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REGULAR CLIQUE ASSEMBLIES, CONFIGURATIONS,

AND FRIENDSHIP IN EDGE-REGULAR GRAPHS

KELLY B. GUEST, JAMES M. HAMMER, PETER D. JOHNSON AND KENNETH J. ROBLEE

Abstract. An edge-regular graph is a regular graph in which, for some λ, any two adja-

cent vertices have exactly λ common neighbors. This paper is about the existence and

structure of edge-regular graphs with λ = 1 and about edge-regular graphs with λ > 1

which have local neighborhood structure analogous to that of the edge-regular graphs

with λ= 1.

1. Introduction

Graphs will be finite and simple with no isolated vertices. Notation will be fairly standard.

For instance, if G is a graph and v ∈ V (G), the vertex set of G , then NG (v) = {u ∈ V (G) | uv ∈
E (G)} and dG (v) = |NG (v)|. When G is the only graph in the discussion, the subscript G may

be dropped from the notation for the open neighbor set and for the degree of a vertex. The

closed neighborhood in G of v ∈V (G) is N [v ]= N (v)∪ {v}. If S ⊆V (G), S 6= ;, the subgraph of

G induced by S will be denoted G[S].

If G and H are graphs, the join of G and H , formed by taking disjoint copies of G and H

and putting in all edges with one end in V (G) and the other in V (H ), will be denoted G ∨H .

The disjoint union, or sum, of G and H , formed by taking disjoint copies of G and H and

putting in no edges at all will be denoted G + H . [These notations are not entirely standard.

Many authors prefer to denote the join by +.] If m is a positive integer, mG =G +·· ·+G , with

G appearing m times in the sum. The Cartesian product of G and H , denoted G�H , is the

graph with the vertex set V (G)×V (H ) with (w, x), (y, z)∈V (G)×V (H ) adjacent in G�H if and

only if either w = y and xz ∈ E (H ) or x = z and w y ∈ E (G)

A friendship graph is a graph of the form K1∨mK2 for some positive integer m. The single

vertex in K1 will be called a ringmaster of the graph. If m > 1, the ringmaster is unique. The

friendship graphs are, famously, the only finite simple graphs in which each pair of distinct

vertices have exactly one common neighbor [2].
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Figure 1: K1 ∨3K2, a friendship graph.

An edge-regular graph is a regular graph G for which there exists an integer λ such that if

uv ∈ E (G) then |N (u)∩N (v)| = λ. That is, every pair of adjacent vertices in G have exactly λ

common neighbors. If G is an edge-regular graph with parameter λ, regular of degree d on n

vertices, we write G ∈ ER(n,d ,λ).

A strongly regular graph is an edge-regular graph G ∈ ER(n,d ,λ) for some n, d , and λ,

0 < d < n, for which there exists an integer µ such that for u, v ∈ V (G), u 6= v , if uv ∉ E (G)

then |N (u)∩N (v)| =µ. That is, each pair of distinct non-adjacent vertices in G have exactly µ

common neighbors. If G is such a graph, we write G ∈ SR(n,d ,λ,µ).

Those who are acquainted with developments in graph theory over the past 40−50 years

will know that the quest for strongly regular graphs has become a small but important in-

dustry ([1, 2]). These graphs are just rare enough that the discovery of new ones is always of

interest, and just numerous and varied enough that one despairs of easy classifications for

them.

Therefore the richer class of edge-regular graphs is unlikely to collapse into tidy sub-

classes. However, there have been interesting characterization/classification results on edge

regular graphs satisfying additional requirements of an extremal or structural nature. For in-

stances:

1. In [5] all G ∈ ER(n,d ,λ) satisfying d −λ≤ 3 are described.

2. If G ∈ ER(n,d ,λ) and λ > 0 then n ≥ 3(d −λ) ([6, 8]). In [8] the edge-regular graphs with

λ = 2 and n = 3(d −λ) are completely characterized, and in [12] the main result in [8] is

extended to a characterization of all edge-regular graphs satisfying n = 3(d −λ) with λ> 0

even and d sufficiently large (depending on λ).

3. Edge-regular graphs with n = 3(d −λ)+1, λ> 0, satisfying certain local structural require-

ments are considered in [3] and [7]. The main result of [7] is of interest here: For every d ,

ER(3d −2,d ,1) =;.

Here we are mainly interested in edge-regular graphs with λ = 1, and a generalization:

edge-regular graphs G such that for each v ∈ V (G), G[NG (v)] ≃ mKp for some m and p that
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do not vary with v . Before getting down to λ= 1 it will be useful to examine the more general

class of graphs.

2. Regular clique assemblies

The clique number of a graph G , denoted ω(G), is the maximum order of a clique —

complete subgraph — in G . The clique graph of G , denoted C L(G), is the graph whose vertices

are the maximal cliques of G , in which any two distinct maximal cliques of G are adjacent if

and only if they have at least one vertex in common. If G has no isolated vertices and ω(G) = 2,

then C L(G) = L(G), the line graph of G .

G is a regular clique assembly if G is regular, ω(G) ≥ 2, and

(1) every maximal clique of G is maximum;

(2) each edge of G is in exactly one maximum clique of G .

If G is a regular clique assembly on n vertices, regular of degree d , with k =ω(G), we write

G ∈ RC A(n,d ,k). In all that follows, n, d , and k will be integers satisfying n > d ≥ k −1 ≥ 1. If

G ∈ RC A(n,k −1,k) then G ≃ mKk , m = n
k . This is easy to see; also, it follows from Proposition

1, below. Notice that we do not require a regular clique assembly to be connected; a disjoint

union of regular clique assemblies with the same degree and same clique number is a regular

clique assembly. (Perhaps “assemblage” would have been a better choice than “assembly,”

but we are sticking with the latter.)

Lemma 1. If G is a regular clique assembly, then any two different maximum cliques in G

have at most one vertex in common. Further, if H1, H2, and H3 are maximum cliques in G,

V (H1)∩V (H2) = {u}, V (H1)∩V (H3) = {v} and u 6= v, then V (H2)∩V (H3)=;.

Proof. If distinct maximum cliques in G had two vertices in common, then condition (2) in

the RC A definition would be violated. Suppose H1, H2, H3, u, and v are as described above.

Then H1, H2, and H3 are distinct maximum cliques. Suppose w ∈V (H2)∩V (H3). If w ∈ {u, v}

then H1 and one of H2, H3 have two vertices in common. Therefore w ∉ {u, v}. Then u, v, w

induce a K3 in G , which is contained in a maximal, and therefore maximum, clique H4 in G

which is none of H1, H2, and H3. Then uv is in both H1 and H4, violating (2). ���

Proposition 1. If G ∈ RC A(n,d ,k) then k − 1 divides d, and for each v ∈ V (G), G [NG (v)] ≃
d

k−1 Kk−1. Conversely, if G is a graph on n vertices such that, for some m, p ≥ 1, G [NG(v)] ≃ mKp

for all v ∈V (G), then G ∈ RC A(n,mp, p +1)

Proof. Suppose G ∈ RC A(n,d ,k). Suppose that v ∈ V (G). A neighbor u of v is in the unique

maximum clique ≃ Kk containing the edge uv . Any two of the maximum cliques of G con-

taining v have only v in common, by Lemma 1; thus G [NG (v)] ≃ mKk−1 for some m. Since G

is d-regular, d =m(k −1).
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Now suppose that G is a finite simple graph such that for every v ∈V (G), G [NG (v)] ≃ mKp

for some positive integers m, p . Then G is regular of degree mp . G can contain no Kp+2, and

any Kr in G , r ≤ p +1, must be contained in one of the Kp+1’s comprising the closed neighbor

set of any one of its vertices. (For all v ∈V (G), G [NG [v ]]≃ K1 ∨mKp .) Thus ω(G) = p +1, and

(1) in the RC A definition holds; (2) is obvious. ���

Corollary 1. RC A(n,d ,k)⊆ ER(n,d ,k −2), with equality when k ∈ {2,3}.

Proof. If G ∈ RC A(n,d ,k), then, since every edge uv of G is contained in one Kk in G , vertices

outside of which cannot be adjacent to both u and v , it follows that G is edge-regular with

λ = k − 2. If G ∈ ER(n,d ,0), then G is triangle-free and d-regular; clearly G ∈ RC A(n,d ,2).

Suppose that G ∈ ER(n,d ,1). Since, for any uv ∈V (G), |NG (u)∩NG (v)| = 1, G can contain no

K4, and no K1 nor K2 in G is a maximal clique (d > 0). Thus ω(G) = 3 and (1) and (2) in the

definition of RC As hold. Therefore, G ∈ RC A(n,d ,3). ���

Theorem 1. If G ∈ RC A(n,d ,k), (d > k −1), then C L(G) ∈ RC A
(

nd
k(k−1)

, k(d−k+1)
k−1

, d
k−1

)

. Further,

C L(C L(G)) ≃G.

Proof. The vertices of C L(G) are the maximum cliques of G ; counting the ordered pairs (v,K ),

v ∈V (K ), K ≃ Kk a maximum clique of G , in two different ways, using Proposition 1, we obtain

|V (C L(G))| = nd
k(k−1) . By Lemma 1, two maximum cliques in G are adjacent as vertices in C L(G)

if and only if they have exactly one vertex in common. Let K be a maximum clique in G and

v ∈ V (K ). In view of Proposition 1, K is adjacent in C L(G) to each of d
k−1 −1 = d−k+1

k−1 other

maximum cliques containing v — indeed, in C L(G) these cliques induce, with K , a clique

of order d
k−1 . By Lemma 1, the maximum cliques “adjacent to K at v” are distinct from the

maximum cliques adjacent to K at any other vertex of K — and not only distinct from, but

also not adjacent to, since a clique H2 sharing v with K shares no vertex with any clique H3

sharing a vertex u 6= v with K .

It follows that C L(G)
[

NCL(G)(K )
]

≃ kK d
k−1

−1. Since this holds for every vertex K of C L(G),

by Proposition 1 we conclude that C L(G) ∈ RC A( nd
k(k−1)

,k d−k+1
k−1

, d
k−1

). Applying this result with

C L(G) replacing G , we find that C L(C L(G)) ∈ RC A(n,d ,k). From this we take that C L(C L(G))

has the same number of vertices as G and is d-regular.

For v ∈ V (G), let S(v) denote the d
k−1 -clique induced in C L(G) by the k-cliques in G

that contain v ; S : V (G) → V (C L(C L(G))) is clearly injective, and is therefore surjective. If

u and v are adjacent in G then S(u) and S(v) have a vertex in common in C L(G), namely, the

unique maximum clique in G containing the edge uv ; therefore, S(u) and S(v) are adjacent

in C L(C L(G)). Since G and C L(C L(G)) are both d-regular, and S preserves adjacency, it must

also preserve non-adjacency. Therefore S is a graph isomorphism; so G and C L(C L(G)) are

isomorphic. ���
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Corollary 2. G ∈ RC A(n,2k −2,k) for some n and k > 2 if and only if G is the line graph of a

triangle-free k-regular graph.

Proof. If G ∈ RC A(n,2k −2,k) and k > 2, then by Theorem 1, C L(G) ∈ RC A( 2n
k ,k ,2), so C L(G)

is triangle-free and k-regular and G ≃C L(C L(G)) = L(C L(G)). On the other hand, if G = L(H ),

H triangle-free and k-regular, then H ∈ RC A(t ,k ,2), for t = |V (H )|, so G = L(H ) = C L(H ) ∈
RC A( t k

2
,2(k −1),k), again by Theorem 1. ���

By Corollary 1, regular clique assemblies with clique number k = 2 are plentiful: they are

the triangle-free regular graphs. For k = 3 they are the edge regular graphs with λ= 1; we shall

see that there are quite a few of these, although they are not so easy to find as the triangle-free

regular graphs. For k > 3 we will see that there is a good supply of regular clique assemblies

with clique number k by applying the following.

Proposition 2. If G ∈ RC A(n1,d1,k), and H ∈ RC A(n2,d2,k) then G�H ∈ RC A(n1n2,d1 +
d2,k).

Proof. The proof is elementary, from the definition of G�H and Proposition 1. ���

Corollary 3. For all integers k , t ≥ 2 there are connected graphs in

RC A(k t , t (k −1),k) and in RC A(t k t−1,k(t −1), t ).

Proof. Taking powers with use of the Cartesian product, by Proposition 2 (Kk )t ∈ RC A(k t , t (k−
1),k). Then by Theorem 1, C L((Kk )t ) ∈ RC A(t kk−1,k(t −1), t ). ���

The supply of regular clique assemblies with specified clique number k can be enlarged

by swordplay with Theorem 1 and Proposition 2. If G ∈ RC A(n,d ,2) = ER(n,d ,0) and d > 1

then C L(G) = L(G) ∈ RC A( nd
2 ,2(d −1),d ), by Theorem 1. If G ∈ RC A(n,d ,3) = ER(n,d ,1) and

d > 2 then C L(G) ∈ RC A( nd
6 , 3(d−2)

2 , d
2 ), by Theorem 1.

Since edge-regular graphs with λ∈ {0,1} are relatively easy to obtain (see Section 4, in the

case λ= 1), these observations give us starter supplies of regular clique assemblies with clique

number k , for different k , and then taking Cartesian products enlarges the supply indefinitely.

We already have, by Corollary 3, that there are infinitely many such graphs, for each k ≥ 2;

these latter observations bear on the orders, degrees, and isomorphism types to be found

among the RCAs with clique number k . But we leave the examination of this bounty for now.

3. Configurations, another incarnation of regular clique assemblies

An incidence structure is a triple (P ,B,I ) of sets such that I ⊆P ×B. The elements of

P are called points, and the elements of B are called lines or blocks. If (p,B ) ∈I we say that
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p and B are incident—but we will often resort to colloquial usages such as: p is on B , or p is

an element of B , or even p ∈ B , treating each block as a set of points, which may as well be the

case, however B is given initially.

The dual of an incidence structure S = (P ,B,I ) is the incidence structure S
T =

(B,P ,I T ), where I
T = {(B , p) | (p,B ) ∈I }. Obviously (S T )T =S . A (vr ,bk ) configuration is

an incidence structure (P ,B,I ) in which |P | = v , |B| = b, each block contains (is incident

to) exactly k points, each point lies in exactly r different blocks, and any two different points

are together in at most one block. (Because P and B and the blocks are sets, there are no

repeated points, nor repeated blocks.) In any such configuration, clearly |I | = vr = bk . Also,

no two different blocks can have more than one point in common (because two different

points cannot be together in two different blocks), so the dual of a (vr ,bk ) configuration is a

(bk , vr ) configuration.

A triangle or trilateral in a configuration is a set of 3 points which are pairwise collinear

but which do not lie together on the same line (block). In other words, each pair of the 3 points

determines a line, and the 3 lines thus determined are distinct. A configuration is trilateral-

free if its point set contains no trilateral. It is easy to see that every trilateral in a configuration

corresponds to a trilateral in the dual; therefore, if S is trilateral-free, then so is S
T .

Proposition 3. Suppose k ≥ 2. If G ∈ RC A(n,d ,k), then the incidence structure (V (G),B,I ),

where B is the set of vertex sets of the maximum cliques in G, and (w,B ) ∈ I if and only if

w ∈ B ∈B, is a trilateral-free (n d
k−1

, ( nd
k(k−1)

)k ) configuration.

Conversely, if (P ,B,I ) is a trilateral-free (vr ,bk ) configuration then the graph G defined

by V (G) =P and p, q ∈P , p 6= q, are adjacent in G if and only if p, q ∈ B for some B ∈B, is in

RC A(v,r (k −1),k).

Proof. If G ∈ RC A(n,d ,k), that the incidence structure derived from G as in the statement of

Proposition 3 is an (n d
k−1

, ( nd
k(k−1))k ) configuration is a straightforward exercise from the defini-

tions and the statements and proofs of Lemma 1, Proposition 1, and Theorem 1. To see that S

is trilateral-free, suppose that u, v, w ∈ V (G) = P are 3 different vertices of G (points of S) and

are pairwise collinear. This means that there are maximum cliques H1, H2, H3 in G such that

u, v ∈V (H1), v, w ∈V (H2), and u, w ∈V (H3). Then uv w is a K3 in G , a clique, which is there-

fore contained in a maximal clique H of G . Because G is an RCA, H is a maximum clique, and

then because it contains each of the edges uv , v w , and uw , it must be that H = H1 = H2 = H3.

This proves that S contains no trilaterals.

Now suppose that S = (P ,B,I ) is a trilateral-free (vr ,bk ) configuration, with B under-

stood to be a collection of k-subsets of P , and suppose that G is derived from S as described

in the statement of Proposition 3. Because two different blocks of S can intersect in at most
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one point, it is clear that for each w ∈ P , G[NG (w )] contains r Kk−1 as a spanning subgraph.

We have equality, G[NG (w )] ≃ r Kk−1, unless there is an edge of G with ends in B1\{w } and

B2\{w } for some B1,B2 ∈ B, B1 6= B2 with {w } = B1 ∩B2. There can be no such edge because

S is trilateral-free. Therefore G ∈ RC A(v,r (k −1),k), by Proposition 1. ���

Remarks:

1. It is a straightforward chore to see that the derivations of trilateral-free configurations

from regular clique assemblies, and of regular clique assemblies from trilateral-free con-

figurations, as described in Proposition 3, are inverses of each other.

2. Another straightforward chore: verify that if S and G are, respectively, a trilateral-free

configuration and a regular clique assembly which correspond à la Proposition 3, then

S
T corresponds to C L(G). Since (S T )T = S , this observation provides an elegant alter-

native proof of the claim in Theorem 1 that C L(C L(G)) ≃G . The thrashing around on this

matter in the proof of Theorem 1 has, in the alternative proof, been absorbed into the

proof of Proposition 3.

3. Suppose that Si = (P i ,Bi ,Ii ) is a ((vi )r , (bi )k ) configuration with Bi ⊆
(

P i

k

)

= {k−subsets

of P i }, i = 1,2. If P1∩P2 =; then S = (P 1∪P2,B1∪B2,I1∪I2) is a ((v1+v2)r , (b1+b2)k )

configuration, trilateral free if and only if both S1 and S2 are. If S is obtained in this way

from two other configurations, we will say that S is reducible. Otherwise, S is irreducible.

Proposition 4. Suppose that S is a trilateral-free configuration and G is the regular clique

assembly corresponding to S . Then S is irreducible if and only if G is connected.

Proof. It is straightforward to see that S is reducible if and only if G is not connected. ���

In some precincts, irreducibility is part of the definition of configurations; not here, how-

ever.

A (vr ,bk ) configuration is symmetric if v = b (equivalently, r = k), and is said to be a (vk)

configuration. By Proposition 3, the graph G corresponding to a trilateral-free (vk ) configu-

ration belongs to RC A(v,k(k −1),k) as does C L(G), by Theorem 1, which naturally generates

the questions: for which n and k is every graph in RC A(n,k(k −1),k) isomorphic to its clique

graph, and for which n and k does there exist G ∈ RC A(n,k(k−1),k) such that G ≃C L(G)? We

have few answers (see Theorem 3 in the next section, for one), but we are encouraged to find

that this graph isomorphism problem is equivalent to a geometric isomorphism problem, the

question of which trilateral-free symmetric configurations are self-dual.

We embarked on this topic in search of answers about ER(n,d ,1) = RC A(n,d ,3): for

which n and d is this collection non-empty, and for such (n,d ), how many different isomor-

phism classes of connected graphs are represented in ER(n,d ,1)? By Proposition 1 or by The-

orem 1, RC A(n,d ,3) 6= ; only if d is even, and by Proposition 3 the graphs in RC A(n,d ,3)

correspond to symmetric trilateral-free configurations only if d = 3(3−1) = 6.
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As we shall see in the next section, it is relatively easy to describe all graphs in
⋃

n ER(n,2t ,1)

if t ∈ {1,2}. For t = 3, using only graphical methods and results on RCAs, we had found

that ER(n,2t ,1) contains a connected graph for n = 15 and n ≥ 17, except possibly, for n ∈
{17,19, . . . ,26,28,29,30,40, . . . ,44,46}. Then a referee of an earlier version of this paper pointed

out the connection between RCAs and trilateral-free configurations, and now we have this.

Theorem 2 (Raney [11], 2013). For every n ≥ 15 except n = 16 there is a trilateral-free irre-

ducible symmetric (n3) configuration.

Corollary 4. For every n ≥ 15 except n = 16, RC A(n,6,3) = ER(n,6,1) contains a connected

graph.

In the next section we shall give alternate proofs of some of Theorem 2, and then repay

some of our debt to configuration theory by giving easy proofs of the existence of graphs in

RC A(n,2t ,3), t > 3 for various n.

4. Edge-regular graphs with λ= 1

By Corollary 1, ER(n,d ,1) = RC A(n,d ,3). We sum up the conclusions of Section 2 for

ER(n,d ,1) in the following.

Proposition 5. Suppose ER(n,d ,1) 6= ;. Then

1. d is even;

2. 3|nd;

3. for each G ∈ ER(n,d ,1) and v ∈V (G), NG [v ] induces in G a friendship graph, {v}∨ d
2 K2;

4. if d > 2, each G ∈ ER(n,d ,1) is the clique graph of its clique graph, C L(G) ∈ RC A( nd
6

, 3
2

(d −
2), d

2
).

Conversely,

3.′ If G is a graph such that for some positive integer m, for each v ∈ V (G), G [NG [v ]] ≃ {v}∨
mK2, then G ∈ ER(n,2m,1), where n = |V (G)|; and

4.′ if G is the clique graph of some H ∈ RC A( nd
6 , 3

2 (d − 2), d
2 ), for some integers n and d > 2,

then G ∈ ER(n,d ,1).

Clearly the only edge regular graphs with λ= 1 and d = 2 are the graphs mK3. The edge-

regular graphs with d = 4 and λ= 1 are completely characterized as follows.

Corollary 5. G ∈ ER(n,4,1) for some n if and only if G is the line graph of a triangle-free 3-

regular graph.
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Proof. By Corollary 1, ER(n,4,1)= RC A(n,4,3); the conclusion follows from Corollary 2. ���

We note that Corollary 5 could also be extracted, almost entirely, from a passing remark

appearing in Section 4 of [10].

Corollary 6. There are exactly two graphs in ER(12,4,1), the line graphs of K4,4 −M, where M

is a perfect matching in K4,4, and of

Proof. Both G1 = K4,4 − M and the other graph, G2, are 3-regular and triangle-free with 12

edges. Therefore, their line graphs are in ER(12,4,1). Since, by Theorem 1, each Gi is the

clique graph of its line graph, their line graphs are distinct.

Now suppose that G ∈ ER(12,4,1). By Corollary 5, G = L(H ) for some H ∈ ER(8,3,0). If

H is bipartite, then, because H is bipartite and regular, H is 1-factorizable and so H must be

K4,4 −M , for some perfect matching M .

If H is not bipartite, then, since H is K3-free on 8 vertices, H must contain either a C5 or a

C7 or both. If H contains a C5, it must be induced in H , because H is triangle-free. Each vertex

on the C5 must therefore be adjacent to exactly one of the 3 vertices not on the C5. If one of

those vertices were adjacent to 3 vertices on the C5, there would be a triangle in H . Therefore

2 of the 3 vertices off the C5 are adjacent to 2 vertices each, on the C5, and the third is adjacent

to one vertex on the cycle and both of the other off-cycle vertices. From there it is easy to see

that H must be G2, the graph depicted above.

If H contains a C7 then, because the one vertex off the cycle is adjacent to only 3 vertices

on the cycle, H must contain two chords of the cycle. Any chord of a C7 which does not create

a K3 must create a C5, so H contains a C5. Therefore H ≃G2. ���

If, for some n = |V (G)|, G ∈ ER(n,4,1) = RC A(n,4,3), then, by Theorem 1, 6|4n, so 3|n.

(This conclusion also follows from Corollary 5.) Indeed, for any n and d , if ER(n,d ,1) 6= ;
then 6|nd , and therefore, if 3 ∤ d , then 3|n. We mention this because it has been privately

conjectured that whenever ER(n,d ,1) 6= ;, n must be divisible by 3. We shall see that this is

not the case.

Corollary 5 shows that ER(n,4,1) contains a connected graph for infinitely many n, and

we shall soon see that ER(n,6,1) contains a connected graph for infinitely many n. In pass-

ing, we note that these facts point to a powerful difference between the class of all edge reg-

ular graphs and the class of strongly regular graphs. An elementary necessary condition for
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SR(n,d ,λ,µ) to be non-empty is that d (d −λ−1) =µ(n −d −1) [2]. It follows that for given d ,

λ satisfying d > λ+1 there can be only finitely many pairs (n,µ) such that SR(n,d ,λ,µ) 6= ;,

and if µ> 0, any graph in SR(n,d ,λ,µ) is connected.

In contrast, by Corollary 5 and either Proposition 2 or its analog, Proposition 6, to fol-

low, it can be seen that for each even d ≥ 4 there are infinitely many n such that ER(n,d ,1)

contains a connected graph.

Proposition 6. If G ∈ ER(n1,d1,λ) and H ∈ ER(n2,d2,λ), then G�H ∈ ER(n1n2,d1 +d2,λ).

The proof is straightforward.

Corollary 7. For any integers t ≥ 3, q ≥ 0, ER(3q+1t ,4+2q,1) contains a connected graph.

Proof. It is easy to see that the smallest order of triangle-free 3-regular graph is 6 (and that

the only such graph of that order is K3,3). For any such graph H of order 2t one can make an-

other such graph of order 2t +2 by subdividing each of two independent edges of H and then

making the two new vertices adjacent. Thus the possible orders of connected triangle-free

3-regular graphs are 2t , t ≥ 3. Therefore, by Corollary 5, {n | ER(n,4,1) contains a connected

graph} = {3t | t ≥ 3 and t is an integer}. This establishes the claim of the corollary when q = 0.

Now suppose that q > 0, t ≥ 3, G ∈ ER(3t ,4,1), and G is connected. Then by Proposition 6,

taking powers of K3 with respect to the Cartesian product, (K3)q
�G ∈ ER(3q ·3t ,4+2q,1), and

clearly (K3)q
�G is connected. ���

Fixing q and letting t vary, we see that for every even d ≥ 4 there are infinitely many n

such that ER(n,d ,1) contains a connected graph. Our ambition is to determine, for each even

d > 4, the spectrum Sc
1(d ) = {n | ER(n,d ,1) contains a connected graph}. (We have Sc

1(4) =
{9,12,15, . . .} and Sc

1(2) = {3}.) Beyond that is the probably unachievable goal of determining,

for each n ∈ Sc
1(d ), the different (isomorphism classes of) connected graphs in ER(n,d ,1). We

make a start on these aims, after Corollary 8.

Corollary 8. For any integers t ≥ 3, q ≥ 0, there is an irreducible ((3q+1t )2+q , (3q t (2+ q))3)

configuration.

Proof. This is a consequence of Proposition 3, Proposition 4, and Corollary 7. ���

By a remark in the Introduction, if ER(n,6,1) 6= ; then n ≥ 3(6− 1) = 15. We shall see

that ER(15,6,1) contains exactly one graph and then use that graph to construct connected

graphs in ER(n,6,1) for infinitely many values of n.

Suppose m and k are positive integers. Let [m] = {1, . . . ,m} and let
([m]

k

)

denote the set of

all k-subsets of [m]. If 1≤ k ≤ m
2

, the Kneser graph K (m,k) has vertex set
([m]

k

)

, with u, v ∈
([m]

k

)

adjacent if and only if u ∩v =;
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Lemma 2. If m and k are integers satisfying 1 ≤ k ≤ m
2 , then K (m,k)∈ ER

(

(m
k

)

,
(m−k

k

)

,
(m−2k

k

)

)

.

If m ≥ 4, K (m,2) ∈ SR
(

(m
2

)

,
(m−2

2

)

,
(m−4

2

)

,
(m−3

2

)

)

.

The verification is straightforward.

Corollary 9. If k ≥ 1, K (3k ,k)∈ ER(
(3k

k

)

,
(2k

k

)

,1).

Theorem 3. K (6,2) is the unique graph in ER(15,6,1).

Proof. For any graph G ∈ ER(n,6,1) = RC A(n,6,3), for any n, if u, v, w ∈ V (G) induce a

K3 in G then, by Lemma 1 and its corollaries, the subgraph of G induced by N [{u, v, w }] =
N [u]∪N [v ]∪N [w ] has a spanning subgraph as depicted in Figure 2. By Corollary 9, K (6,2) ∈
ER(15,6,1). For any G ∈ ER(15,6,1), for any u, v, w ∈ V (G) inducing K3 in G , all 15 of G’s ver-

tices are on display in Figure 2. The edges of G not depicted are among the 12 vertices of

V (G)\{u, v, w }. Consider x1. All 4 vertices to which x1 is adjacent besides x2 and v are among

the z j and the y j . But x1 cannot be adjacent to both z1 and z2, for instance, because the

unique common neighbor of z1 and z2 is u. Therefore x1 is adjacent to at most one of z1,

z2, to at most one of z3, z4, to at most one of y1, y2, and to at most one of y3, y4. Therefore,

x1 is adjacent to exactly one of z1, z2, to exactly one of z3, z4, etc., because x1 must have 4

neighbors among the 8 vertices.

Figure 2: Spanning subgraph of G[N [{u, v, w }]] for any K3 =G[{u, v, w }] in G ∈ ER(n,6,1), for

some n.

Therefore, u and x1 have exactly 3 common neighbors, v and two among z1, . . . , z4.

But, because the diagram in Figure 2 will be the same (except for the vertex names),

no matter which K3 you start with, u and x1 could be any two non-adjacent vertices in G .

Therefore G is strongly regular: G ∈ SR(15,6,1,3). According to [13], K (6,2) is the only graph

in SR(15,6,1,3). ���
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For those who don’t care for proof by appeal to websites, a more laborious proof can

be given which provides an independent corroboration of the fact that K (6,2) is the unique

member of SR(15,6,1,3). The full structure of the graph induced by the edges of G among

the 12 vertices of G − {u, v, w }, excluding the edges shown in Figure 2 (x1x2, x3x4, etc.), can be

deduced from the assumption that G ∈ ER(15,6,1). For a somewhat shorter proof, note that

that graph on 12 vertices must be in ER(12,4,1); of the two possibilities given in Corollary 4,

L(G2), where G2 is the non-bipartite graph depicted, can be ruled out, and then it can be seen

that L(K4,4−M ) must be fitted onto the 12 vertices of degree 2 in Figure 2 so that the resulting

graph is K (6,2), if the resulting graph is to be edge regular with d = 6, λ= 1. But we omit the

details.

By Proposition 3, the uniqueness of K (6,2) in ER(15,6,1) is equivalent to the uniqueness

of the configuration associated with K (6,2), as a symmetric (153) configuration. We are in-

debted to the previously mentioned referee of a previous version of this paper for pointing

out that the uniqueness of this configuration has long been known, and is connected with

the uniqueness of Tutte’s 8-cage [4]. While we are on this subject, the well-known fact that

there is no (163) configuration is a special case of the main result in [7], where it took the form

of the claim that ER(16,6,1) = ;. That main result, mentioned in the Introduction, is that

ER(3d −2,d ,1) =; for all d .

4.1. Graphical construction of connected graphs in ER(n,6,1) for infinitely many n

Start with the graph shown in Figure 2; we call this the primary scaffold. Each vertex in it

has degree 2 or 6, any two vertices adjacent in the scaffold have a unique common neighbor

in the scaffold, and non-adjacent vertices in the scaffold have at most one common neighbor.

We can build new scaffolds with these properties from the primary scaffold in a number of

ways. We shall describe the most straightforward construction method, leading to graphs in

ER(15+ 16k ,6,1), k = 1,2, . . ., and then mention variations of the method that can produce

graphs in ER(n,6,1) for many other n, including all n ≥ 47.

In a scaffold, each vertex of degree 6 is finished, and each vertex of degree 2 is unfinished.

Produce a new scaffold by joining an unfinished vertex to the vertices of a 2K2 whose vertices

are new to the scene. The 4 new vertices are unfinished in the new scaffold, and the formerly

unfinished vertex to which they are joined is finished. The number of vertices has increased

by 4 and the number of unfinished vertices has increased by 3.

The primary scaffold has 15 vertices, 12 of them unfinished. Therefore, after t iterations

of the new-scaffold-generating process, the resulting scaffold will have 15+4t vertices, 12+3t

of them unfinished. When t = 4k for some integer k , we have a scaffold on 15+16k vertices,

with 12(k +1) of them unfinished.
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At such a point we can stop building scaffolds and attempt to complete the scaffold we

have to a graph in ER(15+16k ,6,1) by executing the following plan: partition the set of unfin-

ished vertices in the scaffold into k +1 sets P1, . . . ,Pk+1 of 12 vertices each and then put edges

among the vertices of P j , for each j , so that the graph on those vertices, with those edges, is

one of the two graphs in ER(12,4,1) mentioned in Corollary 6.

For any choice of the P j , and any insertion of the edges of one of the graphs in ER(12,4,1)

on the vertices of the P j , j = 1, . . . ,k+1, the resulting graph on 15+16k will be regular of degree

6, any two adjacent vertices will be joined by one or two edges (possibly one from the scaffold

and one inserted) and will have one or two neighbors in common (possibly one common

neighbor in the scaffold and one in the imposed graph from ER(12,4,1)). We need to make

arrangements so that there are no doubled edges in the completed graph and no two adjacent

vertices in the completed graph have two common neighbors in that graph.

We posit the following requirements on P1, . . . ,Pk+1 and on the graphs H j ∈ ER(12,4,1)

obtained by inserting edges among the vertices of P j , j = 1, . . . ,k +1:

Each P j must be partitionable into 3 sets Q1 j ,Q2 j ,Q3 j of 4 vertices each such that if u ∈ Qi j ,

v ∈Qt j , 1 ≤ i < t ≤ 3, then u, v are distant at least 3 from each other in the scaffold. Explana-

tion: Each graph in ER(12,4,1) has chromatic number 3 and vertex independence number 4.

The Qi j will be independent sets of vertices in H j , so pairs of vertices adjacent in H j will be

from different Qi j . Therefore, because vertices in Qi j and Qt j for t 6= i are distant at least 3

from each other in the scaffold, there will be no chance that an edge of the imposed H j will

double an edge of the scaffold. It is now sufficient to take care that no two vertices adjacent

in H j have a common neighbor in the scaffold and that no two vertices in P j adjacent in the

scaffold have a common neighbor in H j .

Since two vertices adjacent in H j are in Qi j for different values of i , they are distant at

least 3 from each other in the scaffold, and therefore have no common neighbor in the scaf-

fold. Now suppose that u, v ∈ P j are adjacent in the scaffold. Then they must belong to the

same Qi j , since no two vertices in different Qi j can be adjacent in the scaffold.

Since any 4 unfinished vertices in the scaffold induce one of 4K1, 2K1 +K2, or 2K2 in the

scaffold, we can require that each Qi j be partitioned into two 2-element sets, R1i j and R2i j ,

such that no vertex in R1i j is adjacent to any vertex in R2i j in the scaffold. Then form H j ≃
L(K4,4)− M with R1,1, j , R2,1, j ,. . ., R1,3, j , R2,3, j playing the roles of {x1, x2}, {x3, x4},. . ., {z1, z2},

{z3, z4}, respectively, in a copy of L(K4,4 −M ) which completes the primary scaffold depicted

in Figure 2 to K (6,2).

Observe that the recommendation above for taking H j ≃ L(K4,4 −M ) under certain cir-

cumstances is not an iron-clad requirement. It may well be that L(K4,4 −M ) may be success-

fully imposed upon P j in other ways than the recommended way, or that L(G2) (see Corollary
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6) may be successfully imposed, even if some Qi j , i ∈ {1,2,3}, contains a pair of vertices adja-

cent in the scaffold. L(G2) may certainly be used if P j is an independent set of vertices in the

scaffold.

In Figure 3 are depicted two very different scaffolds of order 31, each with 24 unfinished

vertices partitioned into two sets of 12 vertices, each of which is partitioned into 3 sets of 4 ver-

tices each, satisfying the requirement that two vertices from different partition sets of 4 within

either set of 12 are distant at least 3 from each other in the scaffold. In neither circumstance

is the partition into 12-vertex subsets unique. In the top example, if the partition of the un-

finished vertices into 12-vertex sets is as given, then the partition within each into 4-element

sets is forced. This is not true in the other example. In each case, we intend L(K4,4 − M ) to

be the graph imposed on each 12-vertex partition set for the completion of the given scaffold

to a graph in ER(31,6,1). We are certain that this is the only possible choice of an imposed

graph from ER(12,4,1) no matter what the partition choices for the top scaffold, and we are

pretty sure that the same holds for the bottom scaffold. As k goes up, the 12(k +1) unfinished

vertices in scaffolds of order 15+16k become more numerous and “spaced away” from each

other, offering many more choices for admissible partitions into 12-vertex sets. It becomes

easier to make arrangements so that L(G2) (see Cor. 6) can be used in the construction.

For non-negative integers d and λ, let Sλ(d ) = {n | ER(n,d ,λ) 6= ;} and Sc
λ

(d ) = {n |
ER(n,d ,λ) contains a connected graph }. Observe that Sλ(d ) is closed under addition, since

if Gi ∈ ER(ni ,d ,λ), i = 1,2, then G1 +G2 ∈ ER(n1+n2,d ,λ).

To find Sλ(d ) it suffices to find Sc
λ

(d ). We know from Corollary 4 that Sc
1(6) = S1(6) =

{15,17,18, . . .}. In what follows we will verify by direct construction all but finitely many of the

elements of Sc
1(6).

Variations in scaffold-building

In all of this, we start with the primary scaffold, depicted in Figure 2.

Let the scaffold-building operation described previously, in which an unfinished vertex is

joined to a new 2K2, be called Method 1, or M1 for short. Here are two other scaffold-building

operations.

M2: Take two unfinished vertices, a distance ≥ 3 from each other in the current scaffold; join

them and join each to a new vertex. Finish each by joining it to a K2 — the K2s being disjoint

and formed from new vertices.

Note that the number of vertices has increased by 5 and the number of unfinished ver-

tices has increased by 3.
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Figure 3: Two different scaffolds of order 31, with admissible partitions of the unfinished ver-

tices into two 12-vertex sets: {x1, x2, . . . , z3, z4}, {x ′
1, x ′

2, . . . , z ′
3, z ′

4}.

M3: Take 3 unfinished vertices, any two distant at least 3 from each other in the current scaf-

fold. Make them the vertices of a K3, and then join each up to its own K2, whose vertices are

new and unfinished in the new scaffold.

The number of vertices has increased by 6, and the number of unfinished vertices has

increased by 3.

If, starting with the primary scaffold, M1 is applied a times, M2 b times, and M3 c times, in

any order, then the resulting scaffold has 15+4a+5b+6c vertices, and 12+3(a+b+c) of them

are unfinished. We leave it as an entertainment for the reader to verify that {15+4a+5b+6c |
a,b,c are non-negative integers and a +b + c ≡ 0 mod 4} = {15}∪ {31,32, . . .}\{40, . . . ,46}, and

so these are the orders of edge regular graphs with d = 6 and λ= 1 that can be constructed by

this method proposed here. The meticulous reader will rightly worry that, when a +b + c ≡
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0 mod 4, there may not be a partition of the unfinished vertices into 12-sets satisfying the

requirements described above. Applications of M1 alone results in an expanding universe of

unfinished vertices, and there seems to be no problem, but in M2 and M3 unfinished vertices

a distance ≥ 3 from each other are made adjacent in constructing the new scaffold. However,

note that any application of M2 or M3 will increase the supply of pairs of unfinished vertices

a distance ≥ 3 from each other, as each vertex which is being finished is made adjacent to

the vertices of a new K2. We won’t bore you with a long explanation; we are sure that this

consideration will ultimately satisfy the skeptical.

Since we already know Sc
1(6) from Corollary 4, what is the use of all this construction

activity? That’s a question for mathematical philosophers. We are liberals, in favor of ex-

posing all reasonably interesting mathematical discoveries, and letting natural selection take

its course. Very likely these constructions are headed straight for the dustbin of history; on

the other hand, it just might happen that one fine day an astrophysicist will badly need to

estimate the greatest and least diameters of graphs in ER(1028,6,1), in which case these con-

structions could come in handy.

There are further variations available in these constructions. Most obviously, we can al-

low two kinds of unfinished vertices, one kind with closed neighborhood K3 in the scaffold, as

before, and a new kind with closed neighborhood K1 ∨2K2 in the scaffold. We are not sure if

edge regular graphs with d = 6, λ= 1 can be constructed under this relaxation that could not

be constructed using M1, M2, and M3 only.

4.2. ER(n,d ,1) for d even, d ≥ 8

By remarks preceding Corollary 5 and by Corollary 7, Sc
1(2) = {3}, S1(2) = {3m | m is a

positive integer} and Sc
1(4) = S1(4) = {3t | 3 ≤ t is an integer}.

As mentioned previously, by Corollary 4 we have Sc
1(6) = S1(6) = {15}∪ {n ≥ 17 | n is an

integer}. By Corollary 7, for integers q ≥ 2, if d = 4+ 2q then 3q+1t ∈ Sc
1(d ) for each integer

t ≥ 3, so Sc
1(d ) is infinite for every even d ≥ 8.

Obviously Proposition 6 can be used to improve Corollary 7 by enlarging our knowledge

of Sc
1(d ), d even, d ≥ 8. For example, if d = 14 = 4+10, Corollary 7 says that 36t ∈ Sc

1(14) for all

integers t ≥ 3; this comes from Proposition 6, which implies that (K3)5
�G ∈ ER(36t ,14,1) for

any G ∈ ER(3t ,4,1) 6= ;. [As before, all graph powers are taken with respect to the Cartesian

product.] We also have that for G ∈ ER(n1,6,1), and X ∈ ER(3x,4,1), Y ∈ ER(3y,4,1), x, y ≥
3, G�X�Y ∈ ER(9n1x y,14,1), by Proposition 6; therefore 9n1x y ∈ Sc

1(14) for all n1 ∈ Sc
1(6)

and integers x, y ≥ 3. From 14 = 6+ 6+ 2 we get 3n1n2 ∈ Sc
1(14) for all n1,n2 ∈ Sc

1(6). And

there’s more! But you get the idea. For every n ∈ Sc
1(d ) there may be quite a number of graphs
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in ER(n,d ,1)—and for each of these a (vr ,b3) configuration, v = n, r = d/2, b = nd/6, by

Proposition 3.

But in the midst of this plenty, there are two nagging questions that we cannot answer.

Recall that, by Proposition 5 (2), if n ∈ S1(d ) and 3 ∤ d then 3 | n. Our questions, concerning

arbitrary even d > 6:

1. Suppose 3 ∤ d ; does Sc
1(d ) necessarily contain all sufficiently large multiples of 3?

2. Suppose 6 | d : does Sc
1(d ) necessarily contain all sufficiently large integers?

We have that the answer to question 1 is yes when d = 4, and the answer to question 2 is

yes when d = 6. We can also get an answer to question 1 when d = 8.

Proposition 7. {45}∪ {3n | n ∈ {17,18, . . .}} ⊆ Sc
1(8).

Proof. By Proposition 6, if G ∈ ER(n,6,1) then G�K3 ∈ ER(3n,8,1). By Corollary 4, {n |
ER(n,6,1) contains a connected graph}= {15,17,18, . . .}. ���

We shall shortly have a similar result for d = 10. But, first, we exploit the fact that, for each

d , S1(d ) is closed under addition to answer questions analogous to 1 and 2 above for S1(d ).

Theorem 4. Suppose that d > 2 is an even integer. If 6 | d then S1(d ) contains all sufficiently

large integers. Otherwise, S1(d ) contains all sufficiently large integer multiples of 3.

Proof. We may as well suppose that d > 8, by previous results. The proof hinges on a well-

known theorem of Frobenius, which asserts that if a and b are relatively prime positive inte-

gers, then every integer z ≥ (a −1)(b −1) is representable as z = ma +nb, m,n non-negative

integers; in other words, every such z is a sum of a’s and b’s.

If d = 6q , q ≥ 2, then, because 15,17 ∈ Sc
1(6), 15q ,17q ∈ Sc

1(d ) (by Proposition 6) and so

{n ∈N | n ≥ (15q −1)(17q −1)} ⊆ {m15q +n17q | m,n ∈N} ⊆ S1(d ).

If d = 6q + 2, q ≥ 2, take G ∈ ER(15,6,1), and H ∈ ER(17,6,1); then Gq
�K3 ∈ ER(3 ·

15q ,6q +2,1), H q
�K3 ∈ ER(3 ·17q ,6q +2,1), by Proposition 6, again. So 3 ·15q ,3 ·17q ∈ S1(d ).

Therefore {3n |n ∈N and n ≥ (15q −1)(17q −1)} ⊆ S1(d ).

If d = 6q + 4, q ≥ 1, then, taking G and H as above, X = L(K3,3) ∈ ER(9,4,1), and Y ∈
ER(12,4,1), then Gq

�X ∈ ER(9 ·15q ,6q +4,1), H q
�Y ∈ ER(12 ·17q ,6q +4,1), and so, because

3 ·15q ,4 ·17q are relatively prime, we find that {3n | n ∈N and n ≥ (3 ·15q −1)(4 ·17q −1)}

⊆ S1(d ). ���

Another query on the question of edge regular graphs with λ = 1: For which even d >
6 can we build edge regular graphs with degree d and λ = 1 from a scaffold consisting of

N [{u, v, w }], where uv w is a K3 in the graph, as we did in the case d = 6? To be able to proceed
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Figure 4: A spanning subgraph of G[N [{u, v, w }]], G ∈ ER(n,d ,1) for some n.

as in that case, we would need N [{u, v, w }] = V (G), where G is the graph containing the pri-

mary scaffold N [{u, v, w }]. In short, we need ER(3(d −1),d ,1) to be non-empty. (Recall that

3(d −λ) is a universal lower bound for the orders of edge regular graphs with degree d and λ

triangles on each edge.)

Lemma 3. If d > 2 then ER(3(d −1),d ,1) = SR(3(d −1),d ,1, d
2 ).

Proof. Clearly ER(3(d −1),d ,1) ⊇ SR(3(d −1),d ,1,µ) for any µ. If G ∈ ER(3(d −1),d ,1) then

d is even and for every triangle uv w in G , there is a spanning subgraph of G as depicted in

Figure 4. The proof now proceeds by the argument in the proof of Theorem 3, about the case

d = 6:

In Figure 4, p1 and p2 can have no common neighbor but v , neither is adjacent to any pi ,

i > 2, and neither can be adjacent to two adjacent vertices among the qi , nor among the ri ;

it follows that each has d−2
2 neighbors among the qi and among the ri . Therefore, p1 and u

have 1+ d−2
2

= d
2

common neighbors. Since p1 and u could be any two vertices not adjacent

in G , it follows that G is strongly regular with µ= d
2 . ���

Corollary 10. ER(3(d −1),d ,1) 6= ; if and only if d ∈ {2,4,6,10}.

Proof. The second-best-known necessary condition for SR(n,d ,λ,µ) 6= ;, the integrality con-

dition ([1, 2]), is that each of 1
2

[

(n −1)± (n−1)(µ−λ)−2dp
(µ−λ)2+4(d−µ)

]

is a non-negative integer. Plugging

n = 3(d − 1), λ = 1, µ = d
2 , and simplifying, we find that 1

2 (3d − 4± (3d − 20+ 48
d+2 )) must be

non-negative integers.

Among even integers greater than 2, the possibilities for d are 4, 6, 10, and 22. Spence’s

website [13] shows a graph, and only one graph, in SR(27,10,1,5). That SR(63,22,1,11) =
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; can be shown using a less well-known necessary condition for the existence of a strongly

regular graph, the absolute bound. See [9], Theorem 21.4. ���

Corollary 11. 24 ∈ Sc
1(8).

Proof. Consider G ∈ ER(27,10,1), and any one of the spanning “scaffolds” depicted in Figure

4, with d = 10. The edges of G not pictured in Figure 4 induce H ∈ ER(24,8,1). If H were not

connected then one of its components would be edge-regular with d = 8, λ = 1, on no more

than 12 vertices. Since 12 < 21 = 3(8−1), this is impossible. ���

Corollary 12. Sc
1(10) contains all sufficiently large multiples of 3.

Proof. Starting with the scaffold in Figure 4, with d = 10, apply the scaffold-building analogs

of Methods 1, 2, 3 that were used in the case d = 6 to build new scaffolds in which the number

of unfinished vertices is a multiple of 24. Finish these off to make connected edge-regular

graphs with d = 10 and λ = 1 by the method analogous to that used in the case d = 6, using

the graph H referred to in the proof of Corollary 11 as L(K4,4 −M ) was used in the d = 6 con-

structions. There follows the verification that graphs in ER(3q,10,1) can be so constructed

for all sufficiently large integers q .

In the case d = 10, each instance of Method 1 increases the number of vertices by 8 and

the number of unfinished vertices by 7; Method 2 increases the number of vertices by 13 and

the number of unfinished vertices by 11; and Method 3 increases the number of vertices by

18 and the number of unfinished vertices by 15. As in the case d = 6, it is obvious that the

distance requirements to be satisfied in applying these methods and in finishing scaffolds to

edge-regular graphs with d = 10, λ = 1, are not a problem. Therefore, since we are starting

with a scaffold with 27 vertices, 24 of them unfinished, it suffices to show that T = {8a+13b +
18c | a,b,c ∈N and 7a +11b +15c ≡ 0 mod 24} contains all sufficiently large multiples of 3.

Clearly T is closed under addition; therefore, T is closed under taking non-negative in-

teger combinations. We have that 8 ·1+13 ·1+18 ·2 = 57 ∈ T and 8 ·6+13 ·0+18 ·2 = 84 ∈ T .

Therefore, for all d ,e ∈N, 57d +84e = 3(19d +28e) ∈ T . By the famous theorem of Frobenius

mentioned earlier, T contains 3t for all t ≥ (19−1)(28−1). ���

One last open question, arising from Corollaries 7 and 10: For an even positive integer

d ∉ {2,4,6,10}, what is the smallest element of Sc
1(d ), as a function of d?
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