ANTI-INTEGRAL EXTENSIONS $\boldsymbol{R}[\boldsymbol{\alpha}] / \boldsymbol{R}$ AND INVERTIBILITY OF $\alpha^{n}-a$

KIYOSHI BABA AND KEN-ICHI YOSHIDA

Abstract

Let R be an integral domain and α an anti-integral element of degree d over R. In the paper [3] we give a condition for $\alpha^{2}-a$ to be a unit of $R[\alpha]$. In this paper we will generalize the result to an arbitrary positive integer n and give a condition, in terms of the ideal $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ of R, for $\alpha^{n}-a$ to be a unit of $R[\alpha]$.

1. Conditions of Invertibility of $\alpha^{n}-a$

Let R be an integral domain with quotient field K and $R[X]$ a polynomial ring over R in an indeterminate X. Let α be an element of an algebraic field extension of K and $\pi: R[X] \longrightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X)=\alpha$. Let $\varphi_{\alpha}(X)$ be the minimal polynomial of α over K with $\operatorname{deg} \varphi_{\alpha}(X)=d$ and write $\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d},\left(\eta_{1}, \ldots, \eta_{d} \in K\right)$. We will define $I_{[\alpha]}:=\bigcap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)$ and $J_{[\alpha]}:=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$ where $\left(R:_{R} \eta_{i}\right)=\left\{c \in R ; c \eta_{i} \in R\right\}$ and $\left(1, \eta_{1}, \ldots, \eta_{d}\right)$ is an R-module generated by $1, \eta_{1}, \ldots, \eta_{d}$. An element α is called an anti-integral element of degree d over R if

$$
\operatorname{Ker} \pi=I_{[\alpha]} \varphi_{\alpha}(X) R[X]
$$

We say that the extension $R[\alpha] / R$ is an anti-integral extension if α is an anti-integral element of degree d over R.

Our notation is standard and our general reference for unexplained terms is [5].
We express our gratitude to Prof. T. Sugatani for his helpful comments.
We will frequently use the following lemma throughout this paper:
Lemma 1.1. Let $R \subset S$ be a flat extension of integral domains. Let α be an element of an algebraic field extension of the quotient field of S.
(1) Set $I_{S,[\alpha]}=\bigcap_{i=1}^{d}\left(S:_{S} \eta_{i}\right)$ and $J_{S,[\alpha]}=I_{S,[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$ where $\left(S: S \eta_{i}\right)=$ $\left\{b \in S ; b \eta_{i} \in S\right\}$ and $\left(1, \eta_{1}, \ldots, \eta_{d}\right)$ is an S-module generated by $1, \eta_{1}, \ldots, \eta_{d}$. Then $I_{S,[\alpha]}=I_{[\alpha]} S$ and $J_{S,[\alpha]}=J_{[\alpha]} S$.
(2) If α is an anti-integral element of degree d over R, then α is also an anti-integral element of degree d over S.

Received November 26, 2001; revised November 14, 2002.
2000 Mathematics Subject Classification. Primary. 13B02, Secondary. 13A15.
Key words and phrases. Anti-integral element, cyclic determinant, denominator ideal.

Proof. (1) Since S is a flat extension over R, we have

$$
I_{S,[\alpha]}=\bigcap_{i=1}^{d}\left(S:_{S} \eta_{i}\right)=\bigcap_{i=1}^{d}\left(R:_{R} \eta_{i}\right) S=\left(\bigcap_{i=1}^{d}\left(R:_{R} \eta_{i}\right)\right) S=I_{[\alpha]} S
$$

and

$$
J_{S,[\alpha]}=I_{S,[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right) S=J_{[\alpha]} S
$$

(2) By tensoring S to the following exact sequence:

$$
0 \longrightarrow I_{[\alpha]} \varphi_{\alpha}(X) R[X] \longrightarrow R[X] \longrightarrow R[\alpha] \longrightarrow 0
$$

we have an exact sequence:

$$
0 \longrightarrow I_{[\alpha]} \varphi_{\alpha}(X) S[X] \longrightarrow S[X] \longrightarrow S[\alpha] \longrightarrow 0
$$

By (1), we know that $I_{[\alpha]} S=I_{S,[\alpha]}$. Hence α is also an anti-integral element of degree d over S.

We list some facts which will be used later for reference sake:
Lemma 1.2. ([10, Theorem 1] and [1, Theorem 4]) Let R be an integral domain and α an algebraic element over the quotient field of R. Let a be an element of R such that $\alpha-a$ is not zero. Then the following hold:
(1) $I_{\left[(\alpha-a)^{-1}\right]}=I_{[\alpha]} \varphi_{\alpha}(a)$.
(2) If α is an anti-integral element over R, then so is $(\alpha-a)^{-1}$.

Remark 1.3. If $\alpha-a=0$, then $\varphi_{\alpha}(X)=X-a$, and so $I_{[\alpha]} \varphi_{\alpha}(a)=(0)$ and $J_{[\alpha]}=R$. Hence $I_{[\alpha]} \varphi_{\alpha}(a) \subsetneq J_{[\alpha]}$. Especially, $I_{[\alpha]} \varphi_{\alpha}(a) \neq R$.

Lemma 1.4. ([6, Theorem 2.2] and [8, Lemma 8]) Let R be an integral domain and γ an anti-integral element over R. Then the following conditions are equivalent:
(i) γ is integral over R.
(ii) $I_{[\gamma]}=R$.

By making use of Lemmas 1.3 and 1.4 we have the following:
Lemma 1.5. (cf. [7, Theorem 6]) Let R be an integral domain and α an anti-integral element over R. Let a be an element of R. Then $\alpha-a$ is a unit of $R[\alpha]$ if and only if $I_{[\alpha]} \varphi_{\alpha}(a)=R$.

Proof. First we shall prove the 'only if' part. Since $\alpha-a$ is a unit of $R[\alpha]$, then there exist elements $f(X)$ of $R[X]$ and $g(X)$ of $I_{[\alpha]} R[X]$ such that $f(X)(X-a)-1=$ $g(X) \varphi_{\alpha}(X)$. Hence $g(a) \varphi_{\alpha}(a)=-1$. This means that $I_{[\alpha]} \varphi_{\alpha}(a)=R$.

Next we shall prove the 'if' part. By Remark 1.3, $\alpha-a$ is not zero. Therefore we get $I_{\left[(\alpha-a)^{-1}\right]}=R$ by Lemma 1.2 (1). Then Lemma 1.4 asserts that $(\alpha-a)^{-1}$ is integral over R. Therefore there exist elements c_{1}, \ldots, c_{n} of R such that

$$
\left((\alpha-a)^{-1}\right)^{n}+c_{1}\left((\alpha-a)^{-1}\right)^{n-1}+\cdots+c_{n}=0
$$

Hence $1=-\left(c_{1}+\cdots+c_{n}(\alpha-a)^{n-1}\right)(\alpha-a)$. This shows that $\alpha-a$ is a unit of $R[\alpha]$.
Let n be a positive integer and a an element of R. Assume that the following three conditions hold:
(1) α is an anti-integral element of degree d over R.
(2) $[K(\sqrt[n]{a}): K]=n$.
(3) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.

Set $B=R[\sqrt[n]{a}]$. By the condition (3), the minimal polynomial of α over $K(\sqrt[n]{a})$ coincides with $\varphi_{\alpha}(X)$. The condition (2) implies that B is a free R-module of rank n. Hence B is a flat extension over R. Therefore, by Lemma 1.1, $I_{B,[\alpha]}=I_{[\alpha]} B, J_{B,[\alpha]}=J_{[\alpha]} B$ and α is also an anti-integral element of degree d over B.

We give a condition for the element $\alpha^{n}-a$ to be a unit of $R[\alpha]$.
Theorem 1.6. Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Let a be an element of R. Assume that the following four conditioins hold:
(1) $\omega \in R$.
(2) α is an anti-integral element of degree d over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.

Set $A=R[\alpha]$ and $B=R[\sqrt[n]{a}]$. Then the following conditions are equivalent to each other:
(i) $\alpha^{n}-a$ is a unit of A.
(ii) $I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=B$ for $k=0, \ldots, n-1$.

Proof. (i) \Rightarrow (ii). Since

$$
\alpha^{n}-a=(\alpha-\sqrt[n]{a})(\alpha-\sqrt[n]{a} \omega) \cdots\left(\alpha-\sqrt[n]{a} \omega^{n-1}\right)
$$

we see that $\alpha-\sqrt[n]{a} \omega^{k}$ is a unit of $B[\alpha]$ for $k=0,1, \ldots, n-1$. Hence by Lemma 1.5 we get

$$
I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=B
$$

for $k=0,1, \ldots, n-1$.
(ii) \Rightarrow (i). By Lemma 1.5 we see that

$$
\alpha-\sqrt[n]{a} \omega^{k}
$$

is a unit of $B[\alpha]$ for $k=0,1, \ldots, n-1$. Hence $\alpha^{n}-a$ is also a unit of $B[\alpha]$. Since $\alpha^{n}-a$ is an element of A and $B[\alpha]$ is an integral extension of A, we know that $\alpha^{n}-a$ is a unit of A.

Recall that $\varphi_{\alpha}(X)=X^{d}+\eta_{1} X^{d-1}+\cdots+\eta_{d}$. Let s be an integer such that $0 \leq s \leq$ $n-1$. Then we define

$$
\varphi_{\alpha, s}(X)=\left(\sum \eta_{i} X^{d-i}\right) X^{-s}
$$

where $\eta_{0}=1$ and the sum is taken over i such that $0 \leq i \leq d$ and that the remainder of $d-i$ divided by n is s. Then it is easily verified:

$$
\varphi_{\alpha}(X)=\sum_{s=0}^{n-1} X^{s} \varphi_{\alpha, s}(X)
$$

and

$$
\varphi_{\alpha, s}(X) \in R\left[\eta_{1}, \ldots, \eta_{d}\right]\left[X^{n}\right]
$$

Set $\beta_{s}=(\sqrt[n]{a})^{s} \varphi_{\alpha, s}(\sqrt[n]{a})$ for $s=0,1, \ldots, n-1$. The cyclic determinant

$$
\left|\begin{array}{cccc}
\beta_{0} & \beta_{1} & \cdots & \beta_{n-1} \tag{1}\\
\beta_{n-1} & \beta_{0} & \cdots & \beta_{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{1} & \beta_{2} & \cdots & \beta_{0}
\end{array}\right|
$$

is denoted by $D(\sqrt[n]{a})$. Then

$$
D(\sqrt[n]{a})=\prod_{k=0}^{n-1}\left(\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})\right)
$$

For cyclic determinants, see [9, p. 91].
Example 1.7. Let R be an integral domain with quotient field K. Let α be an element of K. Let a be an element of R and n a positive integer. Then $D(\sqrt[n]{a})=$ $(-1)^{n}\left(\alpha^{n}-a\right)$. Hence, if $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$, then $\alpha^{n}-a$ is a unit of $R[\alpha]$.

Proof. Note that $\varphi_{\alpha}(X)=X-\alpha$. By the definition of $\varphi_{\alpha, s}(X)$, we get $\varphi_{\alpha, 0}(X)=$ $-\alpha, \varphi_{\alpha, 1}(X)=1, \varphi_{\alpha, 2}(X)=\cdots=\varphi_{\alpha, n-1}(X)=0$. Hence $\beta_{0}=-\alpha, \beta_{1}=\sqrt[n]{a}$, $\beta_{2}=\cdots=\beta_{n-1}=0$. By expanding the first column of the determinant $D(\sqrt[n]{a})$, we have $D(\sqrt[n]{a})=(-1)^{n}\left(\alpha^{n}-a\right)$.

Lemma 1.8. For every term $\pm \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}}$ of the cyclic determinant (1), the following equality holds:

$$
i_{1}+i_{2}+\cdots+i_{n} \equiv 0(\bmod n)
$$

Proof. Let $\left|a_{i j}\right|$ be the cyclic determinant defined by (1). Then there exists a permutation σ such that

$$
\beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}}=a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

Then

$$
i_{1} \equiv \sigma(1)-1(\bmod n), \ldots, i_{n} \equiv \sigma(n)-n(\bmod n)
$$

Hence

$$
\begin{aligned}
i_{1}+i_{2}+\cdots+i_{n} & \equiv \sigma(1)+\sigma(2)+\cdots \sigma(n)-(1+2+\cdots+n)(\bmod n) \\
& \equiv 0(\bmod n)
\end{aligned}
$$

Lemma 1.9. $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ is an ideal of R and $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset J_{[\alpha]}^{n}$.
Proof. First we shall show that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset R$. Let $\pm \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}}$ be a term of the cyclic determinant $D(\sqrt[n]{a})$. By Lemma 1.8 there exists a non-negative integer q such that $i_{1}+i_{2}+\cdots+i_{n}=n q$. Then

$$
\begin{aligned}
& \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}} \\
= & (\sqrt[n]{a})^{n q} \varphi_{\alpha, i_{1}}(\sqrt[n]{a}) \cdots \varphi_{\alpha, i_{n}}(\sqrt[n]{a}) \\
= & a^{q} \varphi_{\alpha, i_{1}}(\sqrt[n]{a}) \cdots \varphi_{\alpha, i_{n}}(\sqrt[n]{a})
\end{aligned}
$$

By the definitions of $I_{[\alpha]}$ and $\varphi_{\alpha, s}(X)$, we have

$$
I_{[\alpha]}^{n} \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}} \subset R
$$

Therefore $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset R$.
It is easily verified that $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ is an ideal of R. Furthermore,

$$
I_{[\alpha]}^{n} \beta_{i_{1}} \beta_{i_{2}} \cdots \beta_{i_{n}} \subset J_{[\alpha]}^{n}
$$

Hence $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset J_{[\alpha]}^{n}$.
Proposition 1.10. Let R be an integral domain with quotient field K. Let n be a positive integer and a an element of R. Let ω be a primitive n-th root of unity. Assume that the following six conditioins hold:
(1) α is an anti-integral element of degree d over R.
(2) $R[\omega]$ is a flat extension over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.
(5) $[K(\omega)(\sqrt[n]{a}): K(\omega)]=n$.
(6) $[K(\omega)(\sqrt[n]{a})(\alpha): K(\omega)(\sqrt[n]{a})]=d$.

Set $A=R[\alpha]$. If $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$, then $\alpha^{n}-a$ is a unit of A.
Proof. Set $B=R[\sqrt[n]{a}]$. First we will prove the case that ω is in R. The condition $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$ implies that

$$
I_{[\alpha]}^{n} D(\sqrt[n]{a}) B=B
$$

Hence

$$
I_{[\alpha]}^{n} \prod_{k=0}^{n-1}\left(\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})\right) B=B
$$

Since $I_{[\alpha]}\left(\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})\right) B$ is an ideal of B, we get

$$
I_{[\alpha]}\left(\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})\right) B=B
$$

Hence $I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=B$ for $k=0,1, \ldots, n-1$. Theorem 1.6 asserts that $\alpha^{n}-a$ is a unit of A.

Next we prove the general case. Set $R^{\prime}=R[\omega], A^{\prime}=R^{\prime}[\alpha]$. We have $I_{R^{\prime},[\alpha]}^{n} D(\sqrt[n]{a})=$ R^{\prime} because $I_{[\alpha]} R^{\prime} \subset I_{R^{\prime},[\alpha]}$ and $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$. Besides, α is an anti-integral element of degree d over R^{\prime} by Lemma 1.1 (2). Then the argument above implies that $\alpha^{n}-a$ is a unit of A^{\prime}. But $\alpha^{n}-a \in A$ and A^{\prime} is integral over A. Hence $\alpha^{n}-a$ is a unit of A.

Let n be a positive integer and ω a primitive n-th root of unity. Set $R^{\prime}=R[\omega]$. The case that R^{\prime} is not flat over R happens as the following example shows. Let \mathbf{Z} be the ring of integers and \mathbf{Q} the field of rational numbers.

Example 1.11. Set $i=\sqrt{-1}, R=\mathbf{Z}[\sqrt{2}, i]$ and $\omega=(1+i) / \sqrt{2}$. Then ω is a primitive 8 -th root of unity. Let K be the quotient field of R. Then $K=\mathbf{Q}(\sqrt{2}, i)$ and ω is in K. Hence $\varphi_{\omega}(X)=X-\omega$. We have the following:
(1) ω is not in R.
(2) $I_{[\omega]}=\{p+q \sqrt{2}+r i+s \sqrt{2} i ; p, q, r, s \in \mathbf{Z}$ and $p+r \in 2 \mathbf{Z}\}$.
(3) $R[\omega]$ is neither anti-integral nor flat over R.

Proof. Note that R is a free \mathbf{Z}-module with a basis $\{1, \sqrt{2}, i, \sqrt{2} i\}$ and $\{1, \sqrt{2}, i, \sqrt{2} i\}$ is linearly independent over \mathbf{Q}.
(1) If $\omega=\sqrt{2} / 2+\sqrt{2} i / 2$ is in R, there exist elements p, q, r, s of \mathbf{Z} such that $\omega=p+q \sqrt{2}+r i+s \sqrt{2} i$. Then $p=0, q=1 / 2, r=0$ and $s=1 / 2$. This is a contradiction.
(2) Set $I_{0}=\{p+q \sqrt{2}+r i+s \sqrt{2} i ; p, q, r, s \in \mathbf{Z}$ and $p+r \in 2 \mathbf{Z}\}$. Then it is easily proved that I_{0} is an ideal of R. Let x be an element of R. It is easily seen that $x \omega$ is in R if and only if x is in I_{0}. Hence $I_{[\omega]}=I_{0}$.
(3) Assume that ω is an anti-integral element over R. Then $I_{[\omega]}=R$ by Lemma 1.4 because ω is integral over R. The assertion (2) claims that 1 is not in $I_{[\omega]}$. This is a contradiction. Hence ω is not an anti-integral element over R.

Next we will assume that $R[\omega]$ is flat over R. Since $R[\omega]$ is integral over R and 1 is not in $I_{[\omega]}$, we have $I_{[\omega]} R[\omega] \neq R[\omega]$. On the other hand, by Lemma 1.1 (1), we see that $I_{[\omega]} R[\omega]=I_{R[\omega],[\omega]}$. Since ω is in $R[\omega]$, we get $I_{R[\omega],[\omega]}=R[\omega]$. This is absurd. Therefore $R[\omega]$ is not flat over R.

We can't delete the assumption (5) of Proposition 1.10. To show an example for it, we need the following lemmas:

Lemma 1.12. ([4, Theorem 49]) Let K be a field and a an element of K. Let m and n be relatively prime positive integers. Then $X^{m n}-a$ is irreducible over K if and only if both $X^{m}-a$ and $X^{n}-a$ are irreducible over K.

Lemma 1.13. ([4, Theorem 51]) Let K be a field and a an element of K. Let p be a prime number and n a positive integer. Assume that no p-th root of a is in K. Then:
(1) If p is odd, then $X^{p^{n}}-a$ is irreducible over K.
(2) If $p=2$ and the characteristic of K is 2 , then $X^{2^{n}}-a$ is irreducible over K.
(3) If $p=2, n \geqq 2$ and the characteristic of K is not 2 , then $X^{2^{n}}-a$ is irreducible over K if and only if $-4 a$ is not a fourth power in K.

Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Then $[K(\sqrt[n]{a}): K]=n$ does not imply $[K(\omega)(\sqrt[n]{a})$: $K(\omega)]=n$ as the following example shows:

Example 1.14. Set $n=12, K=\mathbf{Q}$ and $a=-\frac{9}{4}$. Let ω be a primitive 12 -th root of unity. Then the following two assertions hold:
(1) $X^{12}+9 / 4$ is irreducible over \mathbf{Q} and $[K(\sqrt[n]{a}): K]=n$
(2) $X^{12}+9 / 4$ is reducible over $\mathbf{Q}(\omega)$ and $[K(\omega)(\sqrt[n]{a}): K(\omega)]<n$.

Proof. (1) By Lemma 1.12, we have only to prove that both $X^{3}+9 / 4$ and $X^{4}+9 / 4$ are irreducible over \mathbf{Q}. Lemma 1.13 (1) implies that $X^{3}+9 / 4$ is irreducible over \mathbf{Q}. Since $-4 \times \frac{9}{4}=-9$ is not a fourth power in \mathbf{Q}, we see that $X^{4}+9 / 4$ is irreducible over \mathbf{Q} by Lemma 1.13 (3).
(2) Set $f=1-2 \omega^{2}$. Then we have

$$
X^{12}+\frac{9}{4}=\left(X^{6}+f X^{3}-\frac{3}{2}\right)\left(X^{6}-f X^{3}-\frac{3}{2}\right)
$$

and f is in $\mathbf{Q}(\omega)$. Hence $X^{12}+9 / 4$ is reducible over $\mathbf{Q}(\omega)$ and $[K(\omega)(\sqrt[n]{a}): K(\omega)]<n$.
Theorem 1.15. Let R be an integral domain with quotient field K. Let n be a positive integer and a an element of R. Let ω be a primitive n-th root of unity. Assume that the following six conditioins hold:
(1) α is an anti-integral element of degree d over R.
(2) $R[\omega]$ is a flat extension over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.
(5) $[K(\omega)(\sqrt[n]{a}): K(\omega)]=n$.
(6) $[K(\omega)(\sqrt[n]{a})(\alpha): K(\omega)(\sqrt[n]{a})]=d$.

Set $A=R[\alpha]$. Then the following conditions are equivalent to each other:
(i) $\alpha^{n}-a$ is a unit of A.
(ii) $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$.

Proof. (ii) \Rightarrow (i). It is clear from Proposition 1.10.
(i) \Rightarrow (ii). (In this part of the proof, we don't use the assumptions (5) and (6).) Set $B=R[\sqrt[n]{a}]$. First we will prove the case that ω is in R. By Theorem 1.6 we obtain

$$
I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=B
$$

for $k=0,1, \ldots, n-1$. Therefore

$$
I_{[\alpha]}^{n} \prod_{k=0}^{n-1} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=B
$$

Note that

$$
\begin{aligned}
\varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) & =\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}\left(\sqrt[n]{a} \omega^{k}\right) \\
& =\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})
\end{aligned}
$$

Hence

$$
I_{[\alpha]}^{n} \prod_{k=0}^{n-1}\left(\sum_{s=0}^{n-1}\left(\sqrt[n]{a} \omega^{k}\right)^{s} \varphi_{\alpha, s}(\sqrt[n]{a})\right) B=B
$$

that is, $I_{[\alpha]}^{n} D(\sqrt[n]{a}) B=B$.
We will prove that $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$. By Lemma 1.9 we know that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset R$, and $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ is an ideal of R. Suppose the contrary, i.e., $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \neq R$. Then there exists a prime ideal p of Spec R such that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset p$. Since B is integral over R, we can take a prime ideal P of $\operatorname{Spec} B$ such that $P \cap R=p$. Then $I_{[\alpha]}^{n} D(\sqrt[n]{a}) B \subset P$. This is a contradiction.

Next we prove the general case. Set $R^{\prime}=R[\omega]$ and $A^{\prime}=R^{\prime}[\alpha]$. Then $\alpha^{n}-a$ is a unit of A^{\prime} because $\alpha^{n}-a$ is a unit of A. By the assumption (2), R^{\prime} is a flat extension over R. Hence $I_{[\alpha]}^{n} D(\sqrt[n]{a}) R^{\prime}=I_{R^{\prime},[\alpha]}^{n} D(\sqrt[n]{a})=R^{\prime}$. Since R^{\prime} is an integral extension of R and $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset R$, we see that $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$.

Theorem 1.16. Let R be an integral domain with quotient field K. Let a be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following four conditioins hold:
(1) α is an anti-integral element of degree d over R.
(2) $R[\omega]$ is a flat extension over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.

If $\alpha^{n}-a$ is a unit of $R[\alpha]$, then $R[\alpha] / R$ is a flat extension.
Proof. Since α is an anti-integral element of degree d over R, we have only to prove that $J_{[\alpha]}=R$ by [6, Proposition 2.6]. By the assumption that $\alpha^{n}-a$ is a unit of $R[\alpha]$. Theorem 1.15 implies that $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$. Hence we have $J_{[\alpha]}^{n}=R$ by Lemma 1.9. So we get $J_{[\alpha]}=R$.

Remark 1.17. Under the assumptions in Theorem 1.16 (including the condition that $\alpha^{n}-a$ is a unit of $R[\alpha]$), we know that $I_{[\alpha]}$ is an invertible ideal of R because $R=J_{[\alpha]}=I_{[\alpha]}\left(1, \eta_{1}, \ldots, \eta_{d}\right)$.

2. Ideals $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ and $J_{[\alpha]}^{n}$

We investgate the relation between $I_{[\alpha]}^{n} D(\sqrt[n]{a})$ and $J_{[\alpha]}^{n}$. We know that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset$ $J_{[\alpha]}^{n}$ by Lemma 1.9. We will study what can occur under the condition that $I_{[\alpha]}^{n} D(\sqrt[n]{a})=$ $J_{[\alpha]}^{n}$. We need the following lemma:

Lemma 2.1. ([1, Theorem 4]) Let R be an integral domain and α an anti-integral element over R. Let γ be a linear fractional transform of α. Then γ is also an antiintegral element over R and $J_{[\gamma]}=J_{[\alpha]}$. In particular, $J_{\left[(\alpha-a)^{-1}\right]}=J_{[\alpha]}$ for every element $a \in R$.

Remark 2.2. Though in [1, Theorem 4] we assume that R is Noetherian, we can delete the assumption that R is Noetherian because we don't assume it except [1, Lemmas 2 and 3] and we don't need it in [1, Lemmas 2 and 3] by [2, Theorem 6], [11, Fact 2].

Note that $I_{[\alpha]} \neq(0)$ by the definition of $I_{[\alpha]}$.
Proposition 2.3. Let R be an integral domain and α_{i} anti-integral elements of degree d_{i} over R for $i=1,2, \ldots, n$. Assume that $I_{\left[\alpha_{i}\right]}$ is a finitely generated ideal of R for $i=1,2, \ldots, n$. If $\prod_{i=1}^{n} I_{\left[\alpha_{i}\right]}=\prod_{i=1}^{n} J_{\left[\alpha_{i}\right]}$, then $I_{\left[\alpha_{i}\right]}=J_{\left[\alpha_{i}\right]}=R$ for $i=1,2, \ldots, n$.

Proof. Set

$$
\varphi_{\alpha_{i}}(X)=X^{d_{i}}+\eta_{1}^{(i)} X^{d_{i}-1}+\cdots+\eta_{d_{i}}^{(i)} .
$$

Then $J_{\left[\alpha_{i}\right]}=I_{\left[\alpha_{i}\right]}\left(1, \eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right)$. Since 1 is in $\left(1, \eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right)$ for each i, we have $\eta_{j}^{(i)} \in \prod_{i=1}^{n}\left(1, \eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right)$ for $j=1,2, \ldots, d_{i}$. Let c_{1}, \ldots, c_{r} be a system of generators of $\prod_{i=1}^{n} I_{\left[\alpha_{i}\right]}$. Since

$$
\prod_{i=1}^{n} I_{\left[\alpha_{i}\right]}=\prod_{i=1}^{n} I_{\left[\alpha_{i}\right]}\left(1, \eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right)
$$

there exist elements $a_{11}, \ldots, a_{1 r}, \ldots, a_{r 1}, \ldots, a_{r r}$ of R such that

$$
\begin{aligned}
c_{1} \eta_{j}^{(i)}= & a_{11} c_{1}+\cdots+a_{1 r} c_{r} \\
& \ldots \\
c_{r} \eta_{j}^{(i)}= & a_{r 1} c_{1}+\cdots+a_{r r} c_{r}
\end{aligned}
$$

Hence

$$
\left|\begin{array}{ccc}
a_{11}-\eta_{j}^{(i)} & \cdots & a_{1 r} \\
\vdots & \ddots & \vdots \\
a_{r 1} & \cdots & a_{r r}-\eta_{j}^{(i)}
\end{array}\right|=0
$$

This implies that $\eta_{j}^{(i)}$ is integral over R for $j=1,2, \ldots, d_{i}$. Therefore $R\left[\eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right]$ is integral over R. Since α_{i} is integral over $R\left[\eta_{1}^{(i)}, \ldots, \eta_{d_{i}}^{(i)}\right.$, we see that α_{i} is integral over R. By Lemma 1.4 we get $I_{\left[\alpha_{i}\right]}=R$ for $i=1,2, \ldots, n$. This shows that $\prod_{i=1}^{n} J_{\left[\alpha_{i}\right]}=$ $\prod_{i=1}^{n} I_{\left[\alpha_{i}\right]}=R$. Then we see that $I_{\left[\alpha_{i}\right]}=J_{\left[\alpha_{i}\right]}=R$ for $i=1,2, \ldots, n$.

Proposition 2.4. Let R be an integral domain and α an anti-integral element over R. Set $A=R[\alpha]$ and assume that $I_{[\alpha]}$ is a finitely generated ideal of R. Then the following conditions are equivalent:
(i) There exists a positive integer n such that $I_{[\alpha]}^{n}=J_{[\alpha]}^{n}$.
(ii) A / R is both integral and flat extension.

Proof. (i) \Rightarrow (ii). Proposition 2.3 implies that $I_{[\alpha]}=J_{[\alpha]}=R$. By Lemma 4, $[6$, Proposition 2.6], A / R is integral and flat extension.
(ii) \Rightarrow (i). It is clear from $I_{[\alpha]}=R=J_{[\alpha]}$.

Remark 2.5. Let R be an integral domain and n a positive integer. Let a be an element of R. Let ω be a primitive n-th root of unity and assume that $\omega \in R$. If $I_{[\alpha]}^{n} D(\sqrt[n]{a})=J_{[\alpha]}^{n}$, then $\alpha^{n}-a \neq 0$.

Proof. Suppose that $\alpha^{n}-a=0$. Then there exists an integer k such that $0 \leq k \leq$ $n-1$ and $\alpha-\sqrt[n]{a} \omega^{k}=0$. Set $B=R[\sqrt[n]{a}]$, then $I_{[\alpha]} B \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right) B=(0)$ and $J_{[\alpha]} B=B$ by Lemma1.1 and Remark 1.3. Hence

$$
I_{[\alpha]}^{n} D(\sqrt[n]{a})=\prod_{k=0}^{n-1} I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)=(0)
$$

and $J_{[\alpha]}=R$ because B is an integral extension of R. Therefore $I_{[\alpha]}^{n} D(\sqrt[n]{a})=(0) \subsetneq R=$ $J_{[\alpha]}^{n}$. This is a contradiction.

Proposition 2.6. Let R be an integral domain with quotient field K. Let n be a positive integer and ω a primitive n-th root of unity. Let a be an element of R. Assume that the following five conditioins hold:
(1) $\omega \in R$.
(2) α is an anti-integral element of degree d over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.
(5) $I_{[\alpha]}$ is a finitely generated ideal of R.

Set $B=R[\sqrt[n]{a}]$. If $I_{[\alpha]}^{n} D(\sqrt[n]{a})=J_{[\alpha]}^{n}$, then $J_{[\alpha]} B=B$.
Proof. Note that $\alpha^{n}-a \neq 0$ by Remark 2.5. Set $\gamma_{k}=\left(\alpha-\sqrt[n]{a} \omega^{k}\right)^{-1}$ for $k=$ $0,1, \ldots, n-1$. Then we obtain $I_{[\alpha]} B \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)=I_{B,\left[\gamma_{k}\right]}$ for $k=0,1, \ldots, n-1$ by Lemmas 1.1 and 1.2. Since

$$
I_{[\alpha]}^{n} D(\sqrt[n]{a})=\prod_{k=0}^{n-1} I_{[\alpha]} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)
$$

we see that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) B=\prod_{k=0}^{n-1} I_{B,\left[\gamma_{k}\right]}$. It follows from Lemmas 1.1 and 2.1 that $J_{[\alpha]} B=J_{B,\left[\gamma_{k}\right]}$ for $k=0,1, \ldots, n-1$. Hence $I_{[\alpha]}^{n} D(\sqrt[n]{a})=J_{[\alpha]}^{n}$ means that $\prod_{k=0}^{n-1} I_{B,\left[\gamma_{k}\right]}=$ $\prod_{k=0}^{n-1} J_{B,\left[\gamma_{k}\right]}$. By the assumption, $I_{[\alpha]}$ is a finitely generated ideal of R. Let b_{1}, \ldots, b_{s}
be a system of generators of $I_{[\alpha]}$. Then $\left\{b_{1} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right), \ldots, b_{s} \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)\right\}$ is a subset of B and it is a system of generators of $I_{[\alpha]} B \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)$. Hence $I_{[\alpha]} B \varphi_{\alpha}\left(\sqrt[n]{a} \omega^{k}\right)=I_{B,\left[\gamma_{k}\right]}$ is a finitely generated ideal of B for $k=0,1, \ldots, n-1$. Then by Proposition 2.3, $I_{B,\left[\gamma_{k}\right]}=J_{B,\left[\gamma_{k}\right]}=B$ for $k=0,1, \ldots, n-1$. Hence $J_{[\alpha]} B=J_{B,\left[\gamma_{k}\right]}=B$.

Theorem 2.7. Let R be an integral domain with quotient field K. Let a be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following five conditioins hold:
(1) α is an anti-integral element of degree d over R.
(2) $R[\omega]$ is a flat extension over R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.
(5) $I_{[\alpha]}$ is a finitely generated ideal of R.

If $I_{[\alpha]}^{n} D(\sqrt[n]{a})=J_{[\alpha]}^{n}$, then $J_{[\alpha]}=R$.
Proof. Set $B=R[\sqrt[n]{a}]$. First we will prove the case that ω is in R. Then $J_{[\alpha]} B=B$ by Proposition 2.6. This shows that $J_{[\alpha]}=R$ because B is an integral extension of R.

Next we will prove the general case. Set $R^{\prime}=R[\omega]$ and $A^{\prime}=R^{\prime}[\alpha]$. Then the former case shows that $J_{[\alpha]} R^{\prime}=J_{R^{\prime},[\alpha]}=R^{\prime}$. Since R^{\prime} is an integral extension of R, we get $J_{[\alpha]}=R$.

Theorem 2.8. Let R be an integral domain with quotient field K. Let a be an element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume that the following seven conditioins hold:
(1) α is an anti-integral element of degree d over R.
(2) $R[\omega]$ is a flat extension of R.
(3) $[K(\sqrt[n]{a}): K]=n$.
(4) $[K(\sqrt[n]{a})(\alpha): K(\sqrt[n]{a})]=d$.
(5) $[K(\omega)(\sqrt[n]{a}): K(\omega)]=n$.
(6) $[K(\omega)(\sqrt[n]{a})(\alpha): K(\omega)(\sqrt[n]{a})]=d$.
(7) $I_{[\alpha]}$ is a finitely generated ideal of R.

Then the following conditions are equivalent:
(i) $I_{[\alpha]}^{n} D(\sqrt[n]{a})=J_{[\alpha]}^{n}$.
(ii) $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$.
(iii) $\alpha^{n}-a$ is a unit of $R[\alpha]$.

Proof. Equivalence (ii) \Leftrightarrow (iii) is proved by Theorem 1.15. We will prove the implication (i) \Rightarrow (ii). By Theorem 2.7 we have $J_{[\alpha]}^{n}=R$. Hence $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R$. Next we will prove the implication (ii) \Rightarrow (i). Lemma 1.9 shows that $I_{[\alpha]}^{n} D(\sqrt[n]{a}) \subset J_{[\alpha]}^{n}$. Therefore by the condition (ii), we get $I_{[\alpha]}^{n} D(\sqrt[n]{a})=R=J_{[\alpha]}^{n}$.

The converse of Theorem 2.7 is not true. We have an example that $J_{[\alpha]}=R$ but $I_{[\alpha]} \varphi_{\alpha}(a) \subsetneq J_{[\alpha]}$ as the following shows.

Example 2.9. Let $R=F[u, v]$ be a polynomial ring over a field F in two variables u and v. Let α be a root of $\varphi_{\alpha}(X)=X^{2}+(v / u) X+1 / u$. It is easily verified that $\varphi_{\alpha}(X)$ is irreducible over the quotient field of R. Since R is a unique factorization domain, we can get $I_{[\alpha]}=u R$. Furthermore, $J_{[\alpha]}=I_{[\alpha]}(1, v / u, 1 / u)=u R(1, v / u, 1 / u)=(1 . v)=R$. We will show that $I_{[\alpha]} \varphi_{\alpha}(a) \subsetneq J_{[\alpha]}$ for every non-zero element a of R. Assume that there exists a non-zero element a of R such that $I_{[\alpha]} \varphi_{\alpha}(a)=J_{[\alpha]}$. Then there exists an element b of R such that $\left(u a^{2}+v a+1\right) b=1$ because $J_{[\alpha]}=R$ and $I_{[\alpha]}=u R$. This implies that $u a^{2}+v a+1$ is a unit of R, hence, a unit of F. Since a is not zero, we can draw a contradiction by comparing the degrees of the both sides of the equation above.

Acknowledgments. We express our gratitude to the referee for improving our paper.

References

[1] M. Kanemitsu, K. Baba and K. Yoshida, Linear fractional transforms of an anti-integral element over a Noetherian domain, Bull. Aichi Univ. Educ. (Natural Science) 51(2002), 1-3.
[2] M. Kanemitsu and K. Yoshida, Some properties of extensions $R[\alpha] \cap R\left[\alpha^{-1}\right]$ over Noetherian domains R, Comm. Algebra 23(1995), 4501-4507.
[3] M. Kanemitsu, K. Baba and K. Yoshida, The invertibility of an element $\alpha^{2}-a$ of a superprimitive extension $R[\alpha] / R$ and a linear form of a Laurent extension $R\left[\alpha, \alpha^{-1}\right]$, Scienticae Mathematicae 3(2000), 371-376.
[4] I. Kaplansky, Fields and Rings (2nd ed.), Univ. of Chicago Press, Chicago, 1972.
[5] H. Matsumura, Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
[6] S. Oda, J. Sato and K. Yoshida, High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30(1993), 119-135.
[7] S. Oda and K. Yoshida, On units of anti-integral extension $R[\alpha]$ and conditions for a linear fractional transformation β of α to satisfy $R[\beta]=R[\alpha]$, submitted to Algebra Colloquium.
[8] N. Onoda, T. Sugatani and K. Yoshida, Some remarks on Richman simple extensions of an integral domain, to appear in Comm. Algebga.
[9] I. Satake, Linear Algebra, Marcel Dekker, Inc., New York, 1975.
[10] J. Sato, K. Baba and K. Yoshida, A note on denominator ideals of linear fractional transforms of an anti-integral element over an integral domain, to appear in Mathematical Journal of Ibaraki University.
[11] T. Sugatani and K. Yoshida, Note on extensions $R[\alpha]$ and $R[\alpha] \cap R\left[\alpha^{-1}\right]$ of an integral domain R, C. R. Math. Rep. Acad. Sci. Canada 19(1997), 21-23.

Kiyoshi Baba, Department of Mathematics, Faculty of Education and Welfare Science, Oita University, Oita 870-1192, Japan.
E-mail: baba@cc.oita-u.ac.jp
Department of Applied Mathematics, Okayama University of Science, Ridai-cho 1-1, Okayama 700-0005, Japan.
E-mail: yoshida@galaxy.xmath.ous.ac.jp

