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OSCILLATION RESULTS FOR SECOND ORDER HALF-LINEAR

NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH “MAXIMA"

SRINIVASAN SELVARANGAM, BOSE RANI AND ETHIRAJU THANDAPANI

Abstract. In this paper, we present some oscillation criteria for the second order half-

linear neutral delay differential equation with “maxima" of the from

(r (t)((x(t)+p(t)x(τ(t)))′)α)′+q(t) max
[σ(t ),t ]

xα(s) = 0

under the condition
∫∞

t0

1
r 1/α(t )

d t <∞. The results obtained here extend and complement

to some known results in the literature. Examples are provided in support of our results.

1. Introduction

This paper deals with the oscillation behavior of second order half-linear neutral delay

differential equation with “maxima" of the form

(r (t )(z ′(t ))α)′+q(t ) max
[σ(t ),t ]

xα(s)= 0, t ≥ t0 ≥ 0, (1.1)

where z(t ) = x(t )+p(t )x(τ(t )), subject to the following conditions:

(H1) α≥ 1 is a ratio of odd positive integers;

(H2) r (t )∈C 1([t0,∞), (0,∞)), and p(t )∈C 2([t0,∞),R) with 0≤ p(t )≤ p1 < 1;

(H3) τ(t ) ∈C 1([t0,∞),R), τ(t )≤ t and limt→∞τ(t ) =∞;

(H4) σ(t )∈C 1([t0,∞),R), σ(t )≤ t , σ′(t )> 0 and limt→∞σ(t ) =∞;

(H5) q(t ) ∈ C 1([t0,∞), [0,∞)) with q(t ) is not identically zero on any ray of the form [Tx ,∞)

for any Tx ≥ t0.

By a solution of equation (1.1), we mean a continuous real valued function x(t ) defined on the

interval [Tx ,∞) for some Tx ≥ t0 such that z(t ) and r (t )(z ′(t ))α are differentiable on [Tx ,∞)
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and satisfying the equation (1.1) for all t ≥ Tx . A solution of equation (1.1) is said to be oscil-

latory if it has infinitely many zeros on the ray [Tx ,∞), otherwise it is called nonoscillatory.

Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory.

Differential equations with “maxima” arise naturally when solving practical and phe-

nomenon problems, in particular, in those which appear in the study of systems with au-

tomatic regulation, and automatic control of various technical systems. It often occurs when

the law of regulation depends on maximum values of some regulated state parameters over

certain time intervals, see for example [2] and the references cited therein.

The problem of oscillation of differential equations without “maxima” has been widely

studied by many authors, who have provided many methods for obtaining oscillatory and

asymptotic behavior of solutions of various types of differential equations, see for example

[7, 8, 9, 10, 11, 12, 13, 14, 19]. However, the oscillation theory of neutral differential equations

with “maxima” received less attention eventhough such equations arise in many applications,

see for example [1, 3, 4, 5, 6, 15, 16, 17, 18, 20], and the references contained therein.

In [4, 6, 17, 20], the authors established some conditions for all solutions of equation

(1.1) with “maxima” are oscillatory, when α = 1 and r (t ) ≡ 1. In [1], and [16] the authors

obtained some sufficient conditions for the oscillation of solutions of equation (1.1) to be

either oscillatory or tends to zero as t →∞. Motivated by these observations, in this paper,

we obtain some new sufficient conditions which guarantee that all solutions of equation (1.1)

are oscillatory. Therefore, the results presented in this paper improve and complement to the

results in [1, 4, 6, 16, 17, 20].

In Section 2, we present some new oscillation criteria for equation (1.1), and in Section 3

we provide some examples to illustrate the main results.

2. Oscillation criteria

In this section, we derive some new sufficient conditions for the oscillation of all solu-

tions of equation (1.1). Define A(t ) =
∫

∞

t
ds

r 1/α(s)
, and assume A(t0)<∞.

Lemma 2.1. If x(t ) is an eventually positive solution of equation (1.1), then z(t ) satisfies one of

the following two cases:

(I) z(t )> 0, z ′(t ) > 0 and (r (t )(z ′(t ))α)′ ≤ 0;

(II) z(t )> 0, z ′(t ) < 0 and (r (t )(z ′(t ))α)′ ≤ 0.

Proof. Let x(t ) be an eventually positive solution of equation (1.1). Then there exists a t1 ≥ t0

such that x(t ) > 0, x(τ(t )) > 0 and x(σ(t )) > 0 for all t ≥ t1. Then z(t ) > 0 for all t ≥ t1. Now it

follows from equation (1.1) that

(r (t )(z ′(t ))α)′ =−q(t ) max
σ(t ),t ]

xα(s) ≤ 0, t ≥ t1. (2.1)
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Then r (t )(z ′(t ))α is nonincreasing and r (t )(z ′(t ))α is of one sign eventually. Hence z ′(t ) is of

one sign eventually, since r (t ) is positive. This completes the proof. ���

Lemma 2.2. If x(t ) is an eventually negative solution of equation (1.1), then z(t ) satisfies one

of the following two cases:

(I) z(t )< 0, z ′(t )< 0 and (r (t )(z ′(t ))α)′ ≥ 0;

(II) z(t )< 0, z ′(t )> 0 and (r (t )(z ′(t ))α)′ ≥ 0.

Proof. The proof is similar to that of Lemma 2.1, and hence the details are omitted. ���

Lemma 2.3. The function x(t ) is a negative solution of equation (1.1) if and only if −x(t ) is a

positive solution of equation

(r (t )(x(t )+p(t )x(τ(t ))′)α)′+q(t ) min
[σ(t ),t ]

xα(s) = 0. (2.2)

Proof. Let x(t ) be a negative solution of equation (1.1). By taking y(t ) = −x(t ), the equation

(1.1) becomes

(r (t )(−y(t )−p(t )y(τ(t ))′)α)′+q(t ) max
[σ(t ),t ]

(−yα(s)) = 0,

or

(r (t )(y(t )+p(t )y(τ(t ))′)α)′+q(t ) min
[σ(t ),t ]

yα(s) = 0.

Therefore y(t ) is a positive solution of the equation (2.2). Similarly if −x(t ) is a positive solu-

tion of equation (2.2), we can see easily that x(t ) is a positive solution of equation (1.1). This

completes the proof. ���

Lemma 2.4. Let α≥ 1, be a ratio of odd positive integers. Then

−Cu
α+1
α +Du ≤

αα

(α+1)α+1

Dα+1

Cα
, C > 0. (2.3)

Proof. The proof can be found in [19]. ���

Theorem 2.5. Assume conditions (H1)−(H5) and A(t0) < ∞ hold. If
p(t )A(τ(t ))

A(t ) < 1 for t ≥ t0,

and there exists a positive, non-decreasing and differentiable function ρ(t ) such that

lim
t→∞

sup

∫t

t0

[

ρ(s)q(s) max
[σ(s),s]

(

1−p(u)
)α

−
(ρ′(s))α+1r (s)

(ρ(s))α(α+1)α+1

]

d s =∞, (2.4)

and

lim
t→∞

sup

∫t

t0

[

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
−

( α

α+1

)α+1 1

r 1/α(s)A(s)

]

d s =∞, (2.5)

then every solution of equation (1.1) is oscillatory.
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Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality, we

may assume that x(t ) is a positive solution of equation (1.1), since the proof for the opposite

case is similar. Then there exists a t1 ≥ t0 such that x(t ) > 0, x(τ(t )) > 0, and x(σ(t )) > 0 for all

t ≥ t1, and z(t ) satisfies the two cases as stated in Lemma 2.1 for all t ≥ t1.

Case(I): In this case, we have, z(t ) > 0, z ′(t ) > 0 and (r (t )(z ′(t ))α)′ ≤ 0 for all t ≥ t1. Then from

the properties of z(t ), and τ(t )≤ t we have

x(t ) = z(t )−p(t )x(τ(t )) ≥ z(t )−p(t )z(τ(t ))

≥ z(t )−p(t )z(t )= (1−p(t ))z(t )

for all t ≥ t1. Therefore

max
[σ(t ),t ]

xα(s)≥ max
[σ(t ),t ]

(1−p(s))αzα(s) = zα(t ) max
[σ(t ),t ]

(1−p(s))α, t ≥ t1. (2.6)

Now using (2.6) in equation (1.1), we obtain

(r (t )(z ′(t ))α)′+q(t )zα(t ) max
[σ(t ),t ]

(1−p(s))α ≤ 0 for all t ≥ t1.

Define a function w (t ) by

w (t )=
ρ(t )r (t )(z ′(t ))α

zα(t )
for all t ≥ t1.

Then w (t )> 0 for all t ≥ t1, and

w ′(t ) =
ρ(t )(r (t )(z ′(t ))α)′

zα(t )
+
ρ′(t )r (t )(z ′(t ))α

zα(t )
−
αρ(t )r (t )(z ′(t ))α+1

zα+1(t )

≤ −ρ(t )q(t ) max
[σ(t ),t ]

(1−p(s))α+
ρ′(t )

ρ(t )
w (t )−

αw 1+1/α(t )

ρ1/α(t )r 1/α(t )

≤ −ρ(t )q(t ) max
[σ(t ),t ]

(1−p(s))α+
(ρ′(t ))α+1r (t )

(α+1)α+1ρα(t )
(2.7)

where we have used Lemma 2.4. Now integrating the inequality (2.7) from t1 to t , we get

∫t

t1

[

ρ(s)q(s) max
[σ(s),s]

(1−p(u))α−
(ρ′(s))α+1r (s)

(α+1)α+1ρα(s)

]

d s ≤ w (t1)−w (t )< w (t1).

Now taking limit supremum as t →∞ in the last inequality we obtain a contradiction to (2.4).

Case(II): In this case z(t ) > 0, z ′(t ) < 0 and (r (t )(z ′(t ))α)′ ≤ 0 for all t ≥ t1. Define a function

v(t ) by

v(t )=
r (t )(z ′(t ))α

zα(t )
for all t ≥ t1. (2.8)
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Then v(t )< 0 for all t ≥ t1. Since r (t )(z ′(t ))α is nonincreasing we have

z ′(s) ≤
r 1/α(t )

r 1/α(s)
for all s ≥ t .

Integrating the last inequality from t to l , we get

z(l )≤ z(t )+ r 1/α(t )z ′(t )

∫l

t

1

r 1/α(s)
d s.

Letting l →∞ in the last inequality, and using the fact z(t ) is positive decreasing, we have

z(t )+ r 1/α(t )z ′(t )A(t )≥ 0. (2.9)

Using (2.8) and (2.9), we obtain

v(t )Aα(t ) ≥−1 for all t ≥ t1. (2.10)

From (2.9), we see that
z(t )

A(t )
is nondecreasing and since τ(t ) ≤ t , we have

x(t )= z(t )−p(t )z(τ(t ))≥
(

1−
p(t )A(τ(t ))

A(t )

)

z(t ), t ≥ t1.

Using the last inequality in equation (1.1), we have

(r (t )(z ′(t ))α)′+q(t )zα(t ) max
[σ(t ),t ]

(

1−
p(t )A(τ(t ))

A(t )

)α
≤ 0, t ≥ t1. (2.11)

Since v(t )< 0 for all t ≥ t1 and α≥ 1 is a ratio of odd positive integers, we have

(z ′(t )

z(t )

)α+1
=

[

−

(−v(t )

r (t )

)1/α]α+1
=

(−v(t )

r (t )

)
α+1
α

for all t ≥ t1. From this and (2.8) and (2.11), we obtain

v ′(t ) =
(r (t )(z ′(t ))α)′

zα(t )
−
αr (t )(z ′(t ))α+1

zα+1(t )
(2.12)

≤ −q(t ) max
[σ(t ),t ]

(

1−
p(s)A(τ(s))

A(s)

)α
−
α(−v(t ))

α+1
α

r 1/α(t )
(2.13)

for all t ≥ t1. Multiplying the last inequality by Aα(t ) and then integrating the resulting in-

equality from t1 to t and using (2.10), we get

α

∫t

t1

v(s)Aα−1(s)

r 1/α(s)
d s +

∫t

t1

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s +α

∫t

t1

(−v(s))
α+1
α Aα(s)

r 1/α(s)
d s

≤ v(t1)Aα(t1)−v(t )Aα(t )≤ v(t1)Aα(t1)+1.
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That is,

∫t

t1

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s +

∫t

t1

[αAα−1(s)

r 1/α(s)
v(s)+

αAα(s)

r 1/α(s)
v

α+1
α (s)

]

d s

≤ v(t1)Aα(t1)+1. (2.14)

Set p =
α+1
α , q =α+1, a =−(α+1)α/α+1 v(t )A

α2

α+1 (t ) and b =
α

(α+1)α/α+1 A
−1
α+1 (t ). Then p > 1, q > 1

and 1
p +

1
q = 1. Now using the Young’s inequality |ab| ≤ 1

p |a|
p +

1
q |b|

q , we have

−αv(t )Aα−1(t )

r 1/α(t )
≤

αv
α+1
α (t )Aα(t )

r 1/α(t )
+

( α

α+1

)α+1 1

r 1/α(t )A(t )
. (2.15)

Substituting (2.15) in (2.14), we get

∫t

t1

[

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
−

( α

α+1

)α+1 1

r 1/α(s)A(s)

]

d s ≤ v(t1)Aα(t1)+1.

Taking limit supremum as t → ∞, we obtain a contradiction with (2.5). Now the proof is

completed. ���

Theorem 2.6. Let conditions (H1)−(H5) and A(t0) < ∞ be hold. Assume that there exists a

positive, non-decreasing and differentiable function ρ(t ) such that condition (2.4) holds. If

lim
t→∞

sup

∫t

t0

[

K q(s)Aα(s)−
( α

α+1

)α+1 1

r 1/α(s)A(s)

]

d s =∞ (2.16)

holds for every positive constant K , then every solution of equation (1.1) is oscillatory.

Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality let us

assume that x(t ) is a positive solution of equation (1.1), since the proof for the opposite case

is similar. Then there exists a t1 ≥ t0 such that x(t )> 0, x(τ(t )) > 0, and x(σ(t )) > 0 for all t ≥ t1,

and z(t ) satisfies the two cases stated as in Lemma 2.1 for all t ≥ t1.

Case(I): If z(t ) satisfies Case (I) of Lemma 2.1 then proceeding as in Case (I) of Theorem 2.5

we get a contradiction to (2.4).

Case(II): In this case z(t ) > 0, z ′(t ) < 0 and (r (t )(z ′(t ))α)′ ≤ 0 for all t ≥ t1. Now defining the

function v(t ) as in Theorem 2.5, we get (2.9), (2.10) and (2.13). Since z(t ) is positive decreasing

we have limt→∞ z(t ) = c ≥ 0. We claim that c > 0. If not then limt→∞ z(t ) = 0, since 0 < x(t ) ≤

z(t ), which is a contradiction. Therefore for every ǫ> 0, we have c < z(t )< c+ǫ. Now choosing

0 < ǫ<
(1−p1)c

p1
, we have

x(t )= z(t )−p(t )x(τ(t ))≥ z(t )−p1z(τ(t )) ≥ c −p1(c +ǫ)≥ mz(t )
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where m =
c−p1(c+ǫ)

c+ǫ . Therefore, from (2.12), we have

v ′(t ) ≤
−q(t )

zα(t )
max

[σ(t ),t ]
mαzα(s)−

α

r 1/α(t )
(−v(t ))

α+1
α

≤
−mαq(t )zα(σ(t ))

zα(t )
−

α

r 1/α(t )
(−v(t ))

α+1
α

≤ −mαq(t )−
α

r 1/α(t )
(−v(t ))

α+1
α (2.17)

where we have used the monotonicity of z(t ) and σ(t ) ≤ t . Then the rest of the proof is similar

to that of Case (II) of Theorem 2.5, so it is omitted. The proof is now completed. ���

Theorem 2.7. Let conditions (H1)−(H5) and A(t0) < ∞ be hold. Assume that there exists a

positive, non-decreasing and differentiable function ρ(t ) such that (2.4) holds. If
p(t )A(τ(t ))

A(t ) < 1

for t ≥ t0, and

∫

∞

t0

1

r 1/α(t )

[

∫t

t0

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s

]
1
α

d t =∞ (2.18)

then every solution of equation (1.1) is oscillatory.

Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality we

may assume that x(t ) is a positive solution of equation (1.1), since the proof for the opposite

case is similar. Then there exists a t1 ≥ t0 such that x(t ) > 0, x(τ(t )) > 0 for all t ≥ t1 and z(t )

satisfies the two cases stated as in Lemma 2.1 for all t ≥ t1.

Case(I): If z(t ) satisfies Case(I) of Lemma 2.1 then proceeding as in Case(I) of Theorem 2.5,

we get a contradiction to (2.4).

Case(II): Proceeding as in the Case (II) of Theorem 2.5 we obtain (2.11). Since z(t )
A(t ) is non

decreasing there exists a constant M > 0 such that z(t )
A(t ) > M . Using the last inequality in (2.11)

we have

−(r (t )(z ′(t ))α)′ ≥ Mαq(t )Aα(t ) max
[σ(t ),t ]

(

1−
p(s)A(τ(s))

A(s)

)α
.

Integrating the last inequality from t2 ≥ t1 to t , we get

−r (t )(z ′(t ))α ≥

∫t

t2

Mαq(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s − r (t2)(z ′(t2))α.

Since
p(t )A(τ(t ))

A(t ) < 1 for t ≥ t0, we have

−z ′(t )≥
M

r 1/α(t )

[

∫t

t2

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s

]
1
α

.

Integrating the last inequality t2 to t we get

z(t2) ≥ M

∫t

t2

1

r 1/α(y)

[

∫y

t2

q(s)Aα(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
d s

]
1
α

d y.
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Letting t →∞ we get a contradiction with (2.18). This completes the proof. ���

Finally, by using a generalized Ricatti type transformation we obtain the following theo-

rem.

Theorem 2.8. Let conditions (H1)−(H5) and A(t0) < ∞ be hold. Assume that there exists a

positive, non-decreasing and differentiable function ρ(t ) such that (2.4) holds. If
p(t )A(τ(t ))

A(t ) < 1

for t ≥ t0, and

lim
t→∞

sup

∫t

t0

[

q(s)A(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
−

1

r 1/α(s)Aα(s)

(

α−1+
1

(α+1)α+1

)]

d s =∞

(2.19)

then every solution of equation (1.1) is oscillatory.

Proof. Let x(t ) be a nonoscillatory solution of equation (1.1). Without loss of generality let us

assume that x(t ) is a positive solution of equation (1.1), since the proof for the opposite case

is similar. Then there exists a t1 ≥ t0 such that x(t )> 0, x(τ(t )) > 0 and x(σ(t )) > 0 for all t ≥ t1.

Then the corresponding function z(t ) satisfies the two cases stated as in Lemma 2.1.

Case(I): If z(t ) satisfies Case(I) of Lemma 2.1 then proceeding as in Case(I) of Theorem 2.5,

we get a contradiction to (2.4).

Case(II): Proceeding as in the Case (II) of Theorem 2.5 we have (2.9). From this inequality we

obtain

zα(t )+ r (t )(z ′(t ))αAα(t )≥ 0.

Define a function v(t ) by

v(t )= A(t )
( 1

Aα(t )
+

r (t )(z ′(t ))α

zα(t )

)

, t ≥ t1.

Then v(t )≥ 0 for all t ≥ t1, and

v ′(t ) =
−1

r 1/α(t )A(t )
v(t )+ A(t )

( α

r 1/α(t )Aα+1(t )
+

(r (t )(z ′(t ))α)′

zα(t )
−
αr (t )(z ′(t ))α+1

zα+1(t )

)

≤
−1

r 1/α(t )A(t )
v(t )+

α

r 1/α(t )Aα(t )
−q(t )A(t ) max

[σ(t ),t ]

(

1−
p(s)A(τ(s))

A(s)

)α

−
αA(t )

r 1/α(t )

( 1

Aα(t )
−

v(t )

A(t )

)
α+1
α

≤
1

r 1/α(t )

( 1

Aα(t )
−

v(t )

A(t )

)

+
α−1

r 1/α(t )Aα(t )
−q(t )A(t ) max

[σ(t ),t ]

(

1−
p(s)A(τ(s))

A(s)

)α

−
αA(t )

r 1/α(t )

( 1

Aα(t )
−

v(t )

A(t )

)
α+1
α

.
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Now using Lemma 2.4 with C =
αA(t )
r 1/α(t )

, D =
1

r 1/α(t )
and u =

1
Aα(t ) −

v(t )
A(t ) , we have

v ′(t )≤
1

(α+1)α+1

1

r 1/α(t )Aα(t )
+

α−1

r 1/α(t )Aα(t )
−q(t )A(t ) max

[σ(t ),t ]

(

1−
p(s)A(τ(s))

A(s)

)α
.

Integrating the last inequality from t1 to t we obtain

∫t

t1

[

q(s)A(s) max
[σ(s),s]

(

1−
p(u)A(τ(u))

A(u)

)α
−

1

(α+1)α+1r 1/α(s)Aα(s)
−

α−1

r 1/α(s)Aα(s)

]

d s

≤ v(t1)−v(t ) ≤ v(t1).

Now taking limit supremum as t tends to ∞ in the last inequality, we obtain a contradiction

with (2.19). Now the proof is completed. ���

Remark 2.1. Let p(t ) = 0 and σ(t ) = t . Then equation (1.1) reduced to a second order differ-

ential equation of the form

(r (t )(x ′(t ))α)′+q(t )xα(t )= 0. (2.20)

In this case conditions (2.4) and (2.19) reduced to

lim
t→∞

sup

∫t

t0

[

ρ(s)q(s)−
r (s)(ρ′(s))α+1

(ρ(s))α(α+1)α+1

]

d s =∞,

and

lim
t→∞

sup

∫t

t0

[

q(s)A(s)−
1

r 1/α(s)A(s)

(

α−1+
1

(α+1)α+1

)]

d s =∞.

This result is new and complement to the existing results [7, 9, 10, 11] for the equation (2.20).

3. Examples

In this section, we present three examples to illustrate the main results.

Example 3.1. Consider the following second order neutral differential equation of the form

(t 6((x(t )+
1

3
x(

t

2
))′)3)′+ t 4 max

[ t
2

,t ]
x3(s) = 0, t ≥ 1. (3.1)

Here r (t )= t 6, p(t )= 1
3

, q(t )= t 4, σ(t ) = τ(t ) = t
2

, and α= 3. Then A(t )= 1
t

. By choosing ρ(t )=

1, the conditions (2.4) and (2.5) are clearly satisfied. Hence by Theorem 2.5 every solution of

equation (3.1) is oscillatory.

Example 3.2. Consider the following second order neutral differential equation of the form

(t 2(x(t )+
1

3
x(

t

2
))′)′+λmax

[ t
2

,t ]
x(s) = 0, t ≥ 1. (3.2)

Here r (t ) = t 2, p(t ) = 1
3 , q(t ) = λ ∈ (0,∞), σ(t ) = τ(t ) = t

2 , and α= 1. Then A(t ) = 1
t . By choos-

ing ρ(t ) = 1, the condition (2.4) is clearly satisfied. Further, the condition (2.19) is satisfied

when λ>
3
4 . Therefore by Theorem 2.8 every solution of equation (3.2) is oscillatory if λ>

3
4 .
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Example 3.3. Consider the following second order neutral differential equation of the form

(t 2(x(t )+p0x(
t

2
))′)′+λ max

[σ(t ),t ]
x(s)= 0, t ≥ 1. (3.3)

where p0 ∈ [0, 1
2

), q(t ) = λ ∈ (0,∞), and α = 1. Then A(t ) = 1
t

. By taking ρ(t ) = 1, we see that

condition (2.4) is satisfied and condition (2.19) is satisfied when λ >
1

4(1−2p0) . Therefore by

Theorem 2.8, every solution of equation (3.3) is oscillatory if λ>
1

4(1−2p0) .

Remark 3.4. Note that when p0 = 0 and σ(t ) = t , then equation (3.3) is reduced to that of

(2.20). Then we see that λ> 1
4

is the most fundamental and obvious condition for oscillation

of all solutions of the Euler type differential equation (2.20). The results obtained in this paper

are applicable to both half-linear equations and linear equations since we assume α≥ 1.
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