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UNIQUENESS OF CERTAIN TYPE OF DIFFERENTIAL-DIFFERENCE

AND DIFFERENCE POLYNOMIALS

ABHIJIT BANERJEE AND SUJOY MAJUMDER

Abstract. In this paper we consider certain difference and differential-difference polyno-

mials sharing some polynomial and improve a number of results in [9], [11] and [17]. In

particular we point out a gap in the argument in the proof of the main results in [11] and

rectifying the same we improve and extend the result to a large extent.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic functions

in the complex plane.

We adopt the standard notations of value distribution theory (see [4]). For a non-constant

meromorphic function f , we denote by T (r, f ) the Nevanlinna characteristic of f and by

S(r, f ) any quantity satisfying S(r, f ) = o{T (r, f )} as r →∞ possibly outside a set of finite linear

measure. We denote by T (r ) the maximum of T (r, f ) and T (r, g ). The notation S(r ) denotes

any quantity satisfying S(r )= o(T (r )) as r −→∞, outside of a possible exceptional set of finite

logarithmic measure.

A meromorphic function a(z) is called a small function with respect to f , provided that

T (r, a) = S(r, f ). The order and hyper order of meromorphic function f are defined respec-

tively by

σ( f ) = limsup
r−→∞

log T (r, f )

log r

and

σ2( f ) = limsup
r−→∞

log log T (r, f )

log r
.

Let f (z) and g (z) be two non-constant meromorphic functions. Let a(z) be a small function

with respect to f (z) and g (z). We say that f (z) and g (z) share a(z) CM (counting multiplici-

ties) if f (z)−a(z) and g (z)−a(z) have the same zeros with the same multiplicities and we say

that f (z), g (z) share a(z) IM (ignoring multiplicities) if we do not consider the multiplicities.
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Define the difference of f (z) by

∆c f (z) = f (z +c)− f (z).

In 2010, Qi et al. [10] proved the following uniqueness theorem regarding shift operator.

Theorem A. Let f and g be transcendental entire functions of finite order, let c be a non-zero

complex constant, and let n ≥ 6 be an integer. If f n(z) f (z + c) and g n(z)g (z + c) share z CM,

then f (z) ≡ t g (z) for a constant t satisfying t n+1 = 1.

In 2011 Zhang-Cao and Li [17] proved the difference counterparts of the above theorem

in the following manner.

Theorem B. Let f and g be two non-constant entire functions of finite order, and let n ≥ 5 be an

integer. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0. If

f n(z)∆c f (z) and g n(z)∆c g (z) share z CM and g (z +c) and g (z) share 0 CM, then f (z) ≡ t g (z),

where t is a constant satisfying t n+1 = 1.

Theorem C. Let f and g be non-constant entire functions of finite order, and let n ≥ 5 be an

integer. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0. If

f n(z)∆c f (z) and g n(z)∆c g (z) share 1 CM and g (z +c) and g (z) share 0 CM, then

(1) f (z) ≡ t g (z) for a constant t satisfying t n+1 = 1;

(2) f (z) = c1eaz and g (z) = c2e−az , where a, c1 and c2 are non-zero constants such that

(c1c2)n+1(eac +e−ac −2) =−1.

In 2012 Liu-Liu and Cao [9] first considered the value distribution of the differential-

difference counterpart of the above theorems and obtained the following result.

Theorem D. Let f (z) be a transcendental entire function of finite order, not a periodic function

with period c and α(z) be a small function with respect to f (z). If n ≥ k+3, then the difference-

differential polynomial [ f n(z)∆c f (z)](k) −α(z) has infinitely many zeros.

In 2013, Wu [11] obtained the uniqueness result corresponding to Theorem D as follows.

Theorem E. Let f (z) and g (z) be transcendental entire functions of σ2( f ) < 1, n ≥ 2k +

7. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0. If

[ f n(z)∆c f (z)](k) and [g n(z)∆c g (z)](k) share 1 CM, then f (z) ≡ t g (z), where t is a constant sat-

isfying t n+1 = 1.
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Theorem F. Let f (z) and g (z) be transcendental entire functions of σ2( f ) < 1, n ≥ 5k +

13. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0.

If [ f n(z)∆c f (z)](k) and [g n(z)∆c g (z)](k) share 1 IM, then f (z) ≡ t g (z), where t is a constant

satisfying t n+1 = 1.

We see that considering k-th derivative of the difference form in Theorem C the condition

g (z + c) and g (z) share 0 CM has been removed here by the author in [11], but we point out

some gaps in the proof of Theorem 5 [11]. In p. 7, at the starting of the second stanza that

is the line after equation (62), the author used T (r,
f

g ) = T (r, f )+T (r, g )+O(1) and putting

this expression in (62) the author derived the conclusion of the theorem. But we know that

T (r,
f

g ) ≤ T (r, f )+T (r, g )+O(1). So it will be interesting to find the correct form of Theorems

E-F. Here we have dealt with this problem. In the paper, in the corrected version of Theorems

E and F we have reduced the lower bound of n. We diminish the lower bound in Theorem

D as well. Finally combining Theorems C-D, we present a single theorem where sharing of a

polynomial under much relaxed sharing hypothesis has been taken under consideration and

thus we improve and unify Theorems C-D in a more compact form.

The relaxation has been done on the basis of the notion of weighted sharing obtained by

I. Lahiri as follows.

Definition 1. [8] Let k ∈ N∪ {0}∪ {∞}. For a ∈ C∪ {∞} we denote by Ek (a; f ) the set of all

a-points of f where an a-point of multiplicity m is counted m times if m ≤ k and k+1 times if

m > k . If Ek (a; f ) =Ek (a; g ), we say that f , g share the value a with weight k .

The definition implies that if f , g share a value a with weight k , then z0 is an a-point of

f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k) and z0

is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with multiplicity

n(> k), where m is not necessarily equal to n.

We write f , g share (a,k) to mean that f , g share the value a with weight k . Clearly if f ,

g share (a,k) then f , g share (a, p) for any integer p , 0 ≤ p < k . Also we note that f , g share a

value a IM or CM if and only if f , g share (a,0) or (a,∞) respectively.

We now present the following theorems which are the main results of the paper.

Theorem 1. Let f (z) be a transcendental entire function of finite order such that ∆c f (z) 6≡ 0

and α(z) be a small function with respect to f (z). If n ≥ k +2, then the difference-differential

polynomial [ f n(z)∆c f (z)](k) −α(z) has infinitely many zeros.

Theorem 2. Let f (z) and g (z) be transcendental entire functions of finite order and n, k be

two positive integers. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0 and

∆c g (z) 6≡ 0. Let [ f n(z)∆c f (z)](k) and [g n(z)∆c g (z)](k) share (1,k1) and one of the following

conditions holds:
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(i) k1 ≥ 2 and n > 2k +5;

(ii) k1 = 1 and n >
5k
2
+6;

(iii) k1 = 0 and n > 5k +11.

Then one of the following two conclusions hold:

(1) f n(z)∆c f (z) ≡ g n(z)∆c g (z);

(2) f (z)= c1eaz and g (z) = c2e−az , where a, c1 and c2 are non-zero constants such that

(−1)k (c1c2)n+1[(n +1)a]2k(2−eac −e−ac) = 1.

Theorem 3. Let f (z) and g (z) be transcendental entire functions of finite order and n be a posi-

tive integer such that n ≥ 5. Suppose that c is a non-zero complex constant such that ∆c f (z) 6≡ 0

and ∆c g (z) 6≡ 0. Let f n(z)∆c f (z)− p(z) and g n(z)∆c g (z)− p(z) share (0,2), where p(z) be a

nonzero polynomial such that deg(p)≤ n −1 and g (z), g (z +c) share 0 CM. Now

(1) when p(z) is a non-constant polynomial, then f (z) ≡ t g (z) for a constant t satisfying

t n+1 = 1;

(2) when p(z) is a nonzero constant d, then one of the following two conclusions hold:

(i) f (z) ≡ t g (z) for a constant t satisfying t n+1 = 1;

(ii) f (z) = c1eaz and g (z) = c2e−az , where a, c1 and c2 are non-zero constants such that

(c1c2)n+1(eac +e−ac −2) =−d 2.

We now explain following definitions and notations which are used in the paper.

Definition 2 ([5]). Let a ∈C∪{∞}. For p ∈N we denote by N (r, a; f |≤ p) the counting function

of those a-points of f (counted with multiplicities) whose multiplicities are not greater than

p . By N (r, a; f |≤ p) we denote the corresponding reduced counting function.

In an analogous manner we can define N (r, a; f |≥ p) and N (r, a; f |≥ p).

Definition 3 ([8]). Let k ∈N∪ {∞}. We denote by Nk(r, a; f ) the counting function of a-points

of f , where an a-point of multiplicity m is counted m times if m ≤ k and k times if m > k .

Then Nk (r, a; f ) = N (r, a; f )+N (r, a; f |≥ 2)+·· ·+N (r, a; f |≥ k). Clearly N1(r, a; f ) = N (r, a; f ).

Definition 4. Let a,b ∈ C ∪ {∞}. Let p be a positive integer. We denote by N (r, a; f | ≥ p |

g = b) (N (r, a; f | ≥ p | g 6= b)) the reduced counting function of those a-points of f with

multiplicities ≥ p , which are the b-points (not the b-points) of g .

Definition 5 ([6, 8]). Let f , g share a value a IM. We denote by N∗(r, a; f , g ) the reduced count-

ing function of those a-points of f whose multiplicities differ from the multiplicities of the

corresponding a-points of g .
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2. Lemmas

Let F , G be two non-constant meromorphic functions. Henceforth we shall denote by H

the following function

H =

(

F
′′

F
′ −

2F
′

F −1

)

−

(

G
′′

G
′ −

2G
′

G −1

)

. (2.1)

Lemma 1 ([12]). Let f (z) be a non-constant meromorphic function and let an(z)(6≡ 0), an−1(z),

. . ., a0(z) be meromorphic functions such that T (r, ai (z)) = S(r, f ) for i = 0,1,2, . . . ,n. Then

T (r, an f n
+an−1 f n−1

+ . . .+a1 f +a0) =nT (r, f )+S(r, f ).

Lemma 2 ([13]). Let f (z) and g (z) be two non-constant meromorphic functions. Then

N (r,∞;
f

g
)−N (r,∞;

g

f
) = N (r,∞; f )+N (r,0; g )−N (r,∞; g )−N (r,0; f ).

Lemma 3 ([16]). Let f (z) be a non-constant meromorphic function and p, k be positive inte-

gers. Then

Np

(

r,0; f (k)
)

≤ T
(

r, f (k)
)

−T (r, f )+Np+k (r,0; f )+S(r, f ), (2.2)

Np

(

r,0; f (k)
)

≤ k N(r,∞; f )+Np+k (r,0; f )+S(r, f ). (2.3)

Lemma 4 ([7]). If N (r,0; f (k) | f 6= 0) denotes the counting function of those zeros of f (k)(z)

which are not the zeros of f (z), where a zero of f (k)(z) is counted according to its multiplicity,

then

N (r,0; f (k)
| f 6= 0) ≤ k N(r,∞; f )+N (r,0; f |< k)+k N(r,0; f |≥ k)+S(r, f ).

Lemma 5 ([3]). Let f (z) be a meromorphic function of finite order σ, and let c ∈C\{0} be fixed.

Then for each ε> 0, we have

m(r,
f (z +c)

f (z)
)+m(r,

f (z)

f (z +c)
) =O(rσ−1+ε) = S(r, f ).

The following lemma has little modifications of the original version (Theorem 2.1 of [3])

Lemma 6. Let f (z) be a transcendental meromorphic function of finite order, c ∈C\{0} be fixed.

Then

T (r, f (z +c)) = T (r, f )+S(r, f ).

Lemma 7. Let f (z), g (z) be two transcendental entire functions of finite order, c ∈ C \ {0} be

finite complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0. Let n(≥ 1) be an integer such

that n > 3. If g (z +c), g (z) share 0 CM and f n(z)∆c f (z) ≡ g n(z)∆c g (z), then f (z) ≡ t g (z) for a

constant t with t n+1 = 1.
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Proof. Proof of Lemma follows from the proof of Theorem 1.10 [17]. ���

Lemma 8. Let f (z) be a transcendental entire function of finite order, c ∈ C \ {0} be finite com-

plex constants and n ∈N. Let Φ(z) = f n(z)∆c f (z), where ∆c f (z) 6≡ 0. Then we have

n T (r, f ) ≤ T (r,Φ)−N (r,0;∆c f )+S(r, f ).

Proof. Note that by Lemmas 2 and 5 we have

m(r, f n+1) = m(r,
Φ f

∆c f
)

≤ m(r,Φ)+m(r,
f

∆c f
)+S(r, f )

= m(r,Φ)+T (r,
f

∆c f
)−N (r,∞;

f

∆c f
)+S(r, f )

= m(r,Φ)+T (r,
∆c f

f
)−N (r,∞;

f

∆c f
)+S(r, f )

= m(r,Φ)+N (r,∞;
∆c f

f
)+m(r,

∆c f

f
)−N (r,∞;

f

∆c f
)+S(r, f )

≤ m(r,Φ)+N (r,0; f )−N (r,0;∆c f )+S(r, f )

≤ m(r,Φ)+T (r, f )−N (r,0;∆c f )+S(r, f ).

By Lemma 1 we get

(n +1) T (r, f ) =m(r, f n+1) ≤ T (r,Φ)+T (r, f )−N (r,0;∆c f )+S(r, f ),

i.e.,

n T (r, f ) ≤ T (r,Φ)−N (r,0;∆c f )+S(r, f ).

This completes the Lemma. ���

Lemma 9. Let f (z) be a transcendental entire function of finite order, c ∈ C \ {0} be finite com-

plex constants and n ∈N such that n ≥ 1. Then S(r, f n(z)∆c f (z)) = S(r, f (z)), where∆c f (z) 6≡ 0.

Proof. By Lemmas 1 and 6 we have

T (r, f n(z)∆c f (z)) ≤ T (r, f n(z))+T (r,∆c f (z))

≤ T (r, f n(z))+T (r, f (z +c))+T (r, f (z))+S(r, f (z))

≤ (n +2) T (r, f (z))+S(r, f (z)).

This shows that T (r, f n(z)∆c f (z)) =O(T (r, f )).

Also by Lemma 8 we have T (r, f (z)) =O(T (r, f n(z)∆c f (z))). Thus we have

S(r, f n(z)∆c f (z)) = S(r, f (z)).

This completes the proof. ���
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Lemma 10. Let f (z), g (z) be two transcendental entire functions of finite order, c ∈ C \ {0} be

finite complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0 and let n(≥ 1) and k(≥ 1) be two

integers such that n > 2k +3. Let F (z) = [ f n(z)∆c f (z)](k) and G(z) = [g n(z)∆c g (z)](k). If H ≡ 0,

then one of the following conclusions occur

(i) [ f n(z)∆c f (z)](k)[g n(z)∆c g (z)](k) ≡ 1, where [ f n(z)∆c f (z)](k) and [g n(z)∆c g (z)](k) share

1 CM;

(ii) f n(z)∆c f (z)≡ g n(z)∆c g (z).

Proof. Since H ≡ 0, by integration we get

1

F −1
≡

BG + A−B

G −1
, (2.4)

where A,B are constants and A 6= 0. From (2.9) it is clear that F and G share (1,∞). We now

consider following cases.

Case 1. Let B 6= 0 and A 6= B .

If B =−1, then from (2.9) we have

F ≡
−A

G − A−1
.

Therefore

N (r, A+1;G) = 0.

So in view of Lemmas 3, 8 and the second fundamental theorem we get

n T (r, g ) ≤ T (r, g n
∆c g )−N (r,0;∆c g )+S(r, g )

≤ T (r,G)+Nk+1(r,0; g n
∆c g )−N (r,0;G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0;G)+N (r, A+1;G)+Nk+1(r,0; g n
∆c g )−N (r,0;G)−N (r,0;∆c g )+S(r, g )

≤ Nk+1(r,0; g n
∆c g )−N (r,0;∆c g )+S(r, g )

≤ Nk+1(r,0; g n)+Nk+1(r,0;∆c g )−N (r,0;∆c g )+S(r, g )

≤ (k +1)N (r,0; g )+S(r, g )

≤ (k +1) T (r, g )+S(r, g ),

which is a contradiction since n > k +1.

If B 6= −1, from (2.9) we obtain that

F − (1+
1

B
) ≡

−A

B 2[G +
A−B

B ]
.

So

N (r,
(B − A)

B
;G) = 0.
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Using Lemmas 3, 8 and the same argument as used in the case when B = −1 we can get a

contradiction.

Case 2. Let B 6= 0 and A =B .

If B =−1, then from (2.9) we have

F (z)G(z) ≡ 1,

i.e.,

[ f n(z)∆c f (z)](k)[g n(z)∆c g (z)](k)
≡ 1.

If B 6= −1, from (2.9) we have
1

F
≡

BG

(1+B )G −1
.

Therefore

N (r,
1

1+B
;G) = N (r,0;F ).

So in view of Lemmas 3, 5, 8 and the second fundamental theorem we get

n T (r, g ) ≤ T (r, g n
∆c g )−N (r,0;∆c g )+S(r, g )

≤ T (r,G)+Nk+1(r,0; g n
∆c g )−N (r,0;G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0;G)+N (r,
1

1+B
;G)+Nk+1(r.0; g n

∆c g )−N (r,0;G)−N (r,0;∆c g )+S(r, g )

≤ (k +1)N (r,0; g )+N (r,0;F )+S(r, g )

≤ (k +1)N (r,0; g )+ (k +1)N (r,0; f )+N (r,0;∆c f )+S(r, f )+S(r, g )

≤ (k +1)N (r,0; g )+ (k +1)N (r,0; f )+T (r,∆c f )+S(r, f )+S(r, g )

≤ (k +1)N (r,0; g )+ (k +1)N (r,0; f )+m(r,∆c f )+S(r, f )+S(r, g )

≤ (k +1)N (r,0; g )+ (k +1)N (r,0; f )+m(r,
∆c f

f
)+m(r, f )+S(r, f )+S(r, g )

≤ (k +1) T (r, g )+ (k +2) T (r, f )+S(r, f )+S(r, g ).

Without loss of generality, we suppose that there exists a set I with infinite measure such that

T (r, f ) ≤T (r, g ) for r ∈ I . So for r ∈ I we have

(n −2k −3) T (r, g ) ≤ S(r, g ),

which is a contradiction since n > 2k +3.

Case 3. Let B = 0. From (2.9) we obtain

F ≡
G + A−1

A
. (2.5)

If A 6= 1, then from (2.10) we obtain

N (r,1− A;G) = N (r,0;F ).
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We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and from (2.10) we

obtain

F (z) ≡G(z),

i.e.,

[ f n(z)∆c f (z)](k)
≡ [g n(z)∆c g (z)](k). (2.6)

From (2.6) we get

f n(z)∆c f (z) ≡ g n(z)∆c g (z)+p1(z), (2.7)

where p1(z) is a polynomial of degree at most k −1. Suppose p1(z) 6≡ 0. Then from (2.7) we

have
f n

∆c f

p1
≡

g n
∆c g

p1
+1. (2.8)

Now in view of Lemmas 5, 8 and the second fundamental theorem we have

n T (r, f ) ≤ T (r, f n
∆c f )−N (r,0,∆c f )+S(r, f )

≤ T (r,
f n

∆c f

p1
)−N (r,0,∆c f )+S(r, f )

≤ N (r,0;
f n

∆c f

p1
)+N (r,∞;

f n
∆c f

p1
)+N (r,1;

f n
∆c f

p1
)

−N (r,0,∆c f )+S(r, f )

≤ N (r,0; f )+N (r,0;∆c f )+N (r,0;
g n

∆c g

p1
)−N (r,0,∆c f )

+S(r, f )+S(r, g )

≤ N (r,0; f )+N (r,0; g )+N (r,0;∆c g )+S(r, f )+S(r, g )

≤ T (r, f )+T (r, g )+T (r,∆c g )+S(r, f )+S(r, g )

= T (r, f )+T (r, g )+m(r,
∆c g

g
)+m(r, g )+S(r, f )+S(r, g )

≤ T (r, f )+2 T (r, g )+S(r, f )+S(r, g ).

Similarly we have

n T (r, g ) ≤ 2 T (r, f )+T (r, g )+S(r, f )+S(r, g ).

Therefore we get

n [T (r, f )+T (r, g )] ≤ 3 [T (r, f )+T (r, g )]+S(r, f )+S(r, g ),

which is a contradiction since n > 3. Hence p1(z) ≡ 0 and so from (2.7) we obtain

f n(z)∆c f (z) ≡ g n(z)∆c g (z).

This completes the proof. ���
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Lemma 11. Let f (z), g (z) be two transcendental entire functions of finite order, c ∈ C \ {0} be

finite complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0 and let n be an integer such that

n > 3. Let F (z) =
f n(z)∆c f (z)

p(z) and G(z) =
g n (z)∆c g (z)

p(z) , where p(z) is non-zero polynomial. If g (z),

g (z +c) share 0 CM and H ≡ 0, then one of the following conclusions occur

(i) f n(z)∆c f (z)g n(z)∆c g (z) ≡ p2(z), where f n(z)∆c f (z)−p(z) and g n(z)∆c g (z)−p(z) share

0 CM;

(ii) f (z) ≡ t g (z) for a constant t with t n+1 = 1.

Proof. Since H ≡ 0, by integration we get

1

F −1
≡

BG + A−B

G −1
, (2.9)

where A,B are constants and A 6= 0. From (2.9) it is clear that F and G share (1,∞). We now

consider following cases.

Case 1. Let B 6= 0 and A 6=B .

If B =−1, then from (2.9) we have

F ≡
−A

G − A−1
.

Therefore

N (r, A+1;G) = N (r,0; p)= S(r, g ).

So in view of Lemma 8 and the second fundamental theorem we get

n T (r, g ) ≤ T (r, g n
∆c g )−N (r,0;∆c g )+S(r, g )

≤ T (r,G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0;G)+N (r, A+1;G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0; g )+S(r, g ) ≤T (r, g )+S(r, g ),

which is a contradiction since n > 1.

If B 6= −1, from (2.9) we obtain that

F − (1+
1

B
) ≡

−A

B 2[G +
A−B

B ]
.

So

N (r,
(B − A)

B
;G) = S(r, g ).

Using Lemma 8 and the same argument as used in the case when B =−1 we can get a contra-

diction.
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Case 2. Let B 6= 0 and A = B .

If B =−1, then from (2.9) we have

F (z)G(z) ≡ 1,

i.e.,

f n(z)∆c f (z)g n (z)∆c g (z) ≡ p2(z),

where f n(z)∆c f (z)−p(z) and g n(z)∆c g (z)−p(z) share 0 CM.

If B 6= −1, from (2.9) we have
1

F
≡

BG

(1+B )G −1
.

Therefore

N (r,
1

1+B
;G) = N (r,0;F )+S(r, f ).

So in view of Lemmas 5, 8 and the second fundamental theorem we get

n T (r, g ) ≤ T (r, g n
∆c g )−N (r,0;∆c g )+S(r, g )

≤ T (r,G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0;G)+N (r,
1

1+B
;G)−N (r,0;∆c g )+S(r, g )

≤ N (r,0; g )+N (r,0;F )+S(r, g )

≤ N (r,0; g )+N (r,0; f )+N (r,0;∆c f )+S(r, f )+S(r, g )

≤ N (r,0; g )+N (r,0; f )+T (r,∆c f )+S(r, f )+S(r, g )

≤ T (r, g )+2 T (r, f )+S(r, f )+S(r, g ).

So for r ∈ I we have

(n −3) T (r, g ) ≤ S(r, g ),

which is a contradiction since n > 3.

Case 3. Let B = 0. From (2.9) we obtain

F ≡
G + A−1

A
. (2.10)

If A 6= 1, then from (2.10) we obtain

N (r,1− A;G) = N (r,0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and from (2.10) we

obtain

F (z) ≡ G(z),
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i.e.,

f n(z)∆c f (z) ≡ g n(z)∆c g (z).

Then by Lemma 7 we have f (z)≡ t g (z) for a constant t with t n+1 = 1.

This completes the proof. ���

Lemma 12. Let f (z), g (z) be two transcendental entire functions of finite order, c ∈ C \ {0} be

finite complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0. Let n(≥ 1) and k(≥ 1) be two

integers such that n > k. If

[

f n(z)∆c f (z)
](k)

[g n(z)∆c g (z)
](k)

≡ 1,

then

f (z) = c1eaz , g (z) = c2e−az,

where a, c1 and c2 are non-zero constants such that (−1)k (c1c2)n+1[(n+1)a]2k(2−eac −e−ac) =

1.

Proof. Suppose
[

f n(z)∆c f (z)
](k)[

g n(z)∆c g (z)
](k)

≡ 1. (2.11)

Since n > k , it follows that f (z) and g (z) have no zeros and so f (z) and g (z) take the form

f (z) = eα(z) and g (z) = eβ(z), (2.12)

where α and β are non-constant polynomials.

Let

α1(z) = nα(z)+α(z +c)

and

α2(z) = α(z +c)−α(z)

Then by induction we have

[

f n(z) f (z +c)
](k)

= t1(α
′

1,α
′′

1, . . . ,α(k)
1 )(z)eα1(z)

and
[

f n+1(z)
](k)

= t0(α
′

,α
′′

, . . . ,α(k))(z)e (n+1)α(z),

where t1(α
′

1,α
′′

1, . . . ,α(k)
1 ) and t0(α

′

,α
′′

, . . . ,α(k)) are differential polynomials in α
′

1,α
′′

1, . . . ,α(k)
1

and α
′

,α
′′

, . . . ,α(k) respectively. Obviously

t1(α
′

1,α
′′

1, . . . ,α(k)
1 ) 6≡ 0
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and

t0(α
′

,α
′′

, . . . ,α(k)) 6≡ 0

and [ f n(z)∆c f (z)](k) 6≡ 0. Clearly T (r, ti ) = S(r, f ) for i = 0,1 and

N (r,0; t1(z)eα2(z)
− t0(z)) = 0. (2.13)

So from (2.13) and using second fundamental theorem for small functions (see [15]), we ob-

tain

T (r,eα2) ≤ N (r,0;eα2 )+N (r,∞;eα2 )+N (r,0; t1eα2 − t0)+S(r, f ) = S(r, f ).

This shows that α2(z) is a constant. Let α2(z) ≡C , where C ∈ C. Then α(z + c) ≡ α(z)+C and

so deg(α) = 1. Similarly we can prove that deg(β) = 1. Assume now that

f (z) = c1eaz , g (z) = c2ebz ,

where a, b, c1 and c2 are non-zero constants. Applying (2.11) again we get a =−b and

(−1)k (c1c2)n+1[(n +1)a]2k (2−eac
−e−ac) = 1.

Finally f (z) and g (z) take the form

f (z) = c1eaz , g (z) = c2e−az,

where a, c1 and c2 are non-zero constants such that (−1)k (c1c2)n+1[(n +1)a]2k(2−eac −e−ac)

= 1. This completes the proof. ���

Lemma 13. [14] Let f j ( j = 1,2,3) be a meromorphic and f1 be non-constant. Suppose that

3
∑

j=1

f j ≡ 1

and
3

∑

j=1

N (r,0; f j )+2
3

∑

j=1

N (r,∞; f j ) < (λ+o(1))T (r ),

as r −→+∞, r ∈ I , λ< 1 and T (r ) = max1≤ j≤3 T (r, f j ). Then f2 ≡ 1 or f3 ≡ 1.

Lemma 14. Let f (z), g (z) be two transcendental entire functions of finite order, c ∈ C \ {0} be

finite complex constant such that ∆c f (z) 6≡ 0 and ∆c g (z) 6≡ 0 and let n(> 1) be an integer. Let

p(z) be a non-zero polynomial with deg(p)≤ n−1, f n(z)∆c f (z)−p(z) and g n(z)∆c g (z)−p(z)

share 0 CM and g (z +c), g (z) share 0 CM. Now

(i) if p(z) is not a constant, then f n(z)∆c f (z)g n (z)∆c g (z) 6≡ p2(z),
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(ii) if p(z) is a non-zero constant d and f n(z)∆c f (z)g n (z)∆c g (z) ≡ p2(z), then

f (z)= c1eaz , g (z) = c2e−az ,

where a, c1 and c2 are non-zero constants such that (c1c2)n+1(eac +e−ac −2) =−d 2.

Proof. Suppose

f n(z)∆c f (z)g n(z)∆c g (z) ≡ p2(z). (2.14)

We consider the following cases:

Case 1: Let deg(p(z)) = l (≥ 1).

Since n ≥ 2, it follows that N (r,0; f ) =O(log r ) and N (r,0; g )=O(log r ).

Let

F1(z) =
f n(z)∆c f (z)

p(z)
and G1(z) =

g n(z)∆c g (z)

p(z)
. (2.15)

From (2.14) we get

F1G1 ≡ 1. (2.16)

If F1 ≡ cG1, where c is a nonzero constant, then by (2.16), F1 is a constant and so f is a poly-

nomial, which contradicts our assumption. Hence F1 6≡G1.

Let

Φ(z) =
f n(z)∆c f (z)−p(z)

g n(z)∆c g (z)−p(z)
. (2.17)

We deduce from (2.17) that

Φ≡ eβ∗

, (2.18)

where β∗ is a polynomial.

Let f1 = F1, f2 =−eβ∗

G1 and f3 = eβ∗

. Here f1 is transcendental. Now from (2.18), we have

f1 + f2 + f3 ≡ 1.

Clearly T (r,F1) = T (r,G1)+O(1) and so by Lemma 9 we have S(r, f ) = S(r, g ). Also T (r, f3) ≤

2 T (r,F1)+S(r, f ) and so S(r, f3) can be replaced by S(r, f ). Since g (z) and g (z+c) share 0 CM,

it follows that N (r,∞;
∆c g

g ) = 0.

Note that

N (r,0; f1) = N (r,0;F1) ≤ N (r,0;∆c f (z))+O(log r )

≤ T (r,∆c f )+S(r, f ) = T (r, f )+S(r, f )

and

N (r,0; f2) = N (r,0;G1) = N (r,0; g n+1∆c g

g
) ≤ N (r,0;

∆c g

g
)+O(log r )
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≤ T (r,
∆c g

g
)+S(r, g )= m(r,

∆c g

g
)+S(r, g ) = S(r, g ).

Hence by Lemma 8 we get

3
∑

j=1

N (r,0; f j )+2
3

∑

j=1

N (r,∞; f j ) ≤ N (r,0;F1)+N (r,0;eβ∗

G1)+O(log r )

≤ T (r, f )+S(r, f ) ≤
1

n
T (r, f1)+S(r, f1)

≤ (λ+o(1))T (r ),

as r −→+∞, r ∈ I , λ=
1
n < 1 and T (r )= max1≤ j≤3 T (r, f j ).

So by Lemma 13, we get either eβ∗

G1 ≡ −1 or eβ∗

≡ 1. But here the only possibility is that

eβ∗

G1 ≡−1, i.e., g n(z)∆c g (z) ≡−e−β∗(z)p(z) and so from (2.14) we obtain

F1 ≡ eγ∗
1 G1,

i.e.,

f n(z)∆c f (z) ≡ eγ∗
1 (z)g n(z)∆c g (z),

where γ∗1 is a non-constant polynomial. Now from (2.14) we get

f n(z)∆c f (z) ≡ ce
1
2
γ∗

1 (z)p(z), g n(z)∆c g (z) ≡ ce−
1
2
γ∗

1 (z)p(z), (2.19)

where c =±1.

Since N (r,0; f ) =O(log r ) and N (r,0; g )=O(log r ), so we can take

f (z) = h1(z)eα1(z), g (z) = h2(z)eβ1(z), (2.20)

where h1 and h2 are non-zero polynomials and α1, β1 are two non-constant polynomials.

Since deg(p)≤ n−1, from (2.19) and (2.20) we conclude that both h1 and h2 are non-zero

constants.

So we can rewrite f and g as follows:

f (z) = eα(z), g (z) = eβ(z), (2.21)

where α and β are non-constant polynomials.

Now from (2.14) we have

(eα(z+c)−α(z)
−1)(eβ(z+c)−β(z)

−1) ≡ p2(z)e−(n+1)[α(z)+β(z)].

Note that

N (r,1;eα(z+c)−α(z)) =O(log r ) and N (r,1;eβ(z+c)−β(z)) =O(log r ).
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Let

φ(z) = eα(z+c)−α(z) and ψ(z) = eβ(z+c)−β(z).

Clearly either both φ(z) and ψ(z) are constants or both are transcendental entire functions.

Suppose φ(z) 6≡ constant and ψ(z) 6≡ constant. Now by second fundamental theorem we have

T (r,φ) ≤ N (r,0;φ)+N (r,∞;φ)+N (r,1;φ)+S(r,φ)

≤ O(log r )+S(r,φ)= S(r,φ),

which is a contradiction. Therefore φ(z) ≡ constant. Similarly we can prove that ψ(z) ≡ con-

stant. Hence p2(z)e−(n+1)[α(z)+β(z)] ≡ constant, which is impossible.

Case 2: Let p(z) be a non-zero constant d .

In this case we see that f (z) and g (z) have no zeros and so we can take f (z) and g (z) as follows:

f (z) = eα(z), g (z) = eβ(z), (2.22)

where α and β are non-constant polynomials.

Now from (2.14) we get

(eα(z+c)−α(z)
−1)(eβ(z+c)−β(z)

−1) ≡ d 2e−(n+1)[α(z)+β(z)]. (2.23)

We conclude from (2.23) that eα(z+c)−α(z)−1 has no zeros. Let φ(z) = eα(z+c)−α(z). Then φ(z) 6=

0,1,∞ for any z ∈ C. By Picard’s theorem, φ is a constant and so deg(α) = 1. Similarly we can

prove that deg(β) = 1. Assume now that

f (z)= c1eaz , g (z) = c2ebz ,

where a, b, c1 and c2 are non-zero constants. Applying (2.14) again we get a =−b and

(c1c2)n+1(eac
+e−ac

−2) =−d 2.

Finally f (z) and g (z) take the form

f (z) = c1eaz , g (z) = c2e−az ,

where a, c1 and c2 are non-zero constants such that (c1c2)n+1(eac +e−ac −2) =−d 2.

This completes the proof. ���

Lemma 15 ([1]). If f , g be two non-constant meromorphic functions such that they share (1,1).

Then

2N L(r,1; f )+2N L(r,1; g )+N
(2
E (r,1; f )−N f >2(r,1; g ) ≤ N (r,1; g )−N (r,1; g ).
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Lemma 16 ([2]). Let f , g share (1,1). Then

N f >2(r,1; g ) ≤
1

2
N (r,0; f )+

1

2
N (r,∞; f )−

1

2
N0(r,0; f

′

)+S(r, f ),

where N0(r,0; f
′

) is the counting function of those zeros of f
′

which are not the zeros of f ( f −1).

Lemma 17 ([2]). Let f and g be two non-constant meromorphic functions sharing (1,0). Then

N L(r,1; f )+2N L(r,1; g )+N
(2
E (r,1; f )−N f >1(r,1; g )−N g>1(r,1; f ) ≤ N (r,1; g )−N (r,1; g ).

Lemma 18 ([2]). Let f , g share (1,0). Then

N L(r,1; f ) ≤ N (r,0; f )+N (r,∞; f )+S(r, f )

Lemma 19 ([2]). Let f , g share (1,0). Then

(i) N f >1(r,1; g ) ≤ N (r,0; f )+N (r,∞; f )−N0(r,0; f
′

)+S(r, f )

(ii) N g>1(r,1; f ) ≤ N (r,0; g )+N (r,∞; g )−N0(r,0; g
′

)+S(r, g ).

3. Proofs of the Theorems

Proof of Theorem 1. Let F (z) = [ f n(z)∆c f (z)](k). In view of Lemmas 3, 8 and by the second

theorem for small functions (see [15]) we get

n T (r, f ) ≤ T (r, f n
∆c f )−N (r,0;∆c f )+S(r, f )

≤ T (r,F )+Nk+1(r,0; f n
∆c f )−N (r,0;F )−N (r,0;∆c f )+S(r, f )

≤ N (r,0;F )+N (r,α(z);F )+Nk+1(r,0; f n
∆c f )−N (r,0;F )−N (r,0;∆c f )

+(ε+o(1)) T (r, f )

≤ (k +1) N (r,0; f )+N (r,0;∆c f )+N (r,α(z);F )−N (r,0;∆c f )

+(ε+o(1)) T (r, f )

≤ (k +1) T (r, f )+N (r,α(z);F )+ (ε+o(1)) T (r, f ), (3.1)

for all ε > 0. Take ε < 1. Since n ≥ k +2, from above one can easily say that F (z)−α(z) has

infinitely many zeros. This completes the proof. ���

Proof of Theorem 2. Let F (z) = [ f n(z)∆c f (z)](k) and G(z) = [g n(z)∆c g (z)](k). It follows that F

and G share (1,k1).
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Case 1. Let H 6≡ 0.

Subcase 1.1. k1 ≥ 1.

From (2.1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of

F and G , (ii) those 1 points of F and G whose multiplicities are different, (iii) zeros of F
′

(G
′

)

which are not the zeros of F (F −1)(G(G −1)).

Since H has only simple poles we get

N (r,∞; H ) ≤ N∗(r,1;F,G)+N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2) (3.2)

+N 0(r,0;F
′

)+N 0(r,0;G
′

), (3.3)

where N 0(r,0;F
′

) is the reduced counting function of those zeros of F
′

which are not the zeros

of F (F −1) and N 0(r,0;G
′

) is similarly defined.

Let z0 be a simple zero of F −1. Then z0 is a simple zero of G −1 and a zero of H . So

N (r,1;F | = 1) ≤ N (r,0; H )≤ N (r,∞; H )+S(r, f )+S(r, g ). (3.4)

While k1 ≥ 2, using (3.3) and (3.4) we get

N (r,1;F ) ≤ N (r,1;F | = 1)+N (r,1;F | ≥ 2)

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N∗(r,1;F,G)

+N (r,1;F | ≥ 2)+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g ). (3.5)

Now in view of Lemma 4 we get

N 0(r,0;G
′

)+N (r,1;F |≥ 2)+N∗(r,1;F,G)

≤ N 0(r,0;G
′

)+N (r,1;F | ≥ 2)+N (r,1;F | ≥ 3)

= N 0(r,0;G
′

)+N (r,1;G| ≥ 2)+N (r,1;G| ≥ 3)

≤ N 0(r,0;G
′

)+N (r,1;G)−N (r,1;G)

≤ N (r,0;G
′

|G 6= 0) ≤ N (r,0;G)+S(r, g ), (3.6)

Hence using (3.5), (3.22), Lemmas 3, 5 and 8 we get from second fundamental theorem that

n T (r, f ) ≤ T (r, f n
∆c f )−N (r,0;∆c f )+S(r, f )

≤ T (r,F )+Nk+2(r,0; f n
∆c f )−N2(r,0;F )−N (r,0;∆c f )+S(r, f )

≤ N (r,0;F )+N (r,1;F )+Nk+2(r,0; f n
∆c f )−N (r,0;∆c f )

−N2(r,0;F )−N0(r,0;F
′

)+S(r, f )

≤ N (r,0;F )+Nk+2(r,0; f n
∆c f )+N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N (r,1;F | ≥ 2)

+N∗(r,1;F,G)+N 0(r,0;G
′

)−N (r,0;∆c f )−N2(r,0;F )+S(r, f )+S(r, g )
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≤ Nk+2(r,0; f n
∆c f )+N2(r,0;G)−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ Nk+2(r,0; f n
∆c f )+Nk+2(r,0; g n

∆c g )−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ (k +2) N (r,0; f )+N (r,0;∆c f )+ (k +2) N (r,0; g )+N (r,0;∆c g )

−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ (k +2) T (r, f )+ (k +2) T (r, g )+T (r,∆c g )+S(r, f )+S(r, g )

≤ (k +2) T (r, f )+ (k +2) T (r, g )+m(r,∆c g )+S(r, f )+S(r, g )

≤ (k +2) T (r, f )+ (k +2) T (r, g )+m(r,
∆c g

g
)+m(r, g )+S(r, f )+S(r, g )

≤ (k +2) T (r, f )+ (k +3) T (r, g )+S(r, f )+S(r, g )

≤ (2k +5) T (r )+S(r ). (3.7)

In a similar way we can obtain

n T (r, g )≤ (2k +5) T (r )+S(r ). (3.8)

Combining (3.7) and (3.8) we see that

n T (r ) ≤ (2k +5) T (r )+S(r ),

i.e.,

(n −2k −5) T (r ) ≤ S(r ). (3.9)

Since n > 2k +5, (3.9) leads to a contradiction.

While k1 = 1, using Lemmas 4, 15, 16, (3.3) and (3.4) we get

N (r,1;F ) ≤ N (r,1;F | = 1)+N L(r,1;F )+N L(r,1;G)+N
(2
E (r,1;F )

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N∗(r,1;F,G)+N L(r,1;F )+N L(r,1;G)

+N
(2

E (r,1;F )+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+2N L(r,1;F )+2N L(r,1;G)+N
(2

E (r,1;F )

+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N F>2(r,1;G)+N (r,1;G)−N (r,1;G)

+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+
1

2
N (r,0;F )+N (r,0;G| ≥ 2)+N (r,1;G)−N (r,1;G)

+N 0(r,0;G
′

)+N 0(r,0;F
′

)+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+
1

2
N (r,0;F )+N (r,0;G| ≥ 2)+N (r,0;G

′

|G 6= 0)+N 0(r,0;F
′

)

+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+
1

2
N (r,0;F )+N2(r,0;G)+N 0(r,0;F

′

)+S(r, f )+S(r, g ). (3.10)
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Hence using (3.10), Lemmas 3, 5 and 8 we get from second fundamental theorem that

n T (r, f ) ≤ T (r, f n
∆c f )−N (r,0;∆c f )+S(r, f )

≤ T (r,F )+Nk+2(r,0; f n
∆c f )−N2(r,0;F )−N (r,0;∆c f )+S(r, f )

≤ N (r,0;F )+N (r,1;F )+Nk+2(r,0; f n
∆c f )−N2(r,0;F )−N0(r,0;F

′

)

−N (r,0;∆c f )+S(r, f )

≤ N2(r,0;F )+
1

2
N (r,0;F )+Nk+2(r,0; f n

∆c f )+N2(r,0;G)−N2(r,0;F )

−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ Nk+2(r,0; f n
∆c f )+

1

2
N (r,0;F )+N2(r,0;G)−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ Nk+2(r,0; f n
∆c f )+Nk+2(r,0; g n

∆c g )+
1

2
Nk+1(r,0; f n

∆c )

−N (r,0;∆c f )+S(r, f )+S(r, g )

≤
3k +5

2
N (r,0; f )+

1

2
N (r,0;∆c f )+ (k +2) N (r,0; g )+N (r,0;∆c g )+S(r, f )+S(r, g )

≤
3k +6

2
T (r, f )+ (k +3) T (r, g )+S(r, f )+S(r, g )

≤ (
5k

2
+6) T (r )+S(r ). (3.11)

In a similar way we can obtain

n T (r, g ) ≤

(

5k

2
+6

)

T (r )+S(r ). (3.12)

Combining (3.11) and (3.12) we see that

(

n −
5k

2
−6

)

T (r ) ≤ S(r ). (3.13)

Since n >
5k
2 +6, (3.13) leads to a contradiction.

Subcase 1.2. k1 = 0. Here (3.4) changes to

N 1)
E (r,1;F |= 1) ≤ N (r,0; H )≤ N (r,∞; H )+S(r,F )+S(r,G). (3.14)

Using Lemmas 4, 17, 18, 19, (3.3) and (3.14) we get

N (r,1;F ) ≤ N 1)
E

(r,1;F )+N L(r,1;F )+N L(r,1;G)+N
(2

E (r,1;F )

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N∗(r,1;F,G)+N L(r,1;F )+N L(r,1;G)

+N
(2

E (r,1;F )+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )

≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+2N L(r,1;F )+2N L(r,1;G)+N
(2
E (r,1;F )

+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )
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≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N F>1(r,1;G)+NG>1(r,1;F )+N L(r,1;F )

+N (r,1;G)−N (r,1;G)+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g )

≤ N2(r,0;F )+N (r,0;F )+N2(r,0;G)+N (r,1;G)−N (r,1;G)

+N 0(r,0;G
′

)+N 0(r,0;F
′

)+S(r, f )+S(r, g )

≤ N2(r,0;F )+N (r,0;F )+N2(r,0;G)+N (r,0;G
′

|G 6= 0)+N 0(r,0;F
′

)

+S(r, f )+S(r, g )

≤ N2(r,0;F )+N (r,0;F )+N2(r,0;G)+N (r,0;G)+N 0(r,0;F
′

)

+S(r, f )+S(r, g ). (3.15)

Hence using (3.15), Lemmas 3, 5 and 8 we get from second fundamental theorem that

n T (r, f ) ≤ T (r, f n
∆c f )−N (r,0;∆c f )+S(r, f )

≤ T (r,F )+Nk+2(r,0; f n
∆c f )−N2(r,0;F )+S(r, f )

≤ N (r,0;F )+N (r,1;F )+Nk+2(r,0; f n
∆c f )−N2(r,0;F )−N0(r,0;F

′

)

−N (r,0;∆c f )+S(r, f )

≤ N2(r,0;F )+2 N (r,0;F )+Nk+2(r,0; f n
∆c f )

+N2(r,0;G)+N (r,0;G)−N2(r,0;F )−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ Nk+2(r,0; f n
∆c f )+2 N (r,0;F )+N2(r,0;G)

+N (r,0;G)−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ Nk+2(r,0; f n
∆c f )+2 Nk+1(r,0; f n

∆c f )+Nk+2(r,0; g n
∆c g )+Nk+1(r,0; g n

∆c g )

−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ (3k +4)N (r,0; f )+2 N (r,0;∆c f )+ (2k +3) N (r,0; g )+2N (r,0;∆c g )+S(r, f )+S(r, g )

≤ (3k +6) T (r, f )+ (2k +5) T (r, g )+S(r, f )+S(r, g )

≤ (5k +11) T (r )+S(r ). (3.16)

In a similar way we can obtain

n T (r, g ) ≤ (5k +11) T (r )+S(r ). (3.17)

Combining (3.16) and (3.17) we see that

(n −5k −11) T (r )≤ S(r ). (3.18)

Since n > 5k +11, (3.18) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 10 and 12. This completes the

proof. ���
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Proof of Theorem 3. Let F (z) =
f n (z)∆c f (z)

p(z)
and G(z) =

g n (z)∆c g (z)
p(z)

. It follows that F and G share

(1,2) except for the zeros of p(z).

Case 1. Let H 6≡ 0.

From (2.1) we obtain

N (r,∞; H )≤ N∗(r,1;F,G)+N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N 0(r,0;F
′

)+N 0(r,0;G
′

). (3.19)

Let z0 be a simple zero of F −1 such that p(z0) 6= 0. Then z0 is a simple zero of G −1 and a zero

of H . So

N (r,1;F | = 1) ≤ N (r,0; H )≤ N (r,∞; H )+S(r, f )+S(r, g ). (3.20)

Using (3.19) and (3.20) we get

N (r,1;F ) ≤ N (r,0;F | ≥ 2)+N (r,0;G| ≥ 2)+N∗(r,1;F,G)

+N (r,1;F | ≥ 2)+N 0(r,0;F
′

)+N 0(r,0;G
′

)+S(r, f )+S(r, g ). (3.21)

Now in view of Lemma 4 we get

N 0(r,0;G
′

)+N (r,1;F |≥ 2)+N∗(r,1;F,G) ≤ N 0(r,0;G
′

)+N (r,1;F | ≥ 2)+N (r,1;F | ≥ 3)

≤ N (r,0;G
′

|G 6= 0) ≤ N (r,0;G)+S(r, g ). (3.22)

Note that since g (z) and g (z +c) share 0 CM, it follows that N (r,∞;
∆c g

g ) = 0.

Hence using (3.5), (3.22), Lemmas 5 and 8 we get from second fundamental theorem that

n T (r, f ) ≤ T (r,F )−N (r,0;∆c f )+S(r, f )

≤ N (r,0;F )+N (r,1;F )−N0(r,0;F
′

)−N (r,0;∆c f )+S(r, f )

≤ N2(r,0;F )+N2(r,0;G)−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ N2(r,0; f n
∆c f )+N2(r,0; g n

∆c g )−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ 2 N (r,0; f )+N (r,0;∆c f )+N2(r,0; g n+1 ∆c g

g
)−N (r,0;∆c f )+S(r, f )+S(r, g )

≤ 2 N (r,0; f )+N2(r,0; g n+1)+N2(r,0;
∆c g

g
)+S(r, f )+S(r, g )

≤ 2 T (r, f )+2 T (r, g )+T (r,
∆c g

g
)+S(r, f )+S(r, g )

≤ 2 T (r, f )+2 T (r, g )+m(r,
∆c g

g
)+S(r, f )+S(r, g )

≤ 2 T (r, f )+2 T (r, g )+S(r, f )+S(r, g ). (3.23)

By Lemma 1

(n +1) T (r, g ) = T (r, g n+1) = m(r, g n+1) ≤m(r,
g n+1

G
)+m(r,G)
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≤ m(r,
g

∆c g
)+T (r,G)+O(log r )

≤ T (r,
∆c g

g
)+T (r,G)+S(r, g )

= m(r,
∆c g

g
)+T (r,G)+S(r, g ) = T (r,G)+S(r, g ).

In a similar way we can obtain

(n +1) T (r, g ) ≤ T (r,G)+S(r, g )

≤ N (r,0;G)+N (r,1;G)−N0(r,0;G
′

)+S(r, f )

≤ N2(r,0;G)+N2(r,0;F )+S(r, f )+S(r, g )

≤ N2(r,0; g n+1 ∆c g

g
)+N2(r,0; f n

∆c f )+S(r, f )+S(r, g )

≤ 2 N (r,0; g )+2 N (r,0; f )+N (r,0;∆c f )+S(r, f )+S(r, g )

≤ 2 T (r, f )+2 T (r, g )+T (r,∆c f )+S(r, f )+S(r, g )

≤ 2 T (r, f )+2 T (r, g )+m(r,
∆c f

f
)+m(r, f )+S(r, f )+S(r, g )

≤ 3 T (r, f )+2 T (r, g )+S(r, f )+S(r, g ). (3.24)

Combining (3.23) and (3.24) we see that

(n −5) T (r, f )+ (n −4) T (r, g ) ≤ S(r, f )+S(r, g ). (3.25)

Since n ≥ 5, (3.25) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 11, 7 and 14. This completes the

proof. ���
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