STABILITY OF LINEAR FUNCTIONAL EQUATIONS IN BANACH MODULES

CHUN-GIL PARK

 $\label{eq:abstract} \textbf{Abstract}. We prove the Hyers-Ulam-Rassias stability of the linear functional equation in Banach modules over a unital Banach algebra.$

1. Introduction

In 1940, S. M. Ulam [12] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

Let E_1 and E_2 be Banach spaces. Hyers [5] showed that if $\epsilon > 0$ and $f : E_1 \to E_2$ such that

$$\|f(x+y) - f(x) - f(y)\| \le \epsilon$$

for all $x, y \in E_1$, then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$\|f(x) - T(x)\| \le \epsilon$$

for all $x \in E_1$.

Consider $f: E_1 \to E_2$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Assume that there exist constants $\epsilon \ge 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$. Th. M. Rassias [9] showed that there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in E_1$. Gajda [3] generalized the Rassias' result.

Throughout this paper, let *B* be a unital Banach algebra with norm $|\cdot|$, $B_1 = \{a \in B \mid |a| = 1\}$, \mathbb{R}^+ the set of nonnegative real numbers, and let ${}_BM_1$ and ${}_BM_2$ be left Banach *B*-modules with norms $||\cdot||$ and $||\cdot||$, respectively. Let *d* and *s* be positive integers.

In this paper, we are going to prove the Hyers-Ulam-Rassias stability of the linear functional equation in Banach modules over a unital Banach algebra.

Received March 5, 2002.

2000 Mathematics Subject Classification. Primary 39B72, 39B52, Secondary 46Bxx.

Key words and phrases. Stability, B-linear, Banach algebra.

This work was supported by grant No. R05-2003-000-10006-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

CHUN-GIL PARK

2. Stability of the Linear Functional Equation in Banach Modules

In this section, we prove the Hyers-Ulam-Rassias stability of the linear functional equation in Banach modules over a unital Banach algebra.

Theorem 2.1. Let $f : {}_{B}M_{1} \to {}_{B}M_{2}$ be a mapping for which there exists a function $\varphi : {}_{B}M_{1} \times {}_{B}M_{1} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x,y) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y) < \infty,$$
(i)
$$\|f(a^d x + a^d y) - a^s f(x) - a^s f(y)\| \le \varphi(x,y),$$
$$\|f(tx + ty) - tf(x) - tf(y) \le \varphi(x,y)$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ such that

$$T(a^{d}x) = a^{s}T(x),$$

$$\|f(x) - T(x)\| \le \frac{1}{2}\widetilde{\varphi}(x,x)$$
(ii)

for all $a \in B_1$ and all $x \in {}_BM_1$.

Proof. Let $a = 1 \in B_1$. By the Găvruta result [4], it follows from the second inequality of the statement that there exists a unique additive mapping $T : {}_BM_1 \to {}_BM_2$ satisfying (ii). The mapping $T : {}_BM_1 \to {}_BM_2$ was given by $T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ for all $x \in {}_BM_1$.

By the assumption, for each $a \in B_1$,

$$||f(2^n a^d x) - 2a^s f(2^{n-1}x)|| \le \varphi(2^{n-1}x, 2^{n-1}x)$$

for all $x \in {}_BM_1$. Using the fact that for each $a \in B$ and each $z \in {}_BM_2 ||az|| \le K|a| \cdot ||z||$ for some K > 0, one can show that

$$\|a^s f(2^n x) - 2a^s f(2^{n-1} x)\| \le K |a^s| \cdot \|f(2^n x) - 2f(2^{n-1} x)\| \le K\varphi(2^{n-1} x, 2^{n-1} x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$. So

$$\begin{aligned} \|f(2^n a^d x) - a^s f(2^n x)\| &\leq \|f(2^n a^d x) - 2a^s f(2^{n-1} x)\| + \|2a^s f(2^{n-1} x) - a^s f(2^n x)\| \\ &\leq \varphi(2^{n-1} x, 2^{n-1} x) + K\varphi(2^{n-1} x, 2^{n-1} x) \end{aligned}$$

for all $a \in B_1$ and all $x \in {}_BM_1$. Thus $2^{-n} ||f(2^n a^d x) - a^s f(2^n x)|| \to 0$ as $n \to \infty$ for all $a \in B_1$ and all $x \in {}_BM_1$. Hence

$$T(a^{d}x) = \lim_{n \to \infty} \frac{f(2^{n}a^{d}x)}{2^{n}} = \lim_{n \to \infty} \frac{a^{s}f(2^{n}x)}{2^{n}} = a^{s}T(x)$$

for each $a \in B_1$.

30

Similarly, one can obtain that

$$T(tx) = \lim_{n \to \infty} \frac{f(2^n tx)}{2^n} = \lim_{n \to \infty} \frac{tf(2^n x)}{2^n} = tT(x)$$

for each $t \in \mathbb{R}^+$. Since $t = |t| \cdot \frac{t}{|t|}$ for each $t \in \mathbb{R}$ $(t \neq 0)$,

$$T(t_1x + t_2y) = T(t_1x) + T(t_2y) = T(|t_1|\frac{t_1}{|t_2|}x) + T(|t_2|\frac{t_2}{|t_2|}y)$$

= $|t_1|T(\frac{t_1}{|t_1|}x) + |t_2|T(\frac{t_2}{|t_2|}y) = |t_1|\frac{t_1}{|t_1|}T(x) + |t_2|\frac{t_2}{|t_2|}T(y)$
= $t_1T(x) + t_2T(y)$

for all $t_1, t_2 \in \mathbb{R}^+(t_1, t_2 \neq 0)$ and all $x, y \in {}_BM_1$. And T(x) = T(x - y + y) = T(x - y) + T(y) for all $x \in {}_BM_1$. Hence T(x - y) = T(x) - T(y) for all $x \in {}_BM_1$. So the unique additive mapping $T : {}_BM_1 \to {}_BM_2$ is an \mathbb{R} -linear mapping satisfying the conditions given in the statement.

Let d = s = 1 in Theorem 2.1. Since T(ax) = aT(x) for all $a \in B_1$ and all $x \in {}_BM_1$,

$$T(ax + by) = T(ax) + T(by) = T(|a|\frac{a}{|a|}x) + T(|b|\frac{b}{|b|}y)$$

= $|a|T(\frac{a}{|a|}x) + |b|T(\frac{b}{|b|}y) = |a|\frac{a}{|a|}T(x) + |b|\frac{b}{|b|}T(y)$
= $aT(x) + bT(y)$

for all $a, b \in B(a, b \neq 0)$ and all $x, y \in {}_BM_1$. And T(0x) = 0T(x) for all $x \in {}_BM_1$. So the \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ is *B*-linear.

Remark 2.1. If the second inequality in the statement of Theorem 2.1 is replaced by

$$\|f(a^{d}x+y) - a^{s}f(x) - f(y)\| \le \varphi(x,y),$$

then

$$\begin{split} \|f(a^{d}x + a^{d}y) - a^{s}f(x) - f(a^{d}y)\| &\leq \varphi(x, a^{d}y), \\ \|f(a^{d}x + a^{d}y) - f(a^{d}x) - a^{s}f(y)\| &\leq \varphi(y, a^{d}x), \\ \|f(a^{d}x + a^{d}y) - f(a^{d}x) - f(a^{d}y)\| &\leq \varphi(a^{d}x, a^{d}y). \end{split}$$

 So

$$\|f(a^d x + a^d y) - a^s f(x) - a^s f(y)\| \le \varphi(x, a^d y) + \varphi(y, a^d x) + \varphi(a^d x, a^d y),$$

hence the result does also hold.

Corollary 2.2. Let $f : {}_BM_1 \to {}_BM_2$ be a mapping for which there exist constants $\epsilon \ge 0$ and $p \in [0, 1)$ such that

$$\begin{aligned} \|f(a^{d}x + a^{d}y) - a^{s}f(x) - a^{s}f(y)\| &\leq \epsilon(||x||^{p} + ||y||^{p}), \\ \|f(tx + ty) - tf(x) - tf(y)\| &\leq \epsilon(||x||^{p} + ||y||^{p}) \end{aligned}$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ such that

$$T(a^{d}x) = a^{s}T(x),$$
$$\|f(x) - T(x)\| \le \frac{2\epsilon}{2 - 2^{p}} ||x||^{p}$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

Proof. Define $\varphi(x, y) = \epsilon(||x||^p + ||y||^p)$, and apply Theorem 2.1.

Corollary 2.3. Let E_1 and E_2 be complex Banach spaces and $f : E_1 \to E_2$ a mapping for which there exists a function $\varphi : E_1 \times E_1 \to [0, \infty)$ such that

$$\begin{split} \widetilde{\varphi}(x,y) &= \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y) < \infty, \\ \|f(\mu^d x + \mu^d y) - \mu^s f(x) - \mu^s f(y)\| &\leq \varphi(x,y) \\ \|f(\lambda x + \lambda y) - \lambda f(x) - \lambda f(y)\| &\leq \varphi(x,y) \end{split}$$

for all $\mu \in \mathbb{C}_1 = \mathbb{T}^1$, all $\lambda \in \mathbb{R}^+$, and all $x, y \in E_1$. Then there exists a unique \mathbb{R} -linear mapping $T : E_1 \to E_2$ such that

$$T(\mu^d x) = \mu^s T(x),$$
$$\|f(x) - T(x)\| \le \frac{1}{2} \widetilde{\varphi}(x, x)$$

for all $\mu \in \mathbb{T}^1$ and all $x \in E_1$.

Proof. Since \mathbb{C} is a unital Banach algebra, the Banach spaces E_1 and E_2 are considered as Banach modules over \mathbb{C} . By Theorem 2.1, there exists a unique \mathbb{R} -linear mapping $T: E_1 \to E_2$ satisfying the conditions given in the statement.

Now we prove the Hyers-Ulam-Rassias stability of another linear functional equation in Banach modules over a unital Banach algebra.

Theorem 2.4. Let $f : {}_{B}M_{1} \to {}_{B}M_{2}$ be a mapping for which there exists a function $\varphi : {}_{B}M_{1} \times {}_{B}M_{1} \to [0, \infty)$ satisfying (i) such that

$$\begin{aligned} \|a^s f(x+y) - f(a^d x) - f(a^d y)\| &\leq \varphi(x,y), \\ \|tf(x+y) - f(tx) - f(tx)\| &\leq \varphi(x,y) \end{aligned}$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ satisfying (ii) such that

$$a^s T(x) = T(a^d x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ satisfying (ii).

By the assumption, for each $a \in B_1$,

$$||a^s f(2^n x) - 2f(2^{n-1}a^d x)|| \le \varphi(2^{n-1}x, 2^{n-1}x)$$

for all $x \in {}_BM_1$. So

$$\begin{aligned} \|a^s f(2^n x) - f(2^n a^d x)\| &\leq \|a^s f(2^n x) - 2f(2^{n-1} a^d x)\| + \|2f(2^{n-1} a^d x) - f(2^n a^d x)\| \\ &\leq \varphi(2^{n-1} x, 2^{n-1} x) + \varphi(2^{n-1} a^d x, 2^{n-1} a^d x) \end{aligned}$$

for all $a \in B_1$ and all $x \in {}_BM_1$. So $2^{-n} ||a^s f(2^n x) - f(2^n a^d x)|| \to 0$ as $n \to \infty$ for all $a \in B_1$ and all $x \in {}_BM_1$. Hence

$$a^{s}T(x) = \lim_{n \to \infty} \frac{a^{s}f(2^{n}x)}{2^{n}} = \lim_{n \to \infty} \frac{f(2^{n}a^{d}x)}{2^{n}} = T(a^{d}x)$$

for all $a \in B_1$.

Similarly, one can obtain that

$$tT(x) = \lim_{n \to \infty} \frac{tf(2^n x)}{2^n} = \lim_{n \to \infty} \frac{f(2^n tx)}{2^n} = T(tx)$$

for each $t \in \mathbb{R}^+$.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ is an \mathbb{R} -linear mapping satisfying (ii) such that

$$a^s T(x) = T(a^d x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$, as desired.

Theorem 2.5. Let $f : {}_{B}M_{1} \to {}_{B}M_{2}$ be a mapping for which there exists a function $\varphi : {}_{B}M_{1} \times {}_{B}M_{1} \to [0, \infty)$ satisfying (i) such that

$$\|f(tx+ty) - tf(x) - tf(y)\| \le \varphi(x,y),$$

$$\|f(a^d x) - a^s f(x)\| \le \varphi(x,x)$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ satisfying (ii) such that

$$T(a^d x) = a^s T(x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique additive mapping $T : {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ satisfying (ii). Combining the definition of the mapping T and the second inequality given in the statement yields that

$$T(a^{d}x) = \lim_{n \to \infty} \frac{f(2^{n}a^{d}x)}{2^{n}} = \lim_{n \to \infty} \frac{a^{s}f(2^{n}x)}{2^{n}} = a^{s}T(x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ is an \mathbb{R} -linear mapping satisfying the conditions given in the statement, as desired.

Remark 2.2. If the second inequality in the statement of Theorem 2.1 is replaced by

$$\|f(a^d x + y) - a^s f(x) - f(y)\| \le \varphi(x, y),$$

then

$$\|f(a^{d}x + x) - a^{s}f(x) - f(x)\| \le \varphi(x, x), \\\|f(a^{d}x + x) - f(a^{d}x) - f(x)\| \le \varphi(a^{d}x, x).$$

So

$$\|f(a^d x) - a^s f(x)\| \le \varphi(x, x) + \varphi(a^d x, x),$$

hence the result does also hold.

3. Stability of the Pexider Functional Equation in Banach Modules

In this section, we prove the Hyers-Ulam-Rassias stability of the Pexider functional equation in Banach modules over a unital Banach algebra.

Theorem 3.1. Let $f, g, h : {}_BM_1 \to {}_BM_2$ be mappings for which there exists a function $\varphi : {}_BM_1 \setminus \{0\} \times {}_BM_1 \setminus \{0\} \to [0, \infty)$ such that

$$\widetilde{\varphi}(x,y) := \sum_{k=0}^{\infty} 3^{-k} \varphi(3^k x, 3^k y) < \infty,$$
(iii)
$$\|f(a^d x + a^d y) - a^s g(x) - a^s h(y)\| \le \varphi(x,y),$$
$$\|f(tx + ty) - tg(x) - th(y)\| \le \varphi(x,y)$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1 \setminus \{0\}$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ such that

$$T(a^{d}x) = a^{s}T(x),$$

$$\|f(x) - f(0) - T(x)\| \leq \frac{1}{3}\widetilde{\varphi}(\frac{x}{2}, \frac{-x}{2}) + \frac{1}{3}\widetilde{\varphi}(\frac{-x}{2}, \frac{x}{2}) + \frac{1}{3}\widetilde{\varphi}(\frac{x}{2}, \frac{x}{2}) + \frac{2}{3}\widetilde{\varphi}(\frac{-x}{2}, \frac{x}{2}) + \frac{1}{3}\widetilde{\varphi}(\frac{-x}{2}, \frac{3x}{2}) + \frac{1}{3}\widetilde{\varphi}(\frac{3x}{2}, \frac{-x}{2}) + \frac{1}{3}\widetilde{\varphi}(\frac{3x}{2}, \frac{3x}{2})$$
(iv)

for all $a \in B_1$ and all $x \in {}_BM_1 \setminus \{0\}$.

Proof. Put a = 1. By [7, Theorem 2.2], there exists a unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ satisfying (iv). The mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ was given by

$$T(x) = \lim_{n \to \infty} \frac{f(3^n x)}{3^n} = \lim_{n \to \infty} \frac{g(3^n x)}{3^n} = \lim_{n \to \infty} \frac{h(3^n x)}{3^n}$$

34

for all $x \in {}_{B}M_{1}$. For each fixed $a \in B_{1}$, it follows from the second inequality of the statement and the definition of the mapping T that

$$T(a^{d}x) = \lim_{n \to \infty} \frac{f(3^{n}a^{d}x)}{3^{n}} = \lim_{n \to \infty} \frac{a^{s}g(3^{n}x)}{3^{n}} = a^{s}T(x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

Similarly, one can obtain that

$$T(tx) = \lim_{n \to \infty} \frac{f(3^n tx)}{3^n} = \lim_{n \to \infty} \frac{tf(3^n x)}{3^n} = tT(x)$$

for each $t \in \mathbb{R}^+$.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ is an \mathbb{R} -linear mapping satisfying the conditions given in the statement, as desired.

Corollary 3.2. Let p < 1, and $f, g, h : {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ mappings such that

$$\begin{aligned} \|f(a^d x + a^d y) - a^s g(x) - a^s h(y)\| &\leq ||x||^p + ||y||^p, \\ \|f(tx + ty) - tg(x) - th(y)\| &\leq ||x||^p + ||y||^p \end{aligned}$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1 \setminus \{0\}$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ such that

$$||f(x) - f(0) - T(x)|| \le \frac{4(3+3^p)}{2^p(3-3^p)} ||x||^p, \qquad T(a^d x) = a^s T(x)$$

for all $a \in B_1$ and all $x \in {}_BM_1 \setminus \{0\}$.

Proof. Define $\varphi(x, y) = ||x||^p + ||y||^p$, and apply Theorem 3.1.

Now we prove the Hyers-Ulam-Rassias stability of another Pexider functional equation in Banach modules over a unital Banach algebra.

Theorem 3.3. Let $f, g, h : {}_BM_1 \to {}_BM_2$ be mappings for which there exists a function $\varphi : {}_BM_1 \setminus \{0\} \times {}_BM_1 \setminus \{0\} \to [0, \infty)$ satisfying (iii) such that

$$\begin{aligned} \|a^s f(x+y) - g(a^d x) - h(a^d y)\| &\leq \varphi(x,y), \\ \|tf(x+y) - g(tx) - h(ty)\| &\leq \varphi(x,y) \end{aligned}$$

for all $a \in B_1$, all $t \in \mathbb{R}^+$, and all $x, y \in {}_BM_1 \setminus \{0\}$. Then there exists a unique \mathbb{R} -linear mapping $T : {}_BM_1 \to {}_BM_2$ satisfying (iv) such that

$$a^s T(x) = T(a^d x)$$

for all $a \in B_1$ all $x \in {}_BM_1 \setminus \{0\}$.

CHUN-GIL PARK

Proof. By the same reasoning as the proof of Theorem 3.1, there exists a unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ satisfying (iv). For each fixed $a \in B_{1}$, it follows from the first inequality of the statement and the definition of the mapping T that

$$a^{s}T(x) = \lim_{n \to \infty} \frac{a^{s}f(3^{n}x)}{3^{n}} = \lim_{n \to \infty} \frac{g(3^{n}a^{d}x)}{3^{n}} = T(a^{d}x)$$

for all $a \in B_1$ and all $x \in {}_BM_1$.

The rest of the proof is similar to the proof of Theorem 2.1. So the unique additive mapping $T: {}_{B}M_{1} \rightarrow {}_{B}M_{2}$ is an \mathbb{R} -linear mapping satisfying the conditions given in the statement, as desired.

Similarly, one can prove the stability of the other linear functional equations in Banach modules over a unital Banach algebra.

References

- J. Aczél and J. K. Chung, Integrable solutions of functional equations of a general type, Studia Sci. Math. Hungar. 17(1982), 51-67.
- [2] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973.
- [3] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991), 431-434.
- [4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
- [5] D. H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27(1941), 222-224.
- [6] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Berlin, Basel and Boston, 1998.
- K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl. 246(2000), 627-638.
- [8] K. Kovács, On the characterization of additive and multiplicative functions, Studia Sci. Math. Hungar. 18(1983), 1-11.
- [9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
- [10] H. Schröder, K-theory for real C*-algebras and applications, Pitman Research Notes in Math. Ser., Longman Sci. Tech. Essex, 290(1993).
- [11] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
- [12] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

Department of Mathematics, Chungnam National University, DaeJeon 305-764, South Korea. E-mail: cgpark@math.cnu.ac.kr