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HELICOIDAL SURFACES IN THE THREE DIMENSIONAL

SIMPLY ISOTROPIC SPACE I
1
3

MURAT KEMAL KARACAN, DAE WON YOON AND SEZAI KIZILTUG

Abstract. In this paper, we classify helicoidal surfaces in the three dimensional simply

isotropic space I
1
3 satisfying some algebraic equations in terms of the coordinate func-

tions and the Laplacian operators with respect to the first, the second and the third fun-

damental form of the surface. We also give explicit forms of these surfaces.

1. Introduction

Let x : M →E
m be an isometric immersion of a connected n-dimensional manifold in the

m-dimensional Euclidean space E
m . Denote by H and ∆ the mean curvature and the Lapla-

cian of M with respect to the Riemannian metric on M induced from that of Em , respectively.

Takahashi ([17]) proved that the submanifolds in E
m satisfying ∆x=λx, that is, all coordinate

functions are eigenfunctions of the Laplacian with the same eigenvalue λ ∈ R are either the

minimal submanifolds of Em or the minimal submanifolds of hypersphere S
m−1 in E

m .

As an extension of Takahashi theorem, Garay studied in [11] hypersurfaces in E
m whose

coordinate functions are eigenfunctions of the Laplacian, but not necessarily associated to

the same eigenvalue. He considered hypersurfaces in E
m satisfying the condition

∆x = Ax, (1.1)

where A ∈M at (m,R) is an m ×m- diagonal matrix, and proved that such hypersurfaces are

minimal (H = 0) in E
mand open pieces of either round hyperspheres or generalized right

spherical cylinders.

Related to this, Dillen, Pas and Verstraelen ([9]) investigated surfaces in E
3 whose immer-

sions satisfy the condition

∆x = Ax+B, (1.2)
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where A ∈M at (3,R) is a 3×3-real matrix and B ∈R
3. In other words, each coordinate function

is of 1-type in the sense of Chen ([8]). For the Lorentzian version of surfaces satisfying (1.2),

Alias, Ferrandez and Lucas ([1]) proved that the only such surfaces are minimal surfaces and

open pieces of Lorentz circular cylinders, hyperbolic cylinders, Lorentz hyperbolic cylinders,

hyperbolic spaces or pseudo-spheres.

The notion of an isometric immersion x is naturally extended to smooth functions on

submanifolds of Euclidean space or pseudo-Euclidean space. The most natural one of them

is the Gauss map of the submanifold. In particular, if the submanifold is a hypersurface, the

Gauss map can be identified with the unit normal vector field to it. Dillen, Pas and Verstraelen

([10]) studied surfaces of revolution in the three dimensional Euclidean space E
3 such that its

Gauss map G satisfies the condition

∆G = AG, (1.3)

where A ∈M at (3,R). Baikoussis and Verstraelen ([4]) studied the helicoidal surfaces in E
3.

Choi ([6]) completely classified the surfaces of revolution satisfying the condition (1.3) in the

three dimensional Minkowski space E
3
1. The authors ([7, 18]) classified surfaces of revolu-

tion satisfying (1.2) and (1.3) in the three dimensional Minkowski space and pseudo-Galilean

space. Baba-Hamen and Bekkar ([12]) classified the helicoidal surfaces in the 3-dimensional

Lorentz-Minkowski space under the condition

∆xi =λ
i xi ,

where λ
i ∈R.The authors ([13]) classified surfaces of revolution satisfying

∆
IIIr = Ar,

in the three dimensional Lorentz-Minkowski space.

The main purpose of this paper is to complete classification of helicoidal surfaces in the

three dimensional simply isotropic space I
1
3 in terms of the position vector field and the Lapla-

cian operator.

2. Preliminaries

A simply isotropic space I
1
3 is a Cayley–Klein space defined from the three dimensional

projective space P (R3) with the absolute figure which is an ordered triple (w, f1, f2), where

w is a plane in P (R3) and f1, f2 are two complex-conjugate straight lines in w . The homoge-

neous coordinates in P (R3) are introduced in such a way that the absolute plane w is given by

x0 = 0 and the absolute lines f1, f2 by x0 = x1+i x2 = 0, x0 = x1−i x2 = 0. The intersection point

F(0 : 0 : 0 : 1) of these two lines is called the absolute point. The group of motions of the simply
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isotropic space is a six-parameter group given in the affine coordinates x = x1

x0
, y = x2

x0
, z = x3

x0

by

x = a +x cosθ− y sinθ

y = b +x sinθ+ y cosθ (2.1)

z = c +c1x +c2 y + z,

where a,b,c ,c1,c2,θ ∈ R. Such affine transformations are called isotropic congruence trans-

formations or i -motions [12].

Isotropic geometry has different types of lines and planes with respect to the absolute

figure. A line is called non-isotropic (resp. completely isotropic) if its point at infinity does

not coincide (coincides) with the point F. A plane is called non-isotropic (resp. isotropic) if

its line at infinity does not contain F. Completely isotropic lines and isotropic planes in this

affine model appear as vertical, i.e., parallel to the z-axis. Finally, the metric of the simply

isotropic space I
1
3 is given by

d s2 = d x2 +d y2.

A surface M immersed in I
1
3 is called admissible if it has no isotropic tangent planes. For

such a surface, the coefficients E ,F,G of its first fundamental form are calculated with re-

spect to the induced metric and the coefficients L, M , N of the second fundamental form,

with respect to the normal vector field of a surface which is always completely isotropic. The

(isotropic) Gaussian and mean curvature are defined by

K = k1k2 =
LN −M 2

EG −F 2
, 2H = k1 +k2 =

E N −2F M +GL

EG −F 2
, (2.2)

where k1,k2 are principal curvatures, i.e., extrema of the normal curvature determined by the

normal section (in completely isotropic direction) of a surface. Since EG − F 2 > 0, for the

function in the denominator we often put W 2 = EG −F 2.The surface M is said to be isotropic

flat (resp. isotropic minimal ) if K (resp.H) vanishes [3, 15, 16].

It is well known in terms of local coordinates {u, v} of M the Laplacian operators ∆I, ∆II ,

∆
III of the first, the second and the third fundamental form on M are defined by ([5, 13, 14])

∆
Ix = −

1
√

∣

∣EG −F 2
∣

∣







∂

∂u







Gxu −F xv
√

∣

∣EG −F 2
∣

∣






−

∂

∂v







F xu −E xv
√

∣

∣EG −F 2
∣

∣












, (2.3)

∆
IIx = −

1
√

∣

∣LN −M 2
∣

∣







∂

∂u







N xu −Mxv
√

∣

∣LN −M 2
∣

∣






−

∂

∂v







Mxu −Lxv
√

∣

∣LN −M 2
∣

∣












, (2.4)

and
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∆
IIIx = −

p
EG −F 2

LN −M 2









∂

∂u

(

Z xu−Y xv

(LN−M2)
p

EG−F 2

)

−

∂

∂v

(

Y xu−X xv

(LN−M2)
p

EG−F 2

)









, (2.5)

where

X = E M 2−2F LM +GL2,

Y = E M N −F LN +GLM −F M 2,

Z = GM 2 −2F N M +E N 2.

3. Helicoidal surfaces in I
1
3

Now we adapt the above notion to isotropic spaces. Considering the i -motions given

by (2.1), the Euclidean rotation in the simply isotropic space I
1
3 given by the normal form (in

affine coordinates)

x = x cosθ− y sinθ

y = x sinθ+ y cosθ (3.1)

z = z,

where θ ∈R [2].

First of all, we consider a plane curveα parametrized by α(u) =
(

f (u),0, g (u)
)

or isotropic

curve α(u) =
(

0, f (u), g (u)
)

around the z-axis by Euclidean rotation (3.1), where g is a positive

function and f is a smooth function on an open interval I . Then by i−motion, the helicoidal

surface M can be written as

x(u, v) =
(

f (u)cos v, g (u)sin v, g (u)+hv
)

(3.2)

or

x(u, v) =
(

− f (u)sin v, f (u)cos v, g (u)+hv
)

(3.3)

for any h ∈R . We will use the parametrization of the unit speed profile curveα(u) =
(

u,0, g (u)
)

[2].

4. Helicoidal Surfaces Satisfying ∆Ixi=λi xi

In this section, we classify helicoidal surfaces given by (3.2) in I
1
3 satisfying the equation

∆
Ixi=λi xi , (4.1)

where λi∈R, i=1,2,3 and

∆
Ix =

(

∆
Ix1, ∆Ix2, ∆Ix3

)

,
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where

x1 =u cos v, x2 = u sin v, x3 = g (u)+hv.

For this helicoidal surface, the coefficients of the first and second fundamental form are,

respectively

E = 1, F = 0, G =u2, (4.2)

L = g ′′, M =−
h

u
, N = ug ′. (4.3)

The Gaussian curvature K and the mean curvature H are

K =
−h2 +u3g ′(u)g ′′(u)

u4
, H =

g ′(u)+ug ′′(u)

2u
, (4.4)

respectively.

Corollary 1. Helicoidal surfaces given by (3.2) in the three dimensional simply isotropic space

I
1
3 are isotropic flat (K = 0), if

g (u) =±

{

h arctan

(

h
√

−h2 +2c1u2

)

+
√

−h2 +2c1u2 +c2

}

for some constants c1 and c2.

Proof. From (4.4), if K = 0, then we have

u3g ′(u)g ′′(u) = h2.

If we solve this equation, we obtain

g (u)=±

{

h arctan

(

h
√

−h2 +2c1u2

)

+
√

−h2 +2c1u2 +c2

}

. ���

Corollary 2. Helicoidal surfaces given by (3.2) in the three dimensional simply isotropic space

I
1
3 have isotropic constant mean curvature if g (u) = c1 lnu + a u2

2 + c2, where a,c1,c2 are con-

stants. If a = 0, then helicoidal surfaces are isotropic minimal.

Proof. From (4.4), if helicoidal surface given by (3.2) which is isotropic minimal, then H = 0.

Thus we get g ′(u)+ug ′′(u) = 0. So we obtain g (u) = c1 lnu + c2 for some constants c1,c2. If

helicoidal surface given by (3.2) which is CMC surface, then H = a, where a ∈ R. From (4.4),

we have
g ′(u)+ug ′′(u)

2u
= a.

Thus we obtain

g (u)= c1 lnu +a
u2

2
+c2. ���
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Suppose that the surface has non zero Gaussian curvature, so −h2 +u3g ′(u)g ′′(u) 6= 0,

∀u ∈ I . By a straightforward computation, the Laplacian operator on M with the help of (4.2)

and (2.3) turns out to be

∆
Ix =

(

0,0,−
g ′(u)+ug ′′(u)

u

)

. (4.5)

Suppose that M satisfies (4.1). Then, we have

0 = λ1 (u cos v) ,

0 = λ2 (u sin v) , (4.6)

−
g ′(u)+ug ′′(u)

u
= λ3

(

g (u)+hv
)

.

where λ1, λ2 and λ3 ∈ R. This means that M is at most of 1-type. Thus we have λ3 = 0, which

implies the mean curvature H vanishes identically because of (4.6). Therefore, the helicoidal

surfaces are isotropic minimal.

Corollary 3. Helicoidal surface given by (3.2) in the three dimensional simply isotropic space

I
1
3 is harmonic if and only if the surface M is isotropic minimal.

The corollary is well-know fact because, in general,

∆
Ix =−2

→
H=−2HN, ∆Ix =0,

(M =harmonic)⇔ H = 0. In this paper,

∆
Ix =−2

(

0,0,
g ′(u)+ug ′′(u)

2u

)

=−2

(

g ′(u)+ug ′′(u)

2u

)

(0,0,1) =−2HN.

5. Helicoidal surfaces satisfying ∆IIxi=λi xi

In this section, we classify helicoidal surfaces with non-degenerate second fundamental

form in I
1
3 satisfying the equationIn

∆
IIxi=λi xi , (5.1)

where λi∈R, i=1,2,3 and

∆
IIx =

(

∆
IIx1, ∆IIx2, ∆IIx3

)

,

where

x1 = u cos v, x2 = u sin v, x3 = g (u)+hv,
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where λi∈R, i=1,2,3. In this case, the function g is non constant, everywhere. By a straight-

forward computation, the Laplacian operator on M with the help of (4.2), (4.4) and (2.4) turns

out to be

∆
IIx =









A(u)
(

−hu sin v +u2g ′(u)cos v
)

A(u)
(

hu cos v +u2g ′(u)sin v
)

B (u)









, (5.2)

where

A(u)=
1

2
(

h2 −u3g ′g ′′
)2

(

4h2 −u3g ′g ′′+u4g ′′2 +u4g ′g ′′′
)

, (5.3)

B (u)=
u2g ′

2
(

h2 −u3g ′g ′′
)2

(

4h2g ′+4h2ug ′′−u3g ′2 g ′′−3u4g ′g ′′2 +u4g ′2 g ′′′
)

. (5.4)

We observe that

B (u)=
u2g ′2

2
(

h2 −u3g ′g ′′
)2

A(u)−
4u2g ′2

2
(

h2 −u3g ′g ′′
)2

(

h2ug ′′−u4g ′g ′′2
)

. (5.5)

Equation (5.1) by means of (5.2) rise to the following system of ordinary differential equations

∆
II(u cos v) = λ1 (u cos v) ,

∆
II(u sin v) = λ2 (u sin v) , (5.6)

∆
II(g (u)+hv) = λ3

(

g (u)+hv
)

,

where λ1, λ2 and λ3 ∈ R. This means that M is at most of 3- type. Equation (5.6) becomes

A(u)
(

−hu sin v +u2g ′(u)cos v
)

= λ1 (u cos v) ,

A(u)
(

hu cos v +u2g ′(u)sin v
)

= λ2 (u sin v) , (5.7)

B (u) = λ3

(

g (u)+hv
)

.

First of all, we assume that M satisfies the condition ∆IIx = 0, thus we have λ1 = λ2 = λ3 = 0.

In this case (5.7) can be written as

A(u)
(

−hu sin v +u2g ′(u)cos v
)

= 0,

A(u)
(

hu cos v +u2g ′(u)sin v
)

= 0, (5.8)

B (u) = 0.

Since the functions cos v, sin v and the constant function are linearly independent, by (5.5)

and (5.8), we get

A(u) = 0,
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B (u) = 0

or
(

4h2 −u3g ′g ′′+u4g ′′2 +u4g ′g ′′′
)

= 0, (5.9)

−4u3g ′2 = 0. (5.10)

There are no any suitable solutions of (5.9). Differential equation (5.10) admits the particular

solution g (u)= c1, where c1 ∈ R. In this case, M is parametrized by

x(u, v)= (u cos v,u sinv,c1 +hv) .

From (5.7), we easly get

A(u) =
λ1 (u cos v)

(

−hu sin v +u2g ′(u)cos v
) (5.11)

and

A(u) =
λ2 (u sin v)

(

hu cos v +u2g ′(u)sin v
) . (5.12)

We discuss two cases according to the values of λi .

Case 1: Let λ1 = 0 or λ2 = 0,λ3 6= 0, from (5.5), we have

−
2u

(

h2 −u3g ′g ′′
) =λ3

(

g (u)+hv
)

. (5.13)

There are no any suitable solutions of (5.13).

Case 2: If λ1 6= 0 or λ2 6= 0, λ3 = 0, from (5.5), we have

λ1 (cos v)
(

−h sin v +ug ′(u)cos v
) −4

(

h2g ′′−u3g ′g ′′2
)

= 0 (5.14)

and
λ2 (sin v)

(

h cos v +ug ′(u)sin v
) −4

(

h2g ′′−u3g ′g ′′2
)

= 0. (5.15)

There are no any suitable solutions of (5.14) and (5.15).

Definition 1. A surface of in the three dimensional simple isotropic space is said to be II-

harmonic if it satisfies the condition ∆IIx = 0.

Corollary 4. Helicoidal surface given by (3.2) in the three dimensional simply isotropic space

I
1
3 is II−harmonic surface if g (u) = c1 for some c1 ∈R.

Theorem 1 (Classification). Let M be a non II-harmonic helicoidal surfaces with non-degenerate

second fundamental form given by (3.2) in the three dimensional simply isotropic space I
1
3.

There are no the surfaces M satisfies the condition∆IIxi=λi xi , where λi∈R, i=1,2,3.
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6. Helicoidal surfaces satisfying ∆IIIxi=λi xi

In this section, we classify helicoidal surfaces with non-degenerate second fundamental

form in I
1
3 satisfying the equation

∆
IIIxi=λi xi , (6.1)

where λi∈R, i=1,2,3 and

∆
IIIx =

(

∆
IIIx1, ∆IIIx2, ∆IIIx3

)

,

where

x1 =u cos v, x2 = u sin v, x3 = g (u)+hv,

By a straightforward computation, the Laplacian operator on M with the help of (4.3) and (2.5)

turns out to be

∆
IIIx =









A(u)sin v +B (u)cos v,

−A(u)cos v +B (u)sin v,

C (u)









, (6.2)

where

A(u)=−
1

(

h2 −u3g ′g ′′
)3

(

3h3u4g ′+5h3u5g ′′−hu8g ′g ′′2

+hu9g ′′3 +h3u6g ′′′+hu8g ′2 g ′′′

)

, (6.3)

B (u)=
1

(

h2 −u3g ′g ′′
)3

(

−3h2u5g ′2 −5h2u6g ′g ′′+u9g ′2 g ′′2

−u10g ′g ′′3 −h2u7g ′g ′′′−u9g ′3 g ′′′

)

, (6.4)

C (u) =
1

(

h2 −u3g ′g ′′
)3

(

−2h4u3g ′−3h2u5g ′3 −4h4u4g ′′−7h2u6g ′2 g ′′−h2u7g ′g ′′2

+2u9g ′3 g ′′2 −h2u8g ′′3 −h4u5g ′′′−2h2u7g ′2 g ′′′−u9g ′4 g ′′′

)

. (6.5)

We observe that A(u) = −hg ′(u)B (u). Equation (6.1) by means of (6.2) rise to the following

system of ordinary differential equations

∆
III(u cos v) = λ1 (u cos v) ,

∆
III(u sin v) = λ2 (u sin v) , (6.6)

∆
III(g (u)+hv) = λ3

(

g (u)+hv
)

,

where λ1, λ2 and λ3 ∈ R. This means that M is at most of 3- type. Equation (6.6) becomes

B (u)
(

−hg ′ sin v +cos v
)

= λ1 (u cos v) ,

B (u)
(

hg ′cos v +sin v
)

= λ2 (u sin v) , (6.7)

C (u) = λ3

(

g (u)+hv
)

.

First of all, we assume that M satisfies the condition ∆IIIx = 0, thus we have λ1 = λ2 = λ3 = 0.

In this case (6.7) can be written as

B (u)
(

−hg ′ sin v +cos v
)

= 0,
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B (u)
(

hg ′cos v +sin v
)

= 0, (6.8)

C (u) = 0.

Since the functions cos v, sin v and the constant function are linearly independent, by

(6.5) and (6.8), we get

B (u) = 0,

C (u) = 0

or

−3h2u5g ′2 −5h2u6g ′g ′′+u9g ′2 g ′′2 −u10g ′g ′′3 −h2u7g ′g ′′′−u9g ′3 g ′′′ = 0, (6.9)

−2h4u3g ′−3h2u5g ′3 −4h4u4g ′′−7h2u6g ′2 g ′′−h2u7g ′g ′′2

+2u9g ′3 g ′′2 −h2u8g ′′3 −h4u5g ′′′−2h2u7g ′2 g ′′′−u9g ′4 g ′′′ = 0. (6.10)

Differential equations (6.9) and (6.10) admit the particular solution g (u) = c1, where c1 ∈
R. In this case, M is parametrized by

x(u, v)= (u cos v,u sinv,c1 +hv) .

From (6.7), we easly get

B (u) =
λ1 (u cos v)

(

−hg ′ sin v +cos v
) , (6.11)

B (u) =
λ2 (u sin v)

(

hg ′cos v +sin v
) . (6.12)

and

C (u) = λ3

(

g (u)+hv
)

. (6.13)

We discuss two cases according to the values of λi .

Case 1: Let λ1 = 0 or λ2 = 0,λ3 6= 0, from (6.11) and (6.12), there are no any suitable solutions.

Case 2: If λ1 6= 0 or λ2 6= 0, λ3 = 0, from (6.13), there are no any suitable solutions.

Definition 2. A surface of in the three dimensional simple isotropic space is said to be III-

harmonic if it satisfies the condition ∆IIIx = 0.

Corollary 5. Helicoidal surface given by (3.2) in the three dimensional simply isotropic space

I
1
3 is III−harmonic surface if g (u) = c1 for some c1 ∈R.
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Theorem 2 (Classification). Let M be a non III-harmonic helicoidal surfaces with non-degenerate

second fundamental form given by (3.2) in the three dimensional simply isotropic space I
1
3.

There are no the surfaces M satisfies the condition∆IIIxi=λi xi , where λi∈R, i=1,2,3.
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