. \([K(\omega)(\sqrt[n]{a}) : K(\omega)] = n. \)
6. \([K(\omega)(\sqrt[n]{a})(\alpha) : K(\omega)(\sqrt[n]{a})] = d. \)

Set \(A = R[\alpha]. \) If \(I_{\alpha}^n D(\sqrt[n]{a}) = R, \) then \(\alpha^n - a \) is a unit of \(A. \)

Proof. Set \(B = R[\sqrt[n]{a}]. \) First we will prove the case that \(\omega \) is in \(R. \) The condition \(I_{\alpha}^n D(\sqrt[n]{a}) = R \) implies that

\[I_{\alpha}^n D(\sqrt[n]{a})B = B. \]

Hence

\[I_{\alpha}^n \prod_{k=0}^{n-1} \left(\sum_{s=0}^{n-1} (\sqrt[n]{a} \omega^k)^s \varphi_{\alpha,i}(\sqrt[n]{a}) \right) B = B. \]
Since \(I_{[\alpha]}(\sum_{s=0}^{n-1} (\sqrt[n]{\alpha} \omega^k)^s \varphi_{\alpha,s}(\sqrt[n]{\alpha}))B \) is an ideal of \(B \), we get

\[
I_{[\alpha]} \left(\sum_{s=0}^{n-1} (\sqrt[n]{\alpha} \omega^k)^s \varphi_{\alpha,s}(\sqrt[n]{\alpha}) \right) B = B.
\]

Hence \(I_{[\alpha]}(\sqrt[n]{\alpha} \omega^k)B = B \) for \(k = 0, 1, \ldots, n-1 \). Theorem 1.6 asserts that \(\alpha^n - \alpha \) is a unit of \(A \).

Next we prove the general case. Set \(R' = R[\omega] \), \(A' = R'[\alpha] \). We have \(I_{[\alpha]}(\sqrt[n]{\alpha})D(\sqrt[n]{\alpha}) = R' \) because \(I_{[\alpha]} R' \subset I_{R'[\alpha]} \) and \(I_{[\alpha]} D(\sqrt[n]{\alpha}) = R \). Besides, \(\alpha \) is an anti-integral element of degree \(d \) over \(R' \) by Lemma 1.1 (2). Then the argument above implies that \(\alpha^n - \alpha \) is a unit of \(A' \). But \(\alpha^n - \alpha \in A \) and \(A' \) is integral over \(A \). Hence \(\alpha^n - \alpha \in A \).

Let \(n \) be a positive integer and \(\omega \) a primitive \(n \)-th root of unity. Set \(R' = R[\omega] \). The case that \(R' \) is not flat over \(R \) happens as the following example shows. Let \(Z \) be the ring of integers and \(Q \) the field of rational numbers.

Example 1.11. Set \(i = \sqrt{-1} \), \(R = Z[i, \sqrt{2}] \) and \(\omega = (1 + i)/\sqrt{2} \). Then \(\omega \) is a primitive 8-th root of unity. Let \(K \) be the quotient field of \(R \). Then \(K = Q(\sqrt{2}, i) \) and \(\omega \) is in \(K \). Hence \(\varphi_\omega(X) = X - \omega \). We have the following:

1. \(\omega \) is not in \(R \).
2. \(I_{[\omega]} = \{ p + q\sqrt{2} + ri + s\sqrt{2}i ; p, q, r, s \in Z \text{ and } p + r \in 2Z \} \).
3. \(R[\omega] \) is neither anti-integral nor flat over \(R \).

Proof. Note that \(R \) is a free \(Z \)-module with a basis \(\{ 1, \sqrt{2}, i, \sqrt{2}i \} \) and \(\{ 1, \sqrt{2}, i, \sqrt{2}i \} \) is linearly independent over \(Q \).

1. If \(\omega = \sqrt{2}/2 + \sqrt{2}i/2 \) is in \(R \), there exist elements \(p, q, r, s \) of \(Z \) such that \(\omega = p + q\sqrt{2} + ri + s\sqrt{2}i \). Then \(p = 0, q = 1/2, r = 0 \) and \(s = 1/2 \). This is a contradiction.

2. Set \(I_0 = \{ p + q\sqrt{2} + ri + s\sqrt{2}i ; p, q, r, s \in Z \text{ and } p + r \in 2Z \} \). Then it is easily proved that \(I_0 \) is an ideal of \(R \). Let \(x \) be an element of \(R \). It is easily seen that \(x\omega \) is in \(R \) if and only if \(x \) is in \(I_0 \). Hence \(I_{[\omega]} = I_0 \).

3. Assume that \(\omega \) is an anti-integral element over \(R \). Then \(I_{[\omega]} = R \) by Lemma 1.4 because \(\omega \) is integral over \(R \). The assertion (2) claims that \(1 \) is not in \(I_{[\omega]} \). This is a contradiction. Hence \(\omega \) is not an anti-integral element over \(R \).

Next we will assume that \(R[\omega] \) is flat over \(R \). Since \(R[\omega] \) is integral over \(R \) and \(1 \) is not in \(I_{[\omega]} \), we have \(I_{[\omega]} R[\omega] \neq R[\omega] \). On the other hand, by Lemma 1.1 (1), we see that \(I_{[\omega]} R[\omega] = I_{R[\omega],[\omega]} \). Since \(\omega \) is in \(R[\omega] \), we get \(I_{R[\omega],[\omega]} = R[\omega] \). This is absurd. Therefore \(R[\omega] \) is not flat over \(R \).

We can’t delete the assumption (5) of Proposition 1.10. To show an example for it, we need the following lemmas:

Lemma 1.12. ([4, Theorem 49]) Let \(K \) be a field and \(a \) an element of \(K \). Let \(m \) and \(n \) be relatively prime positive integers. Then \(X^{mn} - a \) is irreducible over \(K \) if and only if both \(X^m - a \) and \(X^n - a \) are irreducible over \(K \).
Lemma 1.13. ([4, Theorem 51]) Let K be a field and a an element of K. Let p be a prime number and n a positive integer. Assume that no p-th root of a is in K. Then:

1. If p is odd, then $X^p - a$ is irreducible over K.
2. If $p = 2$ and the characteristic of K is 2, then $X^{2^n} - a$ is irreducible over K.
3. If $p = 2$, $n \geq 2$ and the characteristic of K is not 2, then $X^{2^n} - a$ is irreducible over K if and only if $-4a$ is not a fourth power in K.

Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Then $[K(\sqrt[n]{a}) : K] = n$ does not imply $[K(\omega)(\sqrt[n]{a}) : K(\omega)] = n$ as the following example shows:

Example 1.14. Set $n = 12$, $K = \mathbb{Q}$ and $a = -\frac{9}{2}$. Let ω be a primitive 12-th root of unity. Then the following two assertions hold:

1. $X^{12} + 9/4$ is irreducible over \mathbb{Q} and $[K(\sqrt[12]{a}) : K] = n$
2. $X^{12} + 9/4$ is reducible over $\mathbb{Q}(\omega)$ and $[K(\omega)(\sqrt[12]{a}) : K(\omega)] < n$.

Proof. (1) By Lemma 1.12, we have only to prove that both $X^3 + 9/4$ and $X^4 + 9/4$ are irreducible over \mathbb{Q}. Lemma 1.13 (1) implies that $X^3 + 9/4$ is irreducible over \mathbb{Q}. Since $-4 \times \frac{9}{4} = -9$ is not a fourth power in \mathbb{Q}, we see that $X^4 + 9/4$ is irreducible over \mathbb{Q} by Lemma 1.13 (3).

2. Set $f = 1 - 2\omega^2$. Then we have

$$X^{12} + \frac{9}{4} = \left(X^6 + fX^3 - \frac{3}{2}\right)\left(X^6 - fX^3 - \frac{3}{2}\right)$$

and f is in $\mathbb{Q}(\omega)$. Hence $X^{12} + 9/4$ is reducible over $\mathbb{Q}(\omega)$ and $[K(\omega)(\sqrt[12]{a}) : K(\omega)] < n$.

Theorem 1.15. Let R be an integral domain with quotient field K. Let n be a positive integer and a an element of R. Let ω be a primitive n-th root of unity. Assume that the following six conditions hold:

1. α is an anti-integral element of degree d over R.
2. $R[\omega]$ is a flat extension over R.
3. $[K(\sqrt[n]{a}) : K] = n$.
4. $[K(\sqrt[n]{a})(\alpha) : K(\sqrt[n]{a})] = d$.
5. $[K(\omega)(\sqrt[n]{a}) : K(\omega)] = n$.
6. $[K(\omega)(\sqrt[n]{a})(\alpha) : K(\omega)(\sqrt[n]{a})] = d$.

Set $A = R[\alpha]$. Then the following conditions are equivalent to each other:

(i) $\alpha^n - a$ is a unit of A.
(ii) $I_{[\alpha]} D(\sqrt[n]{a}) = R$.

Proof. (ii) \Rightarrow (i). It is clear from Proposition 1.10.

(i) \Rightarrow (ii). (In this part of the proof, we don’t use the assumptions (5) and (6).) Set $B = R[\sqrt[n]{a}]$. First we will prove the case that ω is in R. By Theorem 1.6 we obtain

$I_{[\alpha]}(\sqrt[n]{a} \omega^k)B = B$
for $k = 0, 1, \ldots, n - 1$. Therefore

$$I_{[a]}^{n} \prod_{k=0}^{n-1} \varphi_{a}(\sqrt[n]{a} \cdot \omega^{k})B = B.$$

Note that

$$\varphi_{a}(\sqrt[n]{a} \cdot \omega^{k}) = \sum_{s=0}^{n-1} (\sqrt[n]{a} \cdot \omega^{k})^{s} \varphi_{a,s}(\sqrt[n]{a} \cdot \omega^{k})$$

$$= \sum_{s=0}^{n-1} (\sqrt[n]{a} \cdot \omega^{k})^{s} \varphi_{a,s}(\sqrt[n]{a}).$$

Hence

$$I_{[a]}^{n} \prod_{k=0}^{n-1} \left(\sum_{s=0}^{n-1} (\sqrt[n]{a} \cdot \omega^{k})^{s} \varphi_{a,s}(\sqrt[n]{a}) \right)B = B,$$

that is, $I_{[a]}^{n}D(\sqrt[n]{a})B = B$.

We will prove that $I_{[a]}^{n}D(\sqrt[n]{a}) = R$. By Lemma 1.9 we know that $I_{[a]}^{n}D(\sqrt[n]{a}) \subset R$, and $I_{[a]}^{n}D(\sqrt[n]{a})$ is an ideal of R. Suppose the contrary, i.e., $I_{[a]}^{n}D(\sqrt[n]{a}) \neq R$. Then there exists a prime ideal p of Spec R such that $I_{[a]}^{n}D(\sqrt[n]{a}) \subset p$. Since B is integral over R, we can take a prime ideal P of Spec B such that $P \cap R = p$. Then $I_{[a]}^{n}D(\sqrt[n]{a})B \subset P$. This is a contradiction.

Next we prove the general case. Set $R' = R[\omega]$ and $A' = R'[\alpha]$. Then $\alpha^{n} - a$ is a unit of A' because $\alpha^{n} - a$ is a unit of A. By the assumption (2), R' is a flat extension over R. Hence $I_{[a]}^{n}D(\sqrt[n]{a})R' = I_{R'[\alpha]}^{n}D(\sqrt[n]{a}) = R'$. Since R' is an integral extension of R and $I_{[a]}^{n}D(\sqrt[n]{a}) \subset R$, we see that $I_{[a]}^{n}D(\sqrt[n]{a}) = R$.

Theorem 1.16. Let R be an integral domain with quotient field K. Let a be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following four conditions hold:

1. α is an anti-integral element of degree d over R.
2. $R[\omega]$ is a flat extension over R.
3. $[K(\sqrt[n]{a}) : K] = n$.
4. $[K(\sqrt[n]{a})(\alpha) : K(\sqrt[n]{a})] = d$.

If $\alpha^{n} - a$ is a unit of $R[\alpha]$, then $R[\alpha]/R$ is a flat extension.

Proof. Since α is an anti-integral element of degree d over R, we have only to prove that $J_{[\alpha]} = R$ by [6, Proposition 2.6]. By the assumption that $\alpha^{n} - a$ is a unit of $R[\alpha]$, Theorem 1.15 implies that $I_{[\alpha]}^{n}D(\sqrt[n]{a}) = R$. Hence we have $J_{[\alpha]} = R$ by Lemma 1.9. So we get $J_{[\alpha]} = R$.

Remark 1.17. Under the assumptions in Theorem 1.16 (including the condition that $\alpha^{n} - a$ is a unit of $R[\alpha]$), we know that $I_{[\alpha]}$ is an invertible ideal of R because $R = J_{[\alpha]} = I_{[\alpha]}(1, \eta_{1}, \ldots, \eta_{d})$.
2. Ideals $I^n_\alpha D(\sqrt[n]\alpha)$ and J^n_α

We investigate the relation between $I^n_\alpha D(\sqrt[n]\alpha)$ and J^n_α. We know that $I^n_\alpha D(\sqrt[n]\alpha) \subseteq J^n_\alpha$ by Lemma 1.9. We will study what can occur under the condition that $I^n_\alpha D(\sqrt[n]\alpha) = J^n_\alpha$. We need the following lemma:

Lemma 2.1. ([1, Theorem 4]) Let R be an integral domain and α an anti-integral element over R. Let γ be a linear fractional transform of α. Then γ is also an anti-integral element over R and $J_{(\gamma)} = J_\alpha$. In particular, $J_{(\alpha - \alpha^{-1})} = J_\alpha$ for every element $a \in R$.

Remark 2.2. Though in [1, Theorem 4] we assume that R is Noetherian, we can delete the assumption that R is Noetherian because we don’t assume it except [1, Lemmas 2 and 3] by [2, Theorem 6], [11, Fact 2].

Note that $I_\alpha \neq (0)$ by the definition of I_α.

Proposition 2.3. Let R be an integral domain and α_i anti-integral elements of degree d_i over R for $i = 1, 2, \ldots, n$. Assume that $I_{(\alpha_i)}$ is a finitely generated ideal of R for $i = 1, 2, \ldots, n$. If $\prod_{i=1}^n I_{(\alpha_i)} = \prod_{i=1}^n J_{(\alpha_i)}$, then $I_{(\alpha_i)} = J_{(\alpha_i)} = R$ for $i = 1, 2, \ldots, n$.

Proof. Set
\[\varphi_{\alpha_i}(X) = X^{d_i} + \eta_1^{(i)} X^{d_i-1} + \cdots + \eta_{d_i}^{(i)}. \]
Then $J_{(\alpha_i)} = I_{(\alpha_i)}(1, \eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)})$. Since 1 is in $(1, \eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)})$ for each i, we have $\eta_j^{(i)} \in \prod_{i=1}^n (1, \eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)})$ for $j = 1, 2, \ldots, d_i$. Let c_1, \ldots, c_r be a system of generators of $\prod_{i=1}^n I_{(\alpha_i)}$. Since
\[\prod_{i=1}^n I_{(\alpha_i)} = \prod_{i=1}^n J_{(\alpha_i)}(1, \eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)}), \]
there exist elements $a_{11}, a_{12}, \ldots, a_{1r}, \ldots, a_{rr}$ of R such that
\[c_1 \eta_j^{(i)} = a_{11} c_1 + \cdots + a_{1r} c_r, \]
\[\cdots \]
\[a_{r1} c_1 + \cdots + a_{rr} c_r. \]
Hence
\[\begin{vmatrix} a_{11} - \eta_1^{(i)} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr} - \eta_j^{(i)} \end{vmatrix} = 0. \]
This implies that $\eta_j^{(i)}$ is integral over R for $j = 1, 2, \ldots, d_i$. Therefore $R[\eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)}]$ is integral over R. Since α_i is integral over $R[\eta_1^{(i)}, \ldots, \eta_{d_i}^{(i)}]$, we see that α_i is integral over R. By Lemma 1.4 we get $I_{(\alpha_i)} = R$ for $i = 1, 2, \ldots, n$. This shows that $\prod_{i=1}^n J_{(\alpha_i)} = \prod_{i=1}^n I_{(\alpha_i)} = R$. Then we see that $I_{(\alpha_i)} = J_{(\alpha_i)} = R$ for $i = 1, 2, \ldots, n$.
Proposition 2.4. Let R be an integral domain and α an anti-integral element over R. Set $A = R[\alpha]$ and assume that $I_{[\alpha]}$ is a finitely generated ideal of R. Then the following conditions are equivalent:

(i) There exists a positive integer n such that $I_{[\alpha]}^n = J_{[\alpha]}^n$.

(ii) A/R is both integral and flat extension.

Proof. (i) \Rightarrow (ii). Proposition 2.3 implies that $I_{[\alpha]} = J_{[\alpha]} = R$. By Lemma 4, [6, Proposition 2.6], A/R is integral and flat extension.

(ii) \Rightarrow (i). It is clear from $I_{[\alpha]} = R = J_{[\alpha]}$.

Remark 2.5. Let R be an integral domain and n a positive integer. Let a be an element of R. Let ω be a primitive n-th root of unity and assume that $\omega \in R$. If $I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = J_{[\alpha]}^n$, then $\alpha^n a \neq 0$.

Proof. Suppose that $\alpha^n a = 0$. Then there exists an integer k such that $0 \leq k \leq n - 1$ and $\alpha - \sqrt[n]{\alpha} \omega^k = 0$. Set $B = R[\sqrt[n]{\alpha}]$, then $I_{[\alpha]} B \varphi_{\alpha}(\sqrt[n]{\alpha} \omega^k) B = (0)$ and $J_{[\alpha]} B = B$ by Lemma 1.1 and Remark 1.3. Hence

\[
I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = \prod_{k=0}^{n-1} I_{[\alpha]} \varphi_{\alpha}(\sqrt[n]{\alpha} \omega^k) = (0)
\]

and $J_{[\alpha]} = R$ because B is an integral extension of R. Therefore $I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = (0) \subseteq R = J_{[\alpha]}$. This is a contradiction.

Proposition 2.6. Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Let a be an element of R. Assume that the following five conditions hold:

1. $\omega \in R$.
2. α is an anti-integral element of degree d over R.
3. $[K(\sqrt[n]{\alpha}) : K] = n$.
4. $[K(\sqrt[n]{\alpha}) \alpha : K(\sqrt[n]{\alpha})] = d$.
5. $I_{[\alpha]}$ is a finitely generated ideal of R.

Set $B = R[\sqrt[n]{\alpha}]$. If $I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = J_{[\alpha]}^n$, then $J_{[\alpha]} B = B$.

Proof. Note that $\alpha^n a \neq 0$ by Remark 2.5. Set $\gamma_k = (\alpha - \sqrt[n]{\alpha} \omega^k)^{-1}$ for $k = 0, 1, \ldots, n - 1$. Then we obtain $I_{[\alpha]} B \varphi_{\alpha}(\sqrt[n]{\alpha} \omega^k) = I_{B, [\gamma_k]}$ for $k = 0, 1, \ldots, n - 1$ by Lemmas 1.1 and 1.2. Since

\[
I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = \prod_{k=0}^{n-1} I_{[\alpha]} \varphi_{\alpha}(\sqrt[n]{\alpha} \omega^k),
\]

we see that $I_{[\alpha]}^n D(\sqrt[n]{\alpha}) B = \prod_{k=0}^{n-1} I_{B, [\gamma_k]}$. It follows from Lemmas 1.1 and 2.1 that $J_{[\alpha]} B = J_{B, [\gamma_k]}$ for $k = 0, 1, \ldots, n - 1$. Hence $I_{[\alpha]}^n D(\sqrt[n]{\alpha}) = J_{[\alpha]}^n$ means that $\prod_{k=0}^{n-1} I_{B, [\gamma_k]} = \prod_{k=0}^{n-1} J_{B, [\gamma_k]}$. By the assumption, $I_{[\alpha]}$ is a finitely generated ideal of R. Let b_1, \ldots, b_s
be a system of generators of $I_{[\alpha]}$. Then \(\{ b_1\varphi_\alpha(\sqrt[n]{\alpha}\omega^k), \ldots, b_n\varphi_\alpha(\sqrt[n]{\alpha}\omega^k) \} \) is a subset of B and it is a system of generators of $I_{[\alpha]}B\varphi_\alpha(\sqrt[n]{\alpha}\omega^k)$. Hence $I_{[\alpha]}B\varphi_\alpha(\sqrt[n]{\alpha}\omega^k) = I_{B,[\gamma_k]}$ is a finitely generated ideal of B for $k = 0, 1, \ldots, n - 1$. Then by Proposition 2.3, $I_{B,[\gamma_k]} = J_{B,[\gamma_k]} = B$ for $k = 0, 1, \ldots, n - 1$. Hence $J_{[\alpha]}B = J_{B,[\gamma_k]} = B$.

Theorem 2.7. Let R be an integral domain with quotient field K. Let α be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following five conditions hold:

1. α is an anti-integral element of degree d over R.
2. $R[\omega]$ is a flat extension over R.
3. $[K(\sqrt[n]{\alpha}) : K] = n$.
4. $[K(\sqrt[n]{\alpha})(\alpha) : K(\sqrt[n]{\alpha})] = d$.
5. $I_{[\alpha]}$ is a finitely generated ideal of R.

If $I_{[\alpha]}D(\sqrt[n]{\alpha}) = J^n_{[\alpha]}$, then $J_{[\alpha]} = R$.

Proof. Set $B = R[\sqrt[n]{\alpha}]$. First we will prove the case that ω is in R. Then $J_{[\alpha]}B = B$ by Proposition 2.6. This shows that $J_{[\alpha]} = R$ because B is an integral extension of R.

Next we will prove the general case. Set $R' = R[\omega]$ and $A' = R'[\alpha]$. Then the former case shows that $J_{[\alpha]}R' = J_{R'[\alpha]} = R'$. Since R' is an integral extension of R, we get $J_{[\alpha]} = R$.

Theorem 2.8. Let R be an integral domain with quotient field K. Let α be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following seven conditions hold:

1. α is an anti-integral element of degree d over R.
2. $R[\omega]$ is a flat extension over R.
3. $[K(\sqrt[n]{\alpha}) : K] = n$.
4. $[K(\sqrt[n]{\alpha})(\alpha) : K(\sqrt[n]{\alpha})] = d$.
5. $[K(\omega)(\sqrt[n]{\alpha}) : K(\omega)] = n$.
6. $[K(\omega)(\sqrt[n]{\alpha})\omega : K(\omega)(\sqrt[n]{\alpha})] = d$.
7. $I_{[\alpha]}$ is a finitely generated ideal of R.

Then the following conditions are equivalent:

1. $I_{[\alpha]}D(\sqrt[n]{\alpha}) = J^n_{[\alpha]}$.
2. $I_{[\alpha]}D(\sqrt[n]{\alpha}) = R$.
3. $\alpha^n - \alpha$ is a unit of $R[\alpha]$.

Proof. Equivalence (ii) ⇔ (iii) is proved by Theorem 1.15. We will prove the implication (i) ⇒ (ii). By Theorem 2.7 we have $J^n_{[\alpha]} = R$. Hence $I_{[\alpha]}D(\sqrt[n]{\alpha}) = R$. Next we will prove the implication (ii) ⇒ (i). Lemma 1.9 shows that $I^n_{[\alpha]}D(\sqrt[n]{\alpha}) \subset J^n_{[\alpha]}$. Therefore by the condition (ii), we get $I^n_{[\alpha]}D(\sqrt[n]{\alpha}) = R = J^n_{[\alpha]}$.

The converse of Theorem 2.7 is not true. We have an example that $J_{[\alpha]} = R$ but $I_{[\alpha]}\varphi_\alpha(\alpha) \not\subset J_{[\alpha]}$ as the following shows.
Example 2.9. Let $R = F[u,v]$ be a polynomial ring over a field F in two variables u and v. Let a be a root of $\varphi_a(X) = X^2 + (v/u)X + 1/u$. It is easily verified that $\varphi_a(X)$ is irreducible over the quotient field of R. Since R is a unique factorization domain, we can get $I[\alpha] = uR$. Furthermore, $J[\alpha] = I[\alpha](1,v/u,1/u) = uR(1,v/u,1/u) = (1,v) = R$. We will show that $I[\alpha] \varphi_a(a) \subseteq J[\alpha]$ for every non-zero element a of R. Assume that there exists a non-zero element a of R such that $I[\alpha] \varphi_a(a) = J[\alpha]$. Then there exists an element b of R such that $(ua^2 + va + 1)b = 1$ because $J[\alpha] = R$ and $I[\alpha] = uR$. This implies that $ua^2 + va + 1$ is a unit of R, hence, a unit of F. Since a is not zero, we can draw a contradiction by comparing the degrees of the both sides of the equation above.

Acknowledgments. We express our gratitude to the referee for improving our paper.

References