
TAMKANG JOURNAL OF MATHEMATICS

Volume 35, Number 1, Spring 2004

ANTI-INTEGRAL EXTENSIONS R[α]/R

AND INVERTIBILITY OF αn
− a

KIYOSHI BABA AND KEN-ICHI YOSHIDA

Abstract. Let R be an integral domain and α an anti-integral element of degree d over R. In

the paper [3] we give a condition for α2 − a to be a unit of R[α]. In this paper we will generalize

the result to an arbitrary positive integer n and give a condition, in terms of the ideal In

[α]D( n
√

a)

of R, for αn − a to be a unit of R[α].

1. Conditions of Invertibility of αn
− a

Let R be an integral domain with quotient field K and R[X ] a polynomial ring

over R in an indeterminate X . Let α be an element of an algebraic field extension

of K and π : R[X ] −→ R[α] the R-algebra homomorphism defined by π(X) = α.

Let ϕα(X) be the minimal polynomial of α over K with deg ϕα(X) = d and write

ϕα(X) = Xd + η1X
d−1 + · · ·+ ηd, (η1, . . . , ηd ∈ K). We will define I[α] :=

⋂d

i=1(R :R ηi)

and J[α] := I[α](1, η1, . . . , ηd) where (R :R ηi) = {c ∈ R; cηi ∈ R} and (1, η1, . . . , ηd) is an

R-module generated by 1, η1, . . . , ηd. An element α is called an anti-integral element of

degree d over R if

Kerπ = I[α]ϕα(X)R[X ].

We say that the extension R[α]/R is an anti-integral extension if α is an anti-integral

element of degree d over R.

Our notation is standard and our general reference for unexplained terms is [5].

We express our gratitude to Prof. T. Sugatani for his helpful comments.

We will frequently use the following lemma throughout this paper:

Lemma 1.1. Let R ⊂ S be a flat extension of integral domains. Let α be an element

of an algebraic field extension of the quotient field of S.

(1) Set IS,[α] =
⋂d

i=1(S :S ηi) and JS,[α] = IS,[α](1, η1, . . . , ηd) where (S :S ηi) =

{b ∈ S; bηi ∈ S} and (1, η1, . . . , ηd) is an S-module generated by 1, η1, . . . , ηd. Then

IS,[α] = I[α]S and JS,[α] = J[α]S.

(2) If α is an anti-integral element of degree d over R, then α is also an anti-integral

element of degree d over S.
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Proof. (1) Since S is a flat extension over R, we have

IS,[α] =

d
⋂

i=1

(S :S ηi) =

d
⋂

i=1

(R :R ηi)S = (

d
⋂

i=1

(R :R ηi))S = I[α]S

and
JS,[α] = IS,[α](1, η1, . . . , ηd) = I[α](1, η1, . . . , ηd)S = J[α]S.

(2) By tensoring S to the following exact sequence:

0 −→ I[α]ϕα(X)R[X ] −→ R[X ] −→ R[α] −→ 0,

we have an exact sequence:

0 −→ I[α]ϕα(X)S[X ] −→ S[X ] −→ S[α] −→ 0,

By (1), we know that I[α]S = IS,[α]. Hence α is also an anti-integral element of degree d
over S.

We list some facts which will be used later for reference sake:

Lemma 1.2. ([10, Theorem 1] and [1, Theorem 4]) Let R be an integral domain and

α an algebraic element over the quotient field of R. Let a be an element of R such that

α − a is not zero. Then the following hold:

(1) I[(α−a)−1] = I[α]ϕα(a).
(2) If α is an anti-integral element over R, then so is (α − a)−1.

Remark 1.3. If α−a = 0, then ϕα(X) = X−a, and so I[α]ϕα(a) = (0) and J[α] = R.
Hence I[α]ϕα(a) ( J[α]. Especially, I[α]ϕα(a) 6= R.

Lemma 1.4. ([6, Theorem 2.2] and [8, Lemma 8]) Let R be an integral domain and

γ an anti-integral element over R. Then the following conditions are equivalent:

(i) γ is integral over R.
(ii) I[γ] = R.

By making use of Lemmas 1.3 and 1.4 we have the following:

Lemma 1.5. (cf. [7, Theorem 6]) Let R be an integral domain and α an anti-integral

element over R. Let a be an element of R. Then α − a is a unit of R[α] if and only if

I[α]ϕα(a) = R.

Proof. First we shall prove the ‘only if’ part. Since α − a is a unit of R[α], then
there exist elements f(X) of R[X ] and g(X) of I[α]R[X ] such that f(X)(X − a) − 1 =
g(X)ϕα(X). Hence g(a)ϕα(a) = −1. This means that I[α]ϕα(a) = R.

Next we shall prove the ‘if’ part. By Remark 1.3, α − a is not zero. Therefore we
get I[(α−a)−1] = R by Lemma 1.2 (1). Then Lemma 1.4 asserts that (α− a)−1 is integral
over R. Therefore there exist elements c1, . . . , cn of R such that

((α − a)−1)n + c1((α − a)−1)n−1 + · · · + cn = 0.
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Hence 1 = −(c1 + · · · + cn(α − a)n−1)(α − a). This shows that α − a is a unit of R[α].

Let n be a positive integer and a an element of R. Assume that the following three

conditions hold:

(1) α is an anti-integral element of degree d over R.

(2) [K( n
√

a) : K] = n.

(3) [K( n
√

a)(α) : K( n
√

a)] = d.

Set B = R[ n
√

a]. By the condition (3), the minimal polynomial of α over K( n
√

a) coincides

with ϕα(X). The condition (2) implies that B is a free R-module of rank n. Hence B is

a flat extension over R. Therefore, by Lemma 1.1, IB,[α] = I[α]B, JB,[α] = J[α]B and α

is also an anti-integral element of degree d over B.

We give a condition for the element αn − a to be a unit of R[α].

Theorem 1.6. Let R be an integral domain with quotient field K. Let n be a positive

integer and ω a primitive n-th root of unity. Let a be an element of R. Assume that the

following four conditioins hold:

(1) ω ∈ R.

(2) α is an anti-integral element of degree d over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.

Set A = R[α] and B = R[ n
√

a]. Then the following conditions are equivalent to each

other:

(i) αn − a is a unit of A.

(ii) I[α]ϕα( n
√

a ωk)B = B for k = 0, . . . , n − 1.

Proof. (i) ⇒ (ii). Since

αn − a = (α − n
√

a)(α − n
√

a ω) · · · (α − n
√

aωn−1),

we see that α − n
√

a ωk is a unit of B[α] for k = 0, 1, . . . , n − 1. Hence by Lemma 1.5 we

get

I[α]ϕα( n
√

a ωk)B = B

for k = 0, 1, . . . , n − 1.

(ii) ⇒ (i). By Lemma 1.5 we see that

α − n
√

a ωk

is a unit of B[α] for k = 0, 1, . . . , n− 1. Hence αn − a is also a unit of B[α]. Since αn − a

is an element of A and B[α] is an integral extension of A, we know that αn − a is a unit

of A.

Recall that ϕα(X) = Xd + η1X
d−1 + · · ·+ ηd. Let s be an integer such that 0 ≤ s ≤

n − 1. Then we define

ϕα,s(X) = (
∑

ηiX
d−i)X−s
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where η0 = 1 and the sum is taken over i such that 0 ≤ i ≤ d and that the remainder of

d − i divided by n is s. Then it is easily verified:

ϕα(X) =

n−1
∑

s=0

Xsϕα,s(X)

and

ϕα,s(X) ∈ R[η1, . . . , ηd][X
n].

Set βs = ( n
√

a)sϕα,s( n
√

a) for s = 0, 1, . . . , n − 1. The cyclic determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 β1 · · · βn−1

βn−1 β0 · · · βn−2

...
...

. . .
...

β1 β2 · · · β0

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1)

is denoted by D( n
√

a). Then

D( n
√

a) =

n−1
∏

k=0

(

n−1
∑

s=0

( n
√

aωk)sϕα,s(
n
√

a)

)

.

For cyclic determinants, see [9, p. 91].

Example 1.7. Let R be an integral domain with quotient field K. Let α be an

element of K. Let a be an element of R and n a positive integer. Then D( n
√

a) =

(−1)n(αn − a). Hence, if In
[α]D( n

√
a) = R, then αn − a is a unit of R[α].

Proof. Note that ϕα(X) = X − α. By the definition of ϕα,s(X), we get ϕα,0(X) =

−α, ϕα,1(X) = 1, ϕα,2(X) = · · · = ϕα,n−1(X) = 0. Hence β0 = −α, β1 = n
√

a,

β2 = · · · = βn−1 = 0. By expanding the first column of the determinant D( n
√

a), we have

D( n
√

a) = (−1)n(αn − a).

Lemma 1.8. For every term ±βi1βi2 · · ·βin
of the cyclic determinant (1), the fol-

lowing equality holds:

i1 + i2 + · · · + in ≡ 0 (mod n).

Proof. Let |aij | be the cyclic determinant defined by (1). Then there exists a

permutation σ such that

βi1βi2 · · ·βin
= a1σ(1)a2σ(2) · · · anσ(n).

Then

i1 ≡ σ(1) − 1 (modn), . . . , in ≡ σ(n) − n (mod n).
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Hence

i1 + i2 + · · · + in ≡ σ(1) + σ(2) + · · ·σ(n) − (1 + 2 + · · · + n) (modn)

≡ 0 (modn).

Lemma 1.9. In
[α]D( n

√
a) is an ideal of R and In

[α]D( n
√

a) ⊂ Jn
[α].

Proof. First we shall show that In
[α]D( n

√
a) ⊂ R. Let ±βi1βi2 · · ·βin

be a term of

the cyclic determinant D( n
√

a). By Lemma 1.8 there exists a non-negative integer q such

that i1 + i2 + · · · + in = nq. Then

βi1βi2 · · ·βin

= ( n
√

a)nqϕα,i1(
n
√

a) · · ·ϕα,in
( n
√

a)

= aqϕα,i1(
n
√

a) · · ·ϕα,in
( n
√

a).

By the definitions of I[α] and ϕα,s(X), we have

In
[α]βi1βi2 · · ·βin

⊂ R.

Therefore In
[α]D( n

√
a) ⊂ R.

It is easily verified that In
[α]D( n

√
a) is an ideal of R. Furthermore,

In
[α]βi1βi2 · · ·βin

⊂ Jn
[α].

Hence In
[α]D( n

√
a) ⊂ Jn

[α].

Proposition 1.10. Let R be an integral domain with quotient field K. Let n be a

positive integer and a an element of R. Let ω be a primitive n-th root of unity. Assume

that the following six conditioins hold:

(1) α is an anti-integral element of degree d over R.

(2) R[ω] is a flat extension over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.
(5) [K(ω)( n

√
a) : K(ω)] = n.

(6) [K(ω)( n
√

a)(α) : K(ω)( n
√

a)] = d.
Set A = R[α]. If In

[α]D( n
√

a) = R, then αn − a is a unit of A.

Proof. Set B = R[ n
√

a]. First we will prove the case that ω is in R. The condition

In
[α]D( n

√
a) = R implies that

In
[α]D( n

√
a)B = B.

Hence

In
[α]

n−1
∏

k=0

(

n−1
∑

s=0

( n
√

a ωk)sϕα,s(
n
√

a)

)

B = B.
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Since I[α](
∑n−1

s=0 ( n
√

a ωk)sϕα,s( n
√

a))B is an ideal of B, we get

I[α]

(

n−1
∑

s=0

( n
√

a ωk)sϕα,s(
n
√

a)

)

B = B.

Hence I[α]ϕα( n
√

a ωk)B = B for k = 0, 1, . . . , n− 1. Theorem 1.6 asserts that αn − a is a
unit of A.

Next we prove the general case. Set R′ = R[ω], A′ = R′[α]. We have In
R′,[α]D( n

√
a) =

R′ because I[α]R
′ ⊂ IR′,[α] and In

[α]D( n
√

a) = R. Besides, α is an anti-integral element of

degree d over R
′

by Lemma 1.1 (2). Then the argument above implies that αn − a is a
unit of A′. But αn − a ∈ A and A′ is integral over A. Hence αn − a is a unit of A.

Let n be a positive integer and ω a primitive n-th root of unity. Set R′ = R[ω]. The
case that R′ is not flat over R happens as the following example shows. Let Z be the
ring of integers and Q the field of rational numbers.

Example 1.11. Set i =
√
−1, R = Z[

√
2, i] and ω = (1 + i)/

√
2. Then ω is a

primitive 8-th root of unity. Let K be the quotient field of R. Then K = Q(
√

2, i) and
ω is in K. Hence ϕω(X) = X − ω. We have the following:

(1) ω is not in R.
(2) I[ω] = {p + q

√
2 + ri + s

√
2i; p, q, r, s ∈ Z and p + r ∈ 2Z}.

(3) R[ω] is neither anti-integral nor flat over R.

Proof. Note that R is a free Z-module with a basis {1,
√

2, i,
√

2i} and {1,
√

2, i,
√

2i}
is linearly independent over Q.

(1) If ω =
√

2/2 +
√

2i/2 is in R, there exist elements p, q, r, s of Z such that
ω = p + q

√
2 + ri + s

√
2i. Then p = 0, q = 1/2, r = 0 and s = 1/2. This is a

contradiction.
(2) Set I0 = {p + q

√
2 + ri + s

√
2i; p, q, r, s ∈ Z and p + r ∈ 2Z }. Then it is easily

proved that I0 is an ideal of R. Let x be an element of R. It is easily seen that xω is in
R if and only if x is in I0. Hence I[ω] = I0.

(3) Assume that ω is an anti-integral element over R. Then I[ω] = R by Lemma 1.4
because ω is integral over R. The assertion (2) claims that 1 is not in I[ω]. This is a
contradiction. Hence ω is not an anti-integral element over R.

Next we will assume that R[ω] is flat over R. Since R[ω] is integral over R and 1 is
not in I[ω], we have I[ω]R[ω] 6= R[ω]. On the other hand, by Lemma 1.1 (1), we see that
I[ω]R[ω] = IR[ω],[ω]. Since ω is in R[ω], we get IR[ω],[ω] = R[ω]. This is absurd. Therefore
R[ω] is not flat over R.

We can’t delete the assumption (5) of Proposition 1.10. To show an example for it,
we need the following lemmas:

Lemma 1.12. ([4, Theorem 49]) Let K be a field and a an element of K. Let m and

n be relatively prime positive integers. Then Xmn − a is irreducible over K if and only

if both Xm − a and Xn − a are irreducible over K.
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Lemma 1.13. ([4, Theorem 51]) Let K be a field and a an element of K. Let p be

a prime number and n a positive integer. Assume that no p-th root of a is in K. Then:

(1) If p is odd, then Xpn − a is irreducible over K.

(2) If p = 2 and the characteristic of K is 2, then X2n − a is irreducible over K.

(3) If p = 2, n ≧ 2 and the characteristic of K is not 2, then X2n − a is irreducible

over K if and only if −4a is not a fourth power in K.

Let R be an integral domain with quotient field K. Let n be a positive integer and

ω a primitive n-th root of unity. Then [K( n
√

a) : K] = n does not imply [K(ω)( n
√

a) :

K(ω)] = n as the following example shows:

Example 1.14. Set n = 12, K = Q and a = − 9
4 . Let ω be a primitive 12-th root of

unity. Then the following two assertions hold:

(1) X12 + 9/4 is irreducible over Q and [K( n
√

a) : K] = n

(2) X12 + 9/4 is reducible over Q(ω) and [K(ω)( n
√

a) : K(ω)] < n.

Proof. (1) By Lemma 1.12, we have only to prove that both X3 +9/4 and X4 +9/4

are irreducible over Q. Lemma 1.13 (1) implies that X3 +9/4 is irreducible over Q. Since

−4 × 9
4 = −9 is not a fourth power in Q, we see that X4 + 9/4 is irreducible over Q by

Lemma 1.13 (3).

(2) Set f = 1 − 2ω2. Then we have

X12 +
9

4
=

(

X6 + fX3 − 3

2

)(

X6 − fX3 − 3

2

)

and f is in Q(ω). Hence X12 + 9/4 is reducible over Q(ω) and [K(ω)( n
√

a) : K(ω)] < n.

Theorem 1.15. Let R be an integral domain with quotient field K. Let n be a

positive integer and a an element of R. Let ω be a primitive n-th root of unity. Assume

that the following six conditioins hold:

(1) α is an anti-integral element of degree d over R.

(2) R[ω] is a flat extension over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.

(5) [K(ω)( n
√

a) : K(ω)] = n.

(6) [K(ω)( n
√

a)(α) : K(ω)( n
√

a)] = d.

Set A = R[α]. Then the following conditions are equivalent to each other:

(i) αn − a is a unit of A.

(ii) In
[α]D( n

√
a) = R.

Proof. (ii) ⇒ (i). It is clear from Proposition 1.10.

(i) ⇒ (ii). (In this part of the proof, we don’t use the assumptions (5) and (6).) Set

B = R[ n
√

a]. First we will prove the case that ω is in R. By Theorem 1.6 we obtain

I[α]ϕα( n
√

a ωk)B = B
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for k = 0, 1, . . . , n − 1. Therefore

In
[α]

n−1
∏

k=0

ϕα( n
√

aωk)B = B.

Note that

ϕα( n
√

aωk) =
n−1
∑

s=0

( n
√

a ωk)sϕα,s(
n
√

aωk)

=
n−1
∑

s=0

( n
√

a ωk)sϕα,s(
n
√

a).

Hence

In
[α]

n−1
∏

k=0

(

n−1
∑

s=0

( n
√

a ωk)sϕα,s(
n
√

a)

)

B = B,

that is, In
[α]D( n

√
a)B = B.

We will prove that In
[α]D( n

√
a) = R. By Lemma 1.9 we know that In

[α]D( n
√

a) ⊂ R,

and In
[α]D( n

√
a) is an ideal of R. Suppose the contrary, i.e., In

[α]D( n
√

a) 6= R. Then there

exists a prime ideal p of Spec R such that In
[α]D( n

√
a) ⊂ p. Since B is integral over R, we

can take a prime ideal P of Spec B such that P ∩ R = p. Then In
[α]D( n

√
a)B ⊂ P . This

is a contradiction.
Next we prove the general case. Set R′ = R[ω] and A′ = R′[α]. Then αn − a is a unit

of A′ because αn − a is a unit of A. By the assumption (2), R′ is a flat extension over
R. Hence In

[α]D( n
√

a)R′ = In
R′,[α]D( n

√
a) = R′. Since R′ is an integral extension of R and

In
[α]D( n

√
a) ⊂ R, we see that In

[α]D( n
√

a) = R.

Theorem 1.16. Let R be an integral domain with quotient field K. Let a be an

element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume

that the following four conditioins hold:

(1) α is an anti-integral element of degree d over R.

(2) R[ω] is a flat extension over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.
If αn − a is a unit of R[α], then R[α]/R is a flat extension.

Proof. Since α is an anti-integral element of degree d over R, we have only to prove
that J[α] = R by [6, Proposition 2.6]. By the assumption that αn − a is a unit of R[α].
Theorem 1.15 implies that In

[α]D( n
√

a) = R. Hence we have Jn
[α] = R by Lemma 1.9. So

we get J[α] = R.

Remark 1.17. Under the assumptions in Theorem 1.16 (including the condition
that αn − a is a unit of R[α]), we know that I[α] is an invertible ideal of R because
R = J[α] = I[α](1, η1, . . . , ηd).
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2. Ideals In

[α]D( n

√

a) and Jn

[α]

We investgate the relation between In
[α]D( n

√
a) and Jn

[α]. We know that In
[α]D( n

√
a) ⊂

Jn
[α] by Lemma 1.9. We will study what can occur under the condition that In

[α]D( n
√

a) =
Jn

[α]. We need the following lemma:

Lemma 2.1. ([1, Theorem 4]) Let R be an integral domain and α an anti-integral

element over R. Let γ be a linear fractional transform of α. Then γ is also an anti-

integral element over R and J[γ] = J[α]. In particular, J[(α−a)−1] = J[α] for every element

a ∈ R.

Remark 2.2. Though in [1, Theorem 4] we assume that R is Noetherian, we can
delete the assumption that R is Noetherian because we don’t assume it except [1, Lemmas
2 and 3] and we don’t need it in [1, Lemmas 2 and 3] by [2, Theorem 6], [11, Fact 2].

Note that I[α] 6= (0) by the definition of I[α].

Proposition 2.3. Let R be an integral domain and αi anti-integral elements of

degree di over R for i = 1, 2, . . . , n. Assume that I[αi] is a finitely generated ideal of R
for i = 1, 2, . . . , n. If

∏n
i=1 I[αi] =

∏n
i=1 J[αi], then I[αi] = J[αi] = R for i = 1, 2, . . . , n.

Proof. Set
ϕαi

(X) = Xdi + η
(i)
1 Xdi−1 + · · · + η

(i)
di

.

Then J[αi] = I[αi](1, η
(i)
1 , . . . , η

(i)
di

). Since 1 is in (1, η
(i)
1 , . . . , η

(i)
di

) for each i, we have

η
(i)
j ∈ ∏n

i=1(1, η
(i)
1 , . . . , η

(i)
di

) for j = 1, 2, . . . , di. Let c1, . . . , cr be a system of generators
of
∏n

i=1 I[αi]. Since
n
∏

i=1

I[αi] =

n
∏

i=1

I[αi](1, η
(i)
1 , . . . , η

(i)
di

),

there exist elements a11, . . . , a1r, . . . , ar1, . . . , arr of R such that

c1η
(i)
j = a11c1 + · · · + a1rcr,

· · ·
crη

(i)
j = ar1c1 + · · · + arrcr.

Hence
∣

∣

∣

∣

∣

∣

∣

∣

a11 − η
(i)
j · · · a1r

...
. . .

...

ar1 · · · arr − η
(i)
j

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

This implies that η
(i)
j is integral over R for j = 1, 2, . . . , di. Therefore R[η

(i)
1 , . . . , η

(i)
di

] is

integral over R. Since αi is integral over R[η
(i)
1 , . . . , η

(i)
di

], we see that αi is integral over
R. By Lemma 1.4 we get I[αi] = R for i = 1, 2, . . . , n. This shows that

∏n

i=1 J[αi] =
∏n

i=1 I[αi] = R. Then we see that I[αi] = J[αi] = R for i = 1, 2, . . . , n.
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Proposition 2.4. Let R be an integral domain and α an anti-integral element over

R. Set A = R[α] and assume that I[α] is a finitely generated ideal of R. Then the

following conditions are equivalent:

(i) There exists a positive integer n such that In
[α] = Jn

[α].

(ii) A/R is both integral and flat extension.

Proof. (i) ⇒ (ii). Proposition 2.3 implies that I[α] = J[α] = R. By Lemma 4, [6,
Proposition 2.6], A/R is integral and flat extension.

(ii) ⇒ (i). It is clear from I[α] = R = J[α].

Remark 2.5. Let R be an integral domain and n a positive integer. Let a be an
element of R. Let ω be a primitive n-th root of unity and assume that ω ∈ R. If
In
[α]D( n

√
a) = Jn

[α], then αn − a 6= 0.

Proof. Suppose that αn − a = 0. Then there exists an integer k such that 0 ≤ k ≤
n− 1 and α− n

√
a ωk = 0. Set B = R[ n

√
a], then I[α]Bϕα( n

√
aωk)B = (0) and J[α]B = B

by Lemma1.1 and Remark 1.3. Hence

In
[α]D( n

√
a) =

n−1
∏

k=0

I[α]ϕα( n
√

aωk) = (0)

and J[α] = R because B is an integral extension of R. Therefore In
[α]D( n

√
a) = (0) ( R =

Jn
[α]. This is a contradiction.

Proposition 2.6. Let R be an integral domain with quotient field K. Let n be a

positive integer and ω a primitive n-th root of unity. Let a be an element of R. Assume

that the following five conditioins hold:

(1) ω ∈ R.

(2) α is an anti-integral element of degree d over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.
(5) I[α] is a finitely generated ideal of R.

Set B = R[ n
√

a]. If In
[α]D( n

√
a) = Jn

[α], then J[α]B = B.

Proof. Note that αn − a 6= 0 by Remark 2.5. Set γk = (α − n
√

aωk)−1 for k =
0, 1, . . . , n − 1. Then we obtain I[α]Bϕα( n

√
aωk) = IB,[γk] for k = 0, 1, . . . , n − 1 by

Lemmas 1.1 and 1.2. Since

In
[α]D( n

√
a) =

n−1
∏

k=0

I[α]ϕα( n
√

a ωk),

we see that In
[α]D( n

√
a)B =

∏n−1
k=0 IB,[γk]. It follows from Lemmas 1.1 and 2.1 that

J[α]B = JB,[γk] for k = 0, 1, . . . , n−1. Hence In
[α]D( n

√
a) = Jn

[α] means that
∏n−1

k=0 IB,[γk] =
∏n−1

k=0 JB,[γk]. By the assumption, I[α] is a finitely generated ideal of R. Let b1, . . . , bs
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be a system of generators of I[α]. Then {b1ϕα( n
√

a ωk), . . . , bsϕα( n
√

a ωk)} is a subset of

B and it is a system of generators of I[α]Bϕα( n
√

a ωk). Hence I[α]Bϕα( n
√

aωk) = IB,[γk]

is a finitely generated ideal of B for k = 0, 1, . . . , n − 1. Then by Proposition 2.3,

IB,[γk] = JB,[γk] = B for k = 0, 1, . . . , n − 1. Hence J[α]B = JB,[γk] = B.

Theorem 2.7. Let R be an integral domain with quotient field K. Let a be an

element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume

that the following five conditioins hold:

(1) α is an anti-integral element of degree d over R.

(2) R[ω] is a flat extension over R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.

(5) I[α] is a finitely generated ideal of R.

If In
[α]D( n

√
a) = Jn

[α], then J[α] = R.

Proof. Set B = R[ n
√

a]. First we will prove the case that ω is in R. Then J[α]B = B

by Proposition 2.6. This shows that J[α] = R because B is an integral extension of R.

Next we will prove the general case. Set R′ = R[ω] and A′ = R′[α]. Then the former

case shows that J[α]R
′ = JR′,[α] = R′. Since R′ is an integral extension of R, we get

J[α] = R.

Theorem 2.8. Let R be an integral domain with quotient field K. Let a be an

element of R and n a positive integer. Let ω be a primitive n-th root of unity. Assume

that the following seven conditioins hold:

(1) α is an anti-integral element of degree d over R.

(2) R[ω] is a flat extension of R.

(3) [K( n
√

a) : K] = n.

(4) [K( n
√

a)(α) : K( n
√

a)] = d.

(5) [K(ω)( n
√

a) : K(ω)] = n.

(6) [K(ω)( n
√

a)(α) : K(ω)( n
√

a)] = d.

(7) I[α] is a finitely generated ideal of R.

Then the following conditions are equivalent:

(i) In
[α]D( n

√
a) = Jn

[α].

(ii) In
[α]D( n

√
a) = R.

(iii) αn − a is a unit of R[α].

Proof. Equivalence (ii) ⇔ (iii) is proved by Theorem 1.15. We will prove the

implication (i) ⇒ (ii). By Theorem 2.7 we have Jn
[α] = R. Hence In

[α]D( n
√

a) = R.

Next we will prove the implication (ii) ⇒ (i). Lemma 1.9 shows that In
[α]D( n

√
a) ⊂ Jn

[α].

Therefore by the condition (ii), we get In
[α]D( n

√
a) = R = Jn

[α].

The converse of Theorem 2.7 is not true. We have an example that J[α] = R but

I[α]ϕα(a) ( J[α] as the following shows.
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Example 2.9. Let R = F [u, v] be a polynomial ring over a field F in two variables u
and v. Let α be a root of ϕα(X) = X2 + (v/u)X + 1/u. It is easily verified that ϕα(X)
is irreducible over the quotient field of R. Since R is a unique factorization domain, we
can get I[α] = uR. Furthermore, J[α] = I[α](1, v/u, 1/u) = uR(1, v/u, 1/u) = (1.v) = R.
We will show that I[α]ϕα(a) ( J[α] for every non-zero element a of R. Assume that
there exists a non-zero element a of R such that I[α]ϕα(a) = J[α]. Then there exists an
element b of R such that (ua2 + va + 1)b = 1 because J[α] = R and I[α] = uR. This
implies that ua2 + va + 1 is a unit of R, hence, a unit of F . Since a is not zero, we can
draw a contradiction by comparing the degrees of the both sides of the equation above.

Acknowledgments. We express our gratitude to the referee for improving our
paper.
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