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STABILITY OF LINEAR FUNCTIONAL EQUATIONS

IN BANACH MODULES

CHUN-GIL PARK

Abstract. We prove the Hyers-Ulam-Rassias stability of the linear functional equation in Banach

modules over a unital Banach algebra.

1. Introduction

In 1940, S. M. Ulam [12] raised the following question: Under what conditions does
there exist an additive mapping near an approximately additive mapping?

Let E1 and E2 be Banach spaces. Hyers [5] showed that if ǫ > 0 and f : E1 → E2

such that
‖f(x + y) − f(x) − f(y)‖ ≤ ǫ

for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2 such that

‖f(x) − T (x)‖ ≤ ǫ

for all x ∈ E1.
Consider f : E1 → E2 to be a mapping such that f(tx) is continuous in t ∈ R for

each fixed x ∈ E1. Assume that there exist constants ǫ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ(||x||p + ||y||p)

for all x, y ∈ E1. Th. M. Rassias [9] showed that there exists a unique R-linear mapping
T : E1 → E2 such that

‖f(x) − T (x)‖ ≤
2ǫ

2 − 2p
‖x‖p

for all x ∈ E1. Gajda [3] generalized the Rassias’ result.
Throughout this paper, let B be a unital Banach algebra with norm | · |, B1 = {a ∈

B | |a| = 1}, R
+ the set of nonnegative real numbers, and let BM1 and BM2 be left

Banach B-modules with norms || · || and ‖ · ‖, respectively. Let d and s be positive
integers.

In this paper, we are going to prove the Hyers-Ulam-Rassias stability of the linear
functional equation in Banach modules over a unital Banach algebra.
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2. Stability of the Linear Functional Equation in Banach Modules

In this section, we prove the Hyers-Ulam-Rassias stability of the linear functional
equation in Banach modules over a unital Banach algebra.

Theorem 2.1. Let f : BM1 → BM2 be a mapping for which there exists a function

ϕ : BM1 × BM1 → [0,∞) such that

ϕ̃(x, y) =

∞∑

k=0

2−kϕ(2kx, 2ky) < ∞, (i)

‖f(adx + ady) − asf(x) − asf(y)‖ ≤ ϕ(x, y),

‖f(tx + ty) − tf(x) − tf(y) ≤ ϕ(x, y)

for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1. Then there exists a unique R-linear

mapping T : BM1 → BM2 such that

T (adx) = asT (x),

‖f(x) − T (x)‖ ≤
1

2
ϕ̃(x, x) (ii)

for all a ∈ B1 and all x ∈ BM1.

Proof. Let a = 1 ∈ B1. By the Găvruta result [4], it follows from the second
inequality of the statement that there exists a unique additive mapping T : BM1 → BM2

satisfying (ii). The mapping T : BM1 → BM2 was given by T (x) = limn→∞
f(2nx)

2n
for

all x ∈ BM1.
By the assumption, for each a ∈ B1,

‖f(2nadx) − 2asf(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all x ∈ BM1. Using the fact that for each a ∈ B and each z ∈ BM2 ‖az‖ ≤ K|a| · ‖z‖
for some K > 0, one can show that

‖asf(2nx) − 2asf(2n−1x)‖ ≤ K|as| · ‖f(2nx) − 2f(2n−1x)‖ ≤ Kϕ(2n−1x, 2n−1x)

for all a ∈ B1 and all x ∈ BM1. So

‖f(2nadx) − asf(2nx)‖ ≤ ‖f(2nadx) − 2asf(2n−1x)‖ + ‖2asf(2n−1x) − asf(2nx)‖

≤ ϕ(2n−1x, 2n−1x) + Kϕ(2n−1x, 2n−1x)

for all a ∈ B1 and all x ∈ BM1. Thus 2−n‖f(2nadx) − asf(2nx)‖ → 0 as n → ∞ for all
a ∈ B1 and all x ∈ BM1. Hence

T (adx) = lim
n→∞

f(2nadx)

2n
= lim

n→∞

asf(2nx)

2n
= asT (x)

for each a ∈ B1.
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Similarly, one can obtain that

T (tx) = lim
n→∞

f(2ntx)

2n
= lim

n→∞

tf(2nx)

2n
= tT (x)

for each t ∈ R
+. Since t = |t| · t

|t| for each t ∈ R (t 6= 0),

T (t1x + t2y) = T (t1x) + T (t2y) = T (|t1|
t1

|t2|
x) + T (|t2|

t2

|t2|
y)

= |t1|T (
t1

|t1|
x) + |t2|T (

t2

|t2|
y) = |t1|

t1

|t1|
T (x) + |t2|

t2

|t2|
T (y)

= t1T (x) + t2T (y)

for all t1, t2 ∈ R+(t1, t2 6= 0) and all x, y ∈ BM1. And T (x) = T (x − y + y) =
T (x − y) + T (y) for all x ∈ BM1. Hence T (x − y) = T (x) − T (y) for all x ∈ BM1. So
the unique additive mapping T : BM1 → BM2 is an R-linear mapping satisfying the
conditions given in the statement.

Let d = s = 1 in Theorem 2.1. Since T (ax) = aT (x) for all a ∈ B1 and all x ∈ BM1,

T (ax + by) = T (ax) + T (by) = T (|a|
a

|a|
x) + T (|b|

b

|b|
y)

= |a|T (
a

|a|
x) + |b|T (

b

|b|
y) = |a|

a

|a|
T (x) + |b|

b

|b|
T (y)

= aT (x) + bT (y)

for all a, b ∈ B(a, b 6= 0) and all x, y ∈ BM1. And T (0x) = 0T (x) for all x ∈ BM1. So
the R-linear mapping T : BM1 → BM2 is B-linear.

Remark 2.1. If the second inequality in the statement of Theorem 2.1 is replaced
by

‖f(adx + y) − asf(x) − f(y)‖ ≤ ϕ(x, y),

then

‖f(adx + ady) − asf(x) − f(ady)‖ ≤ ϕ(x, ady),

‖f(adx + ady) − f(adx) − asf(y)‖ ≤ ϕ(y, adx),

‖f(adx + ady) − f(adx) − f(ady)‖ ≤ ϕ(adx, ady).

So
‖f(adx + ady) − asf(x) − asf(y)‖ ≤ ϕ(x, ady) + ϕ(y, adx) + ϕ(adx, ady),

hence the result does also hold.

Corollary 2.2. Let f : BM1 → BM2 be a mapping for which there exist constants

ǫ ≥ 0 and p ∈ [0, 1) such that

‖f(adx + ady) − asf(x) − asf(y)‖ ≤ ǫ(||x||p + ||y||p),

‖f(tx + ty) − tf(x) − tf(y)‖ ≤ ǫ(||x||p + ||y||p)
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for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1. Then there exists a unique R-linear

mapping T : BM1 → BM2 such that

T (adx) = asT (x),

‖f(x) − T (x)‖ ≤
2ǫ

2 − 2p
||x||p

for all a ∈ B1 and all x ∈ BM1.

Proof. Define ϕ(x, y) = ǫ(||x||p + ||y||p), and apply Theorem 2.1.

Corollary 2.3. Let E1 and E2 be complex Banach spaces and f : E1 → E2 a mapping

for which there exists a function ϕ : E1 × E1 → [0,∞) such that

ϕ̃(x, y) =

∞∑

k=0

2−kϕ(2kx, 2ky) < ∞,

‖f(µdx + µdy) − µsf(x) − µsf(y)‖ ≤ ϕ(x, y),

‖f(λx + λy) − λf(x) − λf(y)‖ ≤ ϕ(x, y)

for all µ ∈ C1 = T1, all λ ∈ R+, and all x, y ∈ E1. Then there exists a unique R-linear

mapping T : E1 → E2 such that

T (µdx) = µsT (x),

‖f(x) − T (x)‖ ≤
1

2
ϕ̃(x, x)

for all µ ∈ T1 and all x ∈ E1.

Proof. Since C is a unital Banach algebra, the Banach spaces E1 and E2 are consid-
ered as Banach modules over C. By Theorem 2.1, there exists a unique R-linear mapping
T : E1 → E2 satisfying the conditions given in the statement.

Now we prove the Hyers-Ulam-Rassias stability of another linear functional equation
in Banach modules over a unital Banach algebra.

Theorem 2.4. Let f : BM1 → BM2 be a mapping for which there exists a function

ϕ : BM1 × BM1 → [0,∞) satisfying (i) such that

‖asf(x + y) − f(adx) − f(ady)‖ ≤ ϕ(x, y),

‖tf(x + y) − f(tx) − f(tx)‖ ≤ ϕ(x, y)

for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1. Then there exists a unique R-linear

mapping T : BM1 → BM2 satisfying (ii) such that

asT (x) = T (adx)

for all a ∈ B1 and all x ∈ BM1.
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Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique
additive mapping T : BM1 → BM2 satisfying (ii).

By the assumption, for each a ∈ B1,

‖asf(2nx) − 2f(2n−1adx)‖ ≤ ϕ(2n−1x, 2n−1x)

for all x ∈ BM1. So

‖asf(2nx) − f(2nadx)‖ ≤ ‖asf(2nx) − 2f(2n−1adx)‖ + ‖2f(2n−1adx) − f(2nadx)‖

≤ ϕ(2n−1x, 2n−1x) + ϕ(2n−1adx, 2n−1adx)

for all a ∈ B1 and all x ∈ BM1. So 2−n‖asf(2nx) − f(2nadx)‖ → 0 as n → ∞ for all
a ∈ B1 and all x ∈ BM1. Hence

asT (x) = lim
n→∞

asf(2nx)

2n
= lim

n→∞

f(2nadx)

2n
= T (adx)

for all a ∈ B1.
Similarly, one can obtain that

tT (x) = lim
n→∞

tf(2nx)

2n
= lim

n→∞

f(2ntx)

2n
= T (tx)

for each t ∈ R+.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive

mapping T : BM1 → BM2 is an R-linear mapping satisfying (ii) such that

asT (x) = T (adx)

for all a ∈ B1 and all x ∈ BM1, as desired.

Theorem 2.5. Let f : BM1 → BM2 be a mapping for which there exists a function

ϕ : BM1 × BM1 → [0,∞) satisfying (i) such that

‖f(tx + ty) − tf(x) − tf(y)‖ ≤ ϕ(x, y),

‖f(adx) − asf(x)‖ ≤ ϕ(x, x)

for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1. Then there exists a unique R-linear

mapping T : BM1 → BM2 satisfying (ii) such that

T (adx) = asT (x)

for all a ∈ B1 and all x ∈ BM1.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique
additive mapping T : BM1 → BM2 satisfying (ii). Combining the definition of the
mapping T and the second inequality given in the statement yields that

T (adx) = lim
n→∞

f(2nadx)

2n
= lim

n→∞

asf(2nx)

2n
= asT (x)
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for all a ∈ B1 and all x ∈ BM1.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive

mapping T : BM1 → BM2 is an R-linear mapping satisfying the conditions given in the
statement, as desired.

Remark 2.2. If the second inequality in the statement of Theorem 2.1 is replaced
by

‖f(adx + y) − asf(x) − f(y)‖ ≤ ϕ(x, y),

then

‖f(adx + x) − asf(x) − f(x)‖ ≤ ϕ(x, x),

‖f(adx + x) − f(adx) − f(x)‖ ≤ ϕ(adx, x).

So
‖f(adx) − asf(x)‖ ≤ ϕ(x, x) + ϕ(adx, x),

hence the result does also hold.

3. Stability of the Pexider Functional Equation in Banach Modules

In this section, we prove the Hyers-Ulam-Rassias stability of the Pexider functional
equation in Banach modules over a unital Banach algebra.

Theorem 3.1. Let f , g, h : BM1 → BM2 be mappings for which there exists a

function ϕ : BM1 \ {0} × BM1 \ {0} → [0,∞) such that

ϕ̃(x, y) :=

∞∑

k=0

3−kϕ(3kx, 3ky) < ∞, (iii)

‖f(adx + ady) − asg(x) − ash(y)‖ ≤ ϕ(x, y),

‖f(tx + ty) − tg(x) − th(y)‖ ≤ ϕ(x, y)

for all a ∈ B1, all t ∈ R
+, and all x, y ∈ BM1 \ {0}. Then there exists a unique R-linear

mapping T : BM1 → BM2 such that

T (adx) = asT (x),

‖f(x) − f(0) − T (x)‖ ≤
1

3
ϕ̃(

x

2
,
−x

2
) +

1

3
ϕ̃(

−x

2
,
x

2
) +

1

3
ϕ̃(

x

2
,
x

2
) +

2

3
ϕ̃(

−x

2
,
x

2
)

+
1

3
ϕ̃(

−x

2
,
3x

2
) +

1

3
ϕ̃(

3x

2
,
−x

2
) +

1

3
ϕ̃(

3x

2
,
3x

2
) (iv)

for all a ∈ B1 and all x ∈ BM1 \ {0}.

Proof. Put a = 1. By [7, Theorem 2.2], there exists a unique additive mapping
T : BM1 → BM2 satisfying (iv). The mapping T : BM1 → BM2 was given by

T (x) = lim
n→∞

f(3nx)

3n
= lim

n→∞

g(3nx)

3n
= lim

n→∞

h(3nx)

3n
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for all x ∈ BM1. For each fixed a ∈ B1, it follows from the second inequality of the

statement and the definition of the mapping T that

T (adx) = lim
n→∞

f(3nadx)

3n
= lim

n→∞

asg(3nx)

3n
= asT (x)

for all a ∈ B1 and all x ∈ BM1.

Similarly, one can obtain that

T (tx) = lim
n→∞

f(3ntx)

3n
= lim

n→∞

tf(3nx)

3n
= tT (x)

for each t ∈ R+.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique additive

mapping T : BM1 → BM2 is an R-linear mapping satisfying the conditions given in the

statement, as desired.

Corollary 3.2. Let p < 1, and f , g, h : BM1 → BM2 mappings such that

‖f(adx + ady) − asg(x) − ash(y)‖ ≤ ||x||p + ||y||p,

‖f(tx + ty) − tg(x) − th(y)‖ ≤ ||x||p + ||y||p

for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1 \ {0}. Then there exists a unique R-linear

mapping T : BM1 → BM2 such that

‖f(x) − f(0) − T (x)‖ ≤
4(3 + 3p)

2p(3 − 3p)
||x||p, T (adx) = asT (x)

for all a ∈ B1 and all x ∈ BM1 \ {0}.

Proof. Define ϕ(x, y) = ||x||p + ||y||p, and apply Theorem 3.1.

Now we prove the Hyers-Ulam-Rassias stability of another Pexider functional equation

in Banach modules over a unital Banach algebra.

Theorem 3.3. Let f , g, h : BM1 → BM2 be mappings for which there exists a

function ϕ : BM1 \ {0} × BM1 \ {0} → [0,∞) satisfying (iii) such that

‖asf(x + y) − g(adx) − h(ady)‖ ≤ ϕ(x, y),

‖tf(x + y) − g(tx) − h(ty)‖ ≤ ϕ(x, y)

for all a ∈ B1, all t ∈ R+, and all x, y ∈ BM1 \ {0}. Then there exists a unique R-linear

mapping T : BM1 → BM2 satisfying (iv) such that

asT (x) = T (adx)

for all a ∈ B1 all x ∈ BM1 \ {0}.
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Proof. By the same reasoning as the proof of Theorem 3.1, there exists a unique

additive mapping T : BM1 → BM2 satisfying (iv). For each fixed a ∈ B1, it follows from

the first inequality of the statement and the definition of the mapping T that

asT (x) = lim
n→∞

asf(3nx)

3n
= lim

n→∞

g(3nadx)

3n
= T (adx)

for all a ∈ B1 and all x ∈ BM1.

The rest of the proof is similar to the proof of Theorem 2.1. So the unique additive

mapping T : BM1 → BM2 is an R-linear mapping satisfying the conditions given in the
statement, as desired.

Similarly, one can prove the stability of the other linear functional equations in Banach

modules over a unital Banach algebra.
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[8] K. Kovács, On the characterization of additive and multiplicative functions, Studia Sci.

Math. Hungar. 18(1983), 1-11.

[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.

Math. Soc. 72(1978), 297-300.
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