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SOME UNIFORMLY STARLIKE FUNCTIONS WITH VARYING

ARGUMENTS

K. VIJAYA AND G. MURUGUSUNDARAMOORTHY

Abstract. In this paper two new subclasses of starlike functions that are analytic and normalized

in the open unit disc with varying arguments is introduced. For functions in these classes we

obtained coefficient bound, distortion results and the extreme points.

1. Introduction

Denote by S the family of functions f(z) of the form

f(z) = z +

∞
∑

m=2

amzm (1.1)

that are analytic, univalent and normalized in the unit disc U = {z : |z| < 1} and by CV
and ST the subfamilies of S that are respectively convex and starlike. Goodman [2, 3]
defined the following subclass of CV and ST .

Definition 1.1. [2, 3] A function f is uniformly convex UCV (uniformly starlike
UST ) in U if f is in CV (ST ) and has the property that for every circular arc, γ contained
in U , with centre ξ also in U , the arc f(γ) is convex (starlike) with respect to f(ξ).

Rønning [6] and Ma and Minda [5] indepentently characterised the class UCV ana-
lytically by

UCV =

{

f ∈ S :

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ Re

{

1 +
zf ′′(z)

f ′(z)

}

, z ∈ U

}

(1.2)

and Rønning [6] defined a new subclass of starlike functions related to UST by

Sp =

{

f ∈ S :

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤ Re

{

zf ′(z)

f(z)

}

, z ∈ U

}

. (1.3)

Note that f(z) ∈ UCV ⇐⇒ zf ′(z) ∈ Sp. Further Rønning [7, 8] generalized the class
UCV and Sp by introducing a parameter α in the following way

Sp(α) =

{

f ∈ S :

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤ Re

{

zf ′(z)

f(z)

}

− α, z ∈ U

}
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and f(z) is in UCV (α) if and only if zf ′(z) ∈ Sp(α).
Recently Kanas and Srivastava [4] and Srivastava and Mishra [11] defined the new

subclasses of the families UCV and UST making use of linear operators and fractional
calculus respectively and obtained various interesting properties. In light of this in this
paper we study the classes UCV and Sp defining by Ruscheweyh derivative operator.

For functions f(z) of the form (1.1) Ruscheweyh [9] defined the derivative opera-
tor Dnf(z) = z

(1−z)n+1
∗f(z) where (∗) stands for Hadamard product (or convolution

product) of two power series, equivalently Dnf(z) = z(zn−1f(z))(n)

n! n > −1. Al-Amiri [1]
called this Dnf(z) as the nth order Ruscheweyh derivative of f(z). It is easy to see that
D0f(z) = f(z) and D1f(z) = zf ′(z) and

Dnf(z) = z +

∞
∑

m=2

c(n, m)amzm, where c(n, m) =

(

n + m − 1

n

)

(1.4)

For 0 ≤ α < 1, we let Sp(n, α) denote the new subclass of family of starlike functions
corresponding to the families UCV and UST and for functions f(z) of the form (1.1)
such that

Re

{

z(Dnf(z))′

Dnf(z)
− α

}

≥

∣

∣

∣

∣

z(Dnf(z))′

Dnf(z)
− 1

∣

∣

∣

∣

(1.5)

where Dnf(z) is defined by (1.4).

Definition 1.2. [10] A function f(z) of the form (1.1) is said to be in the class V (θm)
if f ∈ S and arg (am) = θm for all m ≥ 2. If furthermore there exist a real number β

such that θm +(m− 1)β ≡ π(mod2π), then f(z) is said to be in the class V (θm, β). The
union of V (θm, β) taken over all possible sequences {θm} and all possible real numbers
β is denote by V .

In this paper we introduce two new subclasses V Sp(n, α) and V Sp(n, α, β) of starlike
functions Sp(α) with varying arguments. First we obtain a sufficient coefficient bound
for functions in Sp(n, α). We prove that these coefficient conditions are also necessary
for functions in the classes V Sp(n, α) and V Sp(n, α, β) further we obtained distortion
bounds and the extreme points for functions in these classes.

2. The Class V Sp(n, α)

Definition 2.1. For 0 ≤ α < 1 we define V Sp(n, α) = Sp(n, α) ∩ V .

In our first theorem, we obtain a sufficient coefficient bound for functions in Sp(n, α).

Theorem 2.1. Let f(z) be given by (1.1). If

∞
∑

m=2

(2m − 1 − α)c(n, m)|am| ≤ 1 − α, 0 ≤ α < 1, (2.1)

then f(z) ∈ Sp(n, α).
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Proof. By definition of the class Sp(n, α) it suffices to show that
∣

∣

∣

∣

z(Dnf(z))′

Dnf(z)
− 1

∣

∣

∣

∣

≤ Re

{

z(Dnf(z))′

Dnf(z)
− α

}

That is
∣

∣

∣

∣

z(Dnf(z))′

Dnf(z)
− 1

∣

∣

∣

∣

− Re

{

z(Dnf(z))′

Dnf(z)
− 1

}

≤ 2

∣

∣

∣

∣

z(Dnf(z))′

Dnf(z)
− 1

∣

∣

∣

∣

≤ 2

∑∞
m=2(m − 1)c(n, m)|am| |z|m−1

1 −
∑∞

m=2 c(n, m)|am| |z|m−1
.

Now the last expression is bounded above by (1 − α) and only if
∑∞

m=2(2m − 1 − α)
c(n, m)|am| ≤ 1 − α. In the following theorem, it is shown that the condition (2.1) is
also necessary for functions f ∈ V .

Theorem 2.2. Let f(z) of the form (1.1), f is in V Sp(n, α) if and only if

∞
∑

m=2

(2m − 1 − α)c(n, m)|am| ≤ 1 − α.

Proof. In view of theorem (2.1) we need only to show that f is in V Sp(n, α) satisfies
the coefficient inequality. If f ∈ V Sp(n, α) then by definition.

∣

∣

∣

∣

z +
∑∞

m=2 mc(n, m)amzm

z +
∑∞

m=2 c(n, m)amzm
− 1

∣

∣

∣

∣

≤ Re

{

z +
∑∞

m=2 mc(n, m)amzm

z +
∑∞

m=2 c(n, m)amzm
− α

}

That is
∣

∣

∣

∣

∑∞
m=2(m − 1)c(n, m)amzm−1

1 +
∑∞

m=2 c(n, m)amzm−1

∣

∣

∣

∣

≤ Re

{

(1 − α) +
∑∞

m=2(m − α)c(n, m)amzm−1

1 +
∑∞

m=2 c(n, m)amzm−1

}

since f(z) ∈ V and f(z) lies in V (θm, β) for some sequence {θm} and a real number β

such that θm + (m − 1)β ≡ π(mod2π) set z = reiβ in the above inequality
∑∞

m=2(m − 1)c(n, m)amrm−1

1 −
∑∞

m=2 c(n, m)amrm−1
≤

(1 − α) −
∑∞

m=2(m − α)c(n, m)amrm−1

1 −
∑∞

m=2 c(n, m)amrm−1
.

Letting r → 1, leads the desired inequality
∑∞

m=2(2m − 1 − α)c(n, m)|am| ≤ 1 − α.

Corollary 2.1. If f ∈ V Sp(n, α) then |am| ≤ 1−α
(2m−1−α)c(n,m) for m ≥ 2. The

inequality holds for f(z) = z +
∑∞

m=2
(1−α)eiθm zm

(2m−1−α)c(n,m) for m ≥ 2, z ∈ U .

Theorem 2.3. (Distortion theorem) Let f(z) of the form (1.1) be in the class

V Sp(n, α). Then

r −
1 − α

(3 − α)c(n, 2)
r2 ≤ |f(z)| ≤ r +

1 − α

(3 − α)c(n, 2)
r2

and
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1 −
2(1 − α)

(3 − α)c(n, 2)
r ≤ |f ′(z)| ≤ 1 +

2(1 − α)

(3 − α)c(n, 2)
r. The result is sharp.

Proof. Let f(z) of the form (1.1) be in the class V Sp(n, α). By taking absolute value
of f(z)

|f(z)| =

∣

∣

∣

∣

∣

z +

∞
∑

m=2

amzm

∣

∣

∣

∣

∣

≤ |z|+ |z|2
∞
∑

m=2

|am|,

since f(z) ∈ V Sp(n, α) and by Theorem (2.1), we have

(3 − α)c(n, 2)

∞
∑

m=2

|am| ≤

∞
∑

m=2

(2m − 1 − α)c(n, m)|am| ≤ 1 − α.

Thus |f(z)|≤|z| +
1 − α

(3 − α)c(n, 2)
|z|2.

That is |f(z)|≤r +
1 − α

(3 − α)c(n, 2)
r2,

similarly we get |f(z)|≥r −
1 − α

(3 − α)c(n, 2)
r2.

On other hand f ′(z)=1 +

∞
∑

m=2

mamzm−1,

and |f ′(z)|=1+

∞
∑

m=2

m|am| |z|
m−1≤1+|z|

∞
∑

m=2

m|am|, since f(z)∈VSp(n, α).

Then by Theorem (2.1) we have

∞
∑

m=2

m|am| ≤
2(1 − α)

(3 − α)c(n, 2)
.

Thus |f ′(z)|≤1 +
2(1 − α)

(3 − α)c(n, 2)
r.

Similarly we get |f ′(z)|≥1 −
2(1 − α)

(3 − α)c(n, 2)
r. This completes the result.

Theorem 2.4. Let the function f(z) defined by (1.1) be in the class V Sp(n, α),

with arg am = θm where [θm + (m − 1)β] ≡ π(mod2π). Define fl(z) = z and fm(z) =
z + 1−α

(2m−1−α)c(n,m)e
iθmzm, m ≥ 2, z ∈ U .

Then f(z) ∈ V Sp(n, α) if and only if f(z) can be expressed in the form f(z) =
∑∞

m=2 µmfm(z) where µm ≥ 0 and
∑∞

m=2 µm = 1.

Proof. If f(z) =
∑∞

m=1 µmfm(z) with
∑∞

m=1 µm = 1 and µm ≥ 0 then

∞
∑

m=2

(2m−1−α)c(n, m)
(1 − α)

(2m− 1 − α)c(n, m)
µm =

∞
∑

m=2

µm(1−α) = (1−µ1)(1−α) ≤ 1−α,
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Hence f(z) ∈ V Sp(n, α).

Conversely, let the function f(z) defined by (1.1) be in the class V Sp(n, α), since

|am| ≤ 1−α
(2m−1−α)c(n,m) , m = 2, 3, . . .. We may set µm = (2m−1−α)c(n,m)|am|

1−α
, m ≥ 2 and

µ1 = 1 −
∑∞

m=2 µm. Then f(z) =
∑∞

m=1 λmfm(z), this completes the proof.

3. The Class V Sp(n, α, β)

In this section we introduce a new subclass V Sp(n, α, β) and state the coefficient

estimates, distortion theorems and extreme points analogous to the class V Sp(n, α).

Definition 3.1. A function f(z) ∈ V of the form (1.1) is in the class V Sp(n, α, β) if

f(z) satisfies the analytic criteria

Re

{

z(Dnf(z))′

Dnf(z)

}

≥ α

∣

∣

∣

∣

z(Dnf(z))′

Dnf(z)
− 1

∣

∣

∣

∣

+ β where α ≥ 0, β ≥ 0 and z ∈ U .

The proof of the following is similar to that of Theorem (2.2) and will be omitted.

Theorem 3.1. For f of the form (1.1), f is in V Sp(n, α, β) if and only if

∞
∑

m=2

Emc(n, m)|am| ≤ 1 − β, where Em = m(α + 1) − (α + β).

Corollary 3.1. If f ∈ V is in V Sp(n, α, β) then am ≤ (1−β)
Emc(n,m) for m ≥ 2.

The inequality holds for the function f given by f(z) = z +
∑∞

m=2[
(1−β)

Emc(n,m) ]e
iθmzm,

z ∈ U (m ≥ 2).

On lines similar to Theorem (2.3) and Theorem (2.4) we get the distortion bounds

and extreme points for function f(z) ∈ V in V Sp(n, α, β).

Theorem 3.2. (Distortion Theorem) Let the function f(z) of the form (1.1) be in

the class V Sp(n, α, β). Then,

r −
1 − β

E2c(n, 2)
r2 ≤ |f(z)| ≤ r +

1 − β

E2c(n, 2)
r2

and

1 −
2(1 − β)

E2c(n, 2)
r2 ≤ |f ′(z)| ≤ 1 +

2(1 − β)

E2c(n, 2)
r2.

Theorem 3.3. Let the function f(z) defined by (1.1) be in the class V Sp(n, α, β),

with arg am = θm where [θm + (m − 1)β] ≡ π(mod2π). Define f1(z) = z and fm(z) =

z + 1−β

Emc(n,m)e
iθmzm, z ∈ U ; m ≥ 2, z ∈ U . Then f(z) ∈ V Sp(n, α, β) if and only if f(z)

can be expressed in the form f(z) =
∑∞

m=1 µmfm(z) where µm ≥ 0 and
∑∞

m=1 µm = 1.
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Remark 1. By taking n = 0, β = 0, these results reduces to the result obtained for

the functions f(z) of the form f(z) = z −
∑∞

m=2 |am|zm, in the TSp(α) [12].

Remark 2. If α = 0, n = 0. The above results coincide with the resutls obtained in

[10].
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