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SIGNED STRONG ROMAN DOMINATION IN GRAPHS

LEILA ASGHARSHARGHI, RANA KHOEILAR AND SEYED MAHMOUD SHEIKHOLESLAMI

Abstract. Let G = (V ,E ) be a finite and simple graph of order n and maximum degree

∆. A signed strong Roman dominating function (abbreviated SStRDF) on a graph G is a

function f : V → {−1,1,2, . . . ,⌈∆2 ⌉+1} satisfying the conditions that (i) for every vertex v of

G,
∑

u∈N[v] f (u) ≥ 1, where N [v] is the closed neighborhood of v and (ii) every vertex v for

which f (v) =−1 is adjacent to at least one vertex u for which f (u) ≥ 1+⌈
1
2 |N (u)∩V−1|⌉,

where V−1 = {v ∈ V | f (v) = −1}. The minimum of the values
∑

v∈V f (v), taken over all

signed strong Roman dominating functions f of G, is called the signed strong Roman

domination number of G and is denoted by γssR (G). In this paper we initiate the study

of the signed strong Roman domination in graphs and present some (sharp) bounds for

this parameter.

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E (G). For

every vertex v ∈ V , the open neighborhood NG (v) = N (v) is the set {u ∈ V | uv ∈ E } and the

closed neighborhood of v is the set N [v ] = N (v)∪ {v}. The degree of a vertex v ∈ V is dG (v) =

d (v)= |N (v)|. The minimum and maximum degree of a graph G are denoted by δ= δ(G) and

∆ = ∆(G), respectively. The complement of G is denoted by G . We write Kn for the complete

graph, Cn for a cycle, Pn for a path of order n and K1,r for a star of order r +1. For r, s ≥ 1, a

double star S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to r

leaves and the other to s leaves.

A subset S of vertices of G is a dominating set if N [S]=V . The domination numberγ(G) is

the minimum cardinality of a dominating set of G . A dominating set of minimum cardinality

of G is called a γ(G)-set. A signed Roman dominating function (abbreviated SRDF) on G is

defined as a function f : V (G) −→ {−1,1,2} such that f (N [v ]) =
∑

x∈N [v] f (x) ≥ 1 for every

v ∈V (G) and every vertex u for which f (u) =−1 is adjacent to at least one vertex v for which

f (v) = 2. The weight of an SRDF f on a graph G is ω( f ) =
∑

v∈V (G) f (v). The signed Roman
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domination number γsR (G) of G is the minimum weight of an SRDF on G . The signed Roman

domination number was introduced by Ahangar et al. [1] and has been studied by several

authors (for example [7]).

The defensive strategy of signed Roman domination is based in the fact that every place

in which there is established a Roman legion (a label 1) is able to protect itself under external

attacks; and that every place with an auxiliary troop (a label -1) must have at least a stronger

neighbor (a label 2). In that way, if an unsecured place (a label -1) is attacked, then a stronger

neighbor could send one of its two legions in order to defend the weak neighbor vertex (label

-1) from the attack. If several simultaneous attacks to weak places are developed, then the

only stronger place will be not able to defend its neighbors efficiently. With this motivation in

mind, we introduce the concept of signed strong Roman dominating function as follows. For

our purposes, we consider that a strong place should be able to defend itself and, at least half

of its weak neighbors.

In graph theoretic terms, we define a signed strong Roman dominating function (SStRDF)

on a graph G = (V ,E ) to be a function f : V → {−1,1,2, . . . ,⌈∆2 ⌉+ 1} satisfying the conditions

that the sum of the values assigned to a vertex and its neighbors is at least 1 for every ver-

tex and every vertex v for which f (v) = −1 is adjacent to at least one vertex u for which

f (u) ≥ 1+⌈
1
2 |N (u)∩V−1|⌉, where V−1 = {v ∈ V | f (v) = −1}. The signed strong Roman domi-

nation number, denoted γssR (G), is the minimum weight of an SStRDF in G ; that is, γssR (G) =

min{ω( f ) | f is an SStRDF in G}. An SStRDF of weight γssR (G) is called a γssR (G)-function.

A signed strong Roman dominating function f : V → {−1,1,2, . . . ,⌈∆2 ⌉+ 1} can be repre-

sented by the ordered partition (V−1,V1, . . . ,V⌈ ∆
2
⌉+1) (or (V

f

−1,V
f

1 , . . . ,V
f

⌈ ∆
2
⌉+1

) to refer to f ) of V ,

where Vi = {v ∈V | f (v) = i } for i =−1,1, . . . ,⌈∆2 ⌉+1. If G1,G2, . . . ,Gs are the components of G ,

then

γssR (G) =
s

∑

i=1

γssR (Gi ). (1)

In this paper, we initiate the study of the signed strong Roman domination in graphs and

present some (sharp) bounds for this parameter. In addition, we determine the signed strong

Roman domination number of some classes of graphs.

We make use of the following observations.

Proposition A ([1]). Let G be a graph of order n. Then γsR (G) ≤ n, with equality if and only if

G = Kn .

Observation 1. For any connected graph G with∆(G) ≤ 2, γssR (G) =γsR (G).

Proposition B ([1]). For n ≥ 3, γsR (Cn) = ⌈
2n
3 ⌉ and γsR (Pn) = ⌊

2n
3 ⌋.

Corollary 2. For n ≥ 3, γssR (Cn) = ⌈
2n
3 ⌉ and γssR (Pn )= ⌊

2n
3 ⌋.
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Based on (1) and Observation 1, from now on, we focus mainly on connected graphs with

maximum degree ∆≥ 3.

Proposition 3. For any integer k ≥ 1, there exists a connected graph G such that γssR (G) =−k.

Proof. Let v be the center of the star K1,5k+5 and let G be a wounded spider obtained from

K1,5k+5 by subdividing k +1 edges. Define f : V → {−1,1,2, . . . ,⌈∆2 ⌉+1} by f (x) = −1 if x is a

leaf, f (v) = 2k +3 and f (x) = 2 otherwise. Obviously, f is an SStRDF on G of weight −k and so

γssR (G) ≤−k . On the other hand, for any γssR (G)-function g , we have g (N [v ])≥ 1 and so

γssR (G) ≥ g (N [v ])− (k +1)≥ 1− (k +1) =−k .

This implies that γssR (G) =−k and the proof is complete. ���

Proposition 4. For n ≥ 4, γssR (Kn) = 1.

Proof. Let V (Kn) = {v1, . . . , vn} be the vertex set of Kn and let f be a γssR (Kn)-function. Clearly

γssR (Kn) = f (N [vn]) ≥ 1. If n and ⌈n−1
2

⌉ have different parity, then the function f : V (Kn) →

{−1,1,2, . . . ,⌈n−1
2 ⌉+1} defined by f (vn) = ⌈

n−1
2 ⌉+1, f (vi ) =−1 for 1 ≤ i ≤ ⌈

n−1
2 ⌉, f (v j ) = (−1) j

for ⌈n−1
2 ⌉+1 ≤ j ≤ n−1, is a signed strong Roman dominating function on Kn of weight 1. Let

n and ⌈
n−1

2 ⌉ have the same parity. Then the function f defined by f (vn) = ⌈
n−1

2 ⌉, f (vi ) = −1

for 1 ≤ i ≤ ⌈
n−1

2 ⌉, f (v j ) = (−1) j for ⌈
n−1

2 ⌉+ 1 ≤ j ≤ n − 2 and f (vn−1) = 1, is a signed strong

Roman dominating function on Kn of weight 1. Thus γssR (Kn) = 1. ���

2. Bounds on the signed strong Roman domination number

In this section, we establish some sharp bounds on the signed strong Roman domination

number.

Proposition 5. If G is a connected graph of order n with maximum degree ∆, then

γssR (G) ≥ 2+∆−n.

This bound is sharp for complete graphs Kn (n ≥ 4).

Proof. Let f be a γssR (G)-function and v be a vertex of degree ∆. Since f (N [v ])≥ 1, we have

γssR (G) =ω( f ) ≥ 1− (n −∆−1) = 2+∆−n. ���

Proposition 6. Let G be a connected graph of order n. Then the following statements hold.

(a) γssR (G) ≤ n, with equality if and only if G = Kn .

(b) γssR (G) ≥ 2γ(G)−n, with equality if and only if G = K n .
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Proof. (a) Clearly, assigning a weight of 1 to every vertex of G produces an SStRDF of G of

weight n which implies that γssR (G) ≤ n. If G = Kn , then it follows from Proposition A and

Observation 1 that γssR (G) = n. Henceforth, we assume that G is not empty. Let G1 be a

component of G of order at least two, u a vertex of minimum degree in G1, and v be a neighbor

of u. Clearly the function f : V (G) → {−1,1,2, . . . ,⌈∆
2
⌉+1} defined by f (u) = −1, f (v) = 2 and

f (x) = 1 otherwise, is an SStRDF of G of weight n −1 and so γssR (G) ≤ n −1.

(b) Let f be a γssR (G)-function. If Vi = ;, for each 2 ≤ i ≤ ⌈
∆

2 ⌉+1, then V = V1, and we have

γssR (G) =ω( f ) = n. But then by (a), G = K n , and so γ(G) = n, implying that γssR (G) = 2γ(G)−

n. Hence, we may assume that |Vi | ≥ 1 for some 2 ≤ i ≤ ⌈∆
2
⌉+1. Since |V−1| = n −

∑⌈
∆

2
⌉+1

i=1
|Vi |

and ∪
⌈
∆

2
⌉+1

i=1
Vi is a dominating set for G , we have

γssR (G) =

⌈ ∆
2
⌉+1

∑

i=1

i |Vi |− |V−1|

=

⌈ ∆
2
⌉+1

∑

i=1

(i +1)|Vi |−n

> 2(

⌈ ∆
2
⌉+1

∑

i=1

|Vi |)−n

≥ 2γ(G)−n.

This completes the proof. ���

Proposition 7. If G is a connected graph of order n with minimum degree δ(G), then γssR (G) ≤

n −δ(G)+1+
⌈

δ(G)
4

⌉

.

Proof. The result is immediate for δ(G) = 1. Assume that δ(G) ≥ 2 and δ(G) ≡ r (mod 2).

Let v be a vertex of degree δ(G) and N (v) = {u1,u2, . . . ,uδ(G)}. Define the function g : V →

{−1,1,2, . . . ,
⌈

∆

2

⌉

+ 1} by g (ui ) = (−1)i for 1 ≤ i ≤ δ(G) − r , g (v) =
⌈

δ(G)−r
4

⌉

+ 1 and g (x) = 1

otherwise. It is easy to verify that g is an SStRDF on G of weight at most n −δ(G)+
⌈

δ(G)
4

⌉

+1

and hence

γssR (G) ≤ n −δ(G)+

⌈

δ(G)

4

⌉

+1. ���

A set S ⊆ V is a 2-packing of a graph G if N [u]∩ N [v ] = ; for any two distinct vertices

u, v ∈ S. The 2-packing number ρ(G) of G is defined by

ρ(G)= max{|S| : S is a 2-packing of G}.

Proposition 8. If G is a graph of order n with δ≥ 1, then γssR (G) ≥ ρ(G)(δ+2)−n. This bound

is sharp for S(2,2).
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Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G , and let f be a γssR (G)-function. Suppose that

A =∪
ρ(G)

i=1
N [vi ]. Since {v1, v2, . . . , vρ(G)} is a 2-packing, we have

|A| =
ρ(G)
∑

i=1

(dG (vi )+1) ≥ (δ+1)ρ(G).

This implies that

γssR (G) =
∑

x∈V

f (x) =
ρ(G)
∑

i=1

f (N [vi ])+
∑

x∈V −A

f (x)

≥ρ(G)+
∑

x∈V −A

f (x)≥ ρ(G)−n +|A|

≥ρ(G)−n + (δ+1)ρ(G) = (δ+2)ρ(G)−n. ���

Lemma 9. Let G be a connected graph of order n ≥ 4. If f is an SStRDF of G , then |V
f
−1| < n−1.

Proof. Let f be an SStRDF of G and assume to the contrary that |V
f

−1| = n − 1. Then 1 =

∑⌈ ∆
2
⌉+1

i=2
|V

f

i
| and |V

f

1 | = 0. Let ∪
⌈ ∆

2
⌉+1

i=2
V

f

i
= {x}. Since f (N [y]) ≥ 1 for each y ∈ V (G), we must

have x ∈ N (y). Thus dG (x) = n −1. It follows from f (x) ≤ ⌈n−1
2

⌉+1 that f (N [x])≤ 0 which is a

contradiction. ���

Proposition 10. Let G be a connected graph of order n ≥ 4. Then

γssR (G) ≥ 3−
⌊n

2

⌋

.

Moreover, this bound is sharp for S(2,4).

Proof. Let f be a γssR (G)-function and let W =
⋃⌈ ∆

2
⌉+1

i=2
Vi . Define V 1

−1 = {v ∈V−1 : |N (v)∩W | =

1} and V 2
−1 = {v ∈V−1 : |N (v)∩W | ≥ 2}. Since n = |V−1|+ |V1|+ |W |, we have

γssR (G) = |V1|− |V−1|+
∑

v∈W

f (v)

≥ |V1|− |V−1|+ |W |+
∑

x∈W

1

2
|V−1 ∩N (x)|

= n −2|V−1|+
∑

x∈W

1

2
|V 1

−1 ∩N (x)|+
∑

x∈W

1

2
|V 2

−1 ∩N (x)|

= n −2|V−1|+
1

2
|V 1

−1|+
∑

x∈W

1

2
|V 2

−1 ∩N (x)|

≥ n +
1

2
|V 1

−1|+ |V 2
−1|−2|V−1|

≥ n +
1

2
(|V 1

−1|+ |V 2
−1|)−2|V−1|

≥ n −
3

2
|V−1|.
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Now the result follows from Lemma 9. ���

3. Special classes of graphs

In this section, we determine the signed strong Roman domination number of special

classes of graphs.

Proposition 11. For n ≥ 3, γssR (K1,n) = 1.

Proof. For any γssR (K1,n)-function f , we have γssR (K1,n) = f (N [v ]) ≥ 1 where v is the central

vertex of K1,n . To prove γssR (K1,n) ≤ 1, let N (v) = {u1,u2, . . . ,un}. If n and ⌈
n
2
⌉ have different

parity, then define f : V (K1,n) → {−1,1,2, . . . ,⌈n
2 ⌉ + 1} by f (v) = ⌈

n
2 ⌉, f (ui ) = −1 for 1 ≤ i ≤

⌈
n
2 ⌉, f (u j ) = (−1) j for ⌈n

2 ⌉+1 ≤ j ≤ n −1 and f (un) = 1. Clearly, f is a signed strong Roman

dominating function on K1,n of weight 1 which implies that γssR (K1,n) ≤ 1 in this case.

Let n and ⌈
n
2 ⌉ have the same parity. Define f : V (K1,n) → {−1,1,2, . . . ,⌈n

2 ⌉+1} by f (v) =

⌈
n
2 ⌉+1, f (ui ) = −1 for 1 ≤ i ≤ ⌈

n
2 ⌉, f (u j ) = (−1) j for ⌈n

2 ⌉+1 ≤ j ≤ n. Obviously, f is a signed

strong Roman dominating function on K1,n of weight

ω( f )=
⌈n

2

⌉

+1−
⌈n

2

⌉

+
1

2

⌊n

2

⌋

−
1

2

⌊n

2

⌋

= 1.

Thus γssR (K1,n) = 1 and the proof is complete. ���

Proposition 12. For r ≥ s ≥ 2,

γssR (S(r, s))=







2−
⌊

r
2

⌋

−
⌊

s
2

⌋

if
⌊

r
2

⌋

≤
⌈

s
2

⌉

,

1− s if
⌊

r
2

⌋

≥
⌈

s
2

⌉

+1.

Proof. Let u and v be the central vertices of S(r, s) with N (u)− {v}= {u1,u2, . . . ,ur } and N (v)−

{u} = {v1, v2, . . . , vs}. We consider two cases.

Case 1. ⌊ r
2 ⌋ ≤ ⌈

s
2⌉.

Define f : V → {−1,1,2, . . . ,⌈∆2 ⌉+1} by f (ui ) = f (v j ) = −1 for 1 ≤ i ≤ r , 1 ≤ j ≤ s and f (u) =

⌈ r
2
⌉+1, f (v)= ⌈ s

2
⌉+1. Obviously, f is an SStRDF on S(r, s) of weight

ω( f ) =
⌈ r

2

⌉

+

⌈ s

2

⌉

+2− r − s = 2−
⌊ r

2

⌋

−

⌊ s

2

⌋

.

Hence, γssR (S(r, s))≤ 2−⌊
r
2
⌋−⌊

s
2
⌋.

Now, we show that γssR (S(r, s)) ≥ 2 − ⌊
r
2 ⌋ − ⌊

s
2⌋. Let g be a γssR (S(r, s))-function such

that g (u) and g (v) are as large as possible. If either r , s have opposite parity or are even,

then ⌊ r+s
2
⌋ = ⌊ r

2
⌋ + ⌊ s

2
⌋ and by Proposition 10, we are done. Suppose that r and s are odd.

It follows from ⌊
r
2 ⌋ ≤ ⌈

s
2 ⌉ that r = s + 2. If g (v) = −1 (the case g (u) = −1 is similar), then
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g (vi ) ≥ 2 for each i , which implies that γssR (S(r, s)) ≥ 2s +1 > 2−⌊
r
2 ⌋− ⌊

s
2 ⌋. Henceforth, we

may suppose that g (u), g (v) ≥ 1. If g (ui ) ≥ 1 for some i , then g (u) ≤ ⌊
r
2 ⌋+ 1 and the func-

tion h : V → {−1,1,2, . . . ,⌈ r+1
2 ⌉ + 1} defined by h(u) = ⌈

r
2 ⌉ + 1, h(ui ) = −1 for 1 ≤ i ≤ r and

h(x)= g (x) otherwise, is an SStRDF of weight at most ω(g ), a contradiction with the choice of

g . Hence g (ui ) =−1 for each 1 ≤ i ≤ r . Similarly, g (vi ) =−1 for each 1 ≤ i ≤ s. It follows that

g (u)= ⌈ r
2
⌉+1 and g (v)= ⌈ s

2
⌉+1. Thus

ω(g ) = g (u)+ g (v)− r − s ≥
⌈r

2

⌉

+1+
⌈ s

2

⌉

+1− r − s = 2−
⌊ r

2

⌋

−

⌊ s

2

⌋

.

Case 2. ⌊ r
2
⌋ ≥ ⌈

s
2
⌉+1.

For any γssR (S(r, s))-function g , we have ω(g ) = g (N [u])+
∑s

i=1 g (vi ) ≥ 1− s. Now define f :

V → {−1,1,2, . . . ,⌈ r+1
2

⌉+1} by f (u) = ⌈
r
2
⌉+1, f (v) = ⌊

r
2
⌋ and f (x) =−1 otherwise. Obviously, f

is an SStRDF on S(r, s) of weight ω( f ) = (r +1)−r − s = 1− s. So γssR (S(r, s))= 1− s in this case

and the proof is complete. ���

Proposition 13. For n ≥ 3, γssR (Kn,n )= 4.

Proof. Let X = {u1,u2, . . . ,un} and Y = {v1, v2, . . . , vn} be the partite sets of Kn,n . If n and ⌈
n
2
⌉

have different parity, then define f : V (Kn,n ) → {−1,1,2, . . . ,⌈n
2 ⌉+1} by f (v1) = f (u1) = ⌈

n
2 ⌉+1,

f (v2) = f (u2) = 2, f (ui ) = f (vi ) =−1 for 3 ≤ i ≤ ⌈
n
2 ⌉+3, f (u j ) = f (v j ) = (−1) j for ⌈n

2 ⌉+4 ≤ j ≤

n. If n and ⌈
n
2 ⌉ have the same parity, then define f : V (Kn,n ) → {−1,1,2, . . . ,⌈n

2 ⌉+1} by f (v1) =

f (u1) = ⌈
n
2 ⌉, f (v2) = f (u2) = 2, f (ui ) = f (vi ) =−1 for 3 ≤ i ≤ ⌈

n
2 ⌉+2, f (u j ) = f (v j ) = (−1) j for

⌈
n
2 ⌉+3 ≤ j ≤n. Obviously, f is a signed strong Roman dominating function on Kn,n of weight

4 which implies that γssR (G) ≤ 4.

Now we show that γssR (Kn,n ) ≥ 4. Assume f is a γssR (Kn,n )-function. If there is no vertex

with -1 value, then γssR (Kn,n) ≥ 2n > 4. Let V−1 6= ;. First, let |V−1 ∩ X | ≥ 1 and |V−1 ∩Y | ≥

1, and let u1, v1 ∈ V−1. Then
∑n

i=1 f (ui ) = f (N [v1])− f (v1) ≥ 2 and
∑n

i=1 f (vi ) = f (N [u1])−

f (u1) ≥ 2 which implies that γssR (Kn,n ) = ω( f ) =
∑n

i=1 f (ui )+
∑n

i=1 f (vi ) ≥ 4. Now, let |V−1 ∩

X | = 0 or |V−1 ∩Y | = 0. Assume, without loss of generality, that |V−1 ∩Y | = 0. By definition we

must have f (vi )≥ ⌈
|V−1|

2
⌉+1 for some i , say i = 1. It follows that

γssR (Kn,n) =ω( f ) = f (N [vn])+
n−1
∑

i=1

f (vi ) ≥ n +

⌈

|V−1|

2

⌉

≥ 4.

This completes the proof. ���

We remark that the signed Roman domination number and the signed strong Roman

domination number of a graph are not comparable. For instance,

γsR (S(2,3)) = −1 < γssR (S(2,3)) = 0,
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γsR (S(2,2)) = γssR (S(2,2)) = 0

and

γsR (S(4,8)) = −2 >γssR (S(4,8)) =−3.

4. Trees

In this section, we establish an upper bound on the signed strong Roman domination

number of a tree T . First we introduce some terminology and notation. A vertex of degree

one is called a leaf, and its neighbor is called a stem. If v is a stem, then Lv will denote the set

of all leaves adjacent to v . A stem v is called strong stem if |Lv | > 1 and end-stem if T−(Lv∪{v})

is connected. For a vertex v in a rooted tree T , let C (v) denote the set of children of v , D(v)

denotes the set of descendants of v and D[v ] = D(v)∪ {v}. Also, the depth of v , depth(v), is

the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T

induced by D(v)∪ {v}, and is denoted by Tv .

For a given positive integer t ≥ 2, a wounded spider is a star K1,t with at most t −1 of its

edges subdivided once, and a healthy spider is a star K1,t with all of its edges subdivided once.

We say spider for both wounded and healthy spiders.

Lemma 14. If T is a spider of order n ≥ 2, then γssR (T ) ≤ ⌈
n
2
⌉.

Proof. Let T be a spider with the central vertex v . If T −N [v ] = ;, then T is the star K1,n−1

(a wounded spider) and by Proposition 11 we have γssR (T ) ≤ ⌈
n
2 ⌉. Assume that T −N [v ] 6= ;.

Let V (T ) = {v, vi ,ui | 1 ≤ i ≤ t }∪Lv where N (vi ) = {v,ui } for i ∈ {1, . . . , t }. Assume that Lv =

{w1, . . . , ws} if Lv 6= ;. If |Lv | = 0, then the function f defined by f (v) = 1, f (vi ) = 2 and f (ui ) =

−1 for i ∈ {1,2, . . . , t }, is an SStRDF for T of weight t+1. ThusγssR (T ) ≤ω( f ) = t+1=
n+1

2 = ⌈
n
2 ⌉.

If |Lv | = 1, then define f on V (T ) by f (ui ) = f (w1) =−1, f (vi ) = f (v) = 2 for 1 ≤ i ≤ t . Clearly,

f is an SStRDF of T of weight t +1 and hence γssR (T ) ≤ω( f ) = t +1 =
n
2 . If |Lv | = 2, then the

function f defined by f (v) = f (vi ) = 2 and f (ui ) = f (w j ) = −1 for i ∈ {1,2, . . . , t } and j = 1,2,

is an SStRDF of T of weight t +1 which implies that γssR (T ) ≤ ω( f ) = t +1 =
n−1

2
< ⌈

n
2
⌉. Let

|Lv | ≥ 3 and let T ′ be the subtree induced by {v}∪ {w j | 1 ≤ j ≤ s}. Obviously, T ′ is a star

and so γssR (T ′) = 1, by Proposition 11. Let g be a γssR (T ′)-function and define f on V (T ) by

f (ui ) = −1, f (vi ) = 2 for 1 ≤ i ≤ t and f (x) = g (x) otherwise. Clearly, f is an SStRDF of T of

weight t +1 and so

γssR (T ) ≤ω( f ) =ω(g )+ t ≤ 1+ t <
⌈n

2

⌉

. ���

Lemma 15. If T is a spider of order n ≥ 3 and v is a central vertex of T , then every γssR (T )-

function assigns a positive value to v . Furthermore, T has a γssR (T )-function that assigns

positive integer to each end-stem.
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Proof. Let f be a γssR (T )-function. If T is a star, then clearly f (v) ≥ 1. Assume that T is not

a star, V (T ) = {v, vi ,ui | 1 ≤ i ≤ t }∪Lv is the vertex set of T and N (vi ) = {v,ui } for i ∈ {1, . . . , t }.

Suppose that Lv = {w1, . . . , ws} if Lv 6= ;. Assume, to the contrary, that f (v) =−1. By definition

we must have f (w j ) = 2 for each 1 ≤ j ≤ s and f (vi )+ f (ui ) ≥ 2. This implies that γssR (T ) =

ω( f ) > ⌈
n
2 ⌉, a contradiction with Lemma 14. Thus f assigns a positive value to v .

To prove the second part, we note that f (ui )+ f (vi ) = f [ui ] ≥ 1 for each 1 ≤ i ≤ t . Define

g on V (T ) by g (ui ) =−1, g (vi ) = 2 for each 1 ≤ i ≤ t , and g (x) = f (x) otherwise. Clearly g is an

γssR (T )-function with desired property. ���

Now we present the main result of this section.

Theorem 16. Let T be a tree of order n ≥ 3. Then γssR (T ) ≤ 2n
3 , with equality if and only if

T = P3t for some positive integer t .

Proof. We proceed by induction on n. If diam(T ) = 2, then T is a star and by Proposition 11

we have γssR (T ) = 1 ≤
2n
3 with equality if and only if T = P3. If diam(T ) = 3, then T is a double

star and it follows from Proposition 12 that γssR (T ) < 2n
3

. If T is a path, then we deduce from

Observation 1 and Proposition 2 that γssR (T ) ≤ 2n
3

with equality if and only if T = P3t for some

positive integer t . Hence, the statement is true for all trees of order n ≤ 5. Assume that T is an

arbitrary tree of order n ≥ 6 and that the statement holds for all trees with smaller order. As

above, we may assume that diam(T ) ≥ 4 and∆(T ) ≥ 3. For a subtree T ′ with n′ vertices, where

n′ ≥ 3, the induction hypothesis yields an SStRDF f ′ of T ′ with weight at most 2n′

3 . We shall

find a subtree T ′ such that adding a bit more weight to f ′ will yield a small enough SStRDF f

for T .

Let P = v1v2 . . . vk be a diametral path in T chosen to maximize dT (v2). Also suppose

among paths with this property we choose a path such that |Lv3
| is as large as possible. Root

T at vk . We consider the following cases.

Case 1. dT (v2) ≥ 4.

Let T ′ = T −Tv2
, |V (Tv2

)| = t and f ′ be a γssR (T ′)-function. Define f : V (T ) → {−1,1,2, . . . ,⌈∆
2
⌉+

1} by f (x) = f ′(x) if x ∈ V (T ′), f (v2) = ⌈
t
2⌉+1, f (v1) = ⌊

t
2⌋−1 and f (x) =−1 otherwise. Obvi-

ously, f is an SStRDF of T and it follows from the induction hypothesis that

γssR (T ) ≤ω( f )=ω( f ′)+2 ≤
2(n − t )

3
+2 <

2n

3
.

Case 2. dT (v2) = 3.

Let Lv2
= {v1,u}. By the choice of diametral path, all end-stems adjacent to v3 have degree at

most 3. We consider the following subcases.
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Subcase 2.1. dT (v3)= 2.

Let T ′ = T −Tv3
and let f ′ be a γssR (T ′)-function. If |V (T ′)| = 2, then |V (T )| = 6 and it is easy

to see that γssR (T ) = 2 <
2n
3 . Suppose that |V (T ′)| ≥ 3. Define f on V (T ) by f (x) = f ′(x) for

every x ∈ V (T ′), f (v3) = 1, f (v2) = 2 and f (v1) = f (u) =−1. Clearly, f is an SStRDF for T and

by the induction hypothesis we have

γssR (T )≤ω( f )=ω( f ′)+1 ≤
2(n −4)

3
+1 <

2n

3
.

Subcase 2.2. dT (v3)≥ 3 and v3 is adjacent to an end-stem w of degree 3 such that w 6= v2.

Let Lw = {w1, w2} and T ′ =T −{w, w1, w2, v2, v1,u}. If |V (T ′)| = 2, then |V (T )| = 8 and it is easy

to see that γssR (T ) = 1 <
2n
3 . Suppose |V (T ′)| ≥ 3. Define f on V (T ) by f (x) = f ′(x) for every

x ∈ V (T ′)− {v3}, f (v3) = 1 if f ′(v3) = −1 and f (v3) = f ′(v3) otherwise, f (v2) = f (w ) = 2 and

f (x) =−1 for each x ∈ {w1, w2,u, v1}. Obviously, f is an SStRDF of T and and by the induction

hypothesis we obtain

γssR (T )≤ω( f )≤ω( f ′)+2 ≤
2(n −6)

3
+2 <

2n

3
.

By Subcase 2.2, we may assume that all end-stems adjacent to v3, with exception v2,

have degree 2. If diam(T ) = 4, then T −Tv2
is a spider and applying Lemma 14 yields that

γssR (T ) < 2n
3

. Let diam(T )≥ 5.

Subcase 2.3. dT (v3)≥ 3 and v3 is adjacent to an end-stem w of degree 2.

Let Lw = {w1} and T ′ = T − {v1, v2,u, w, w1}. Since diam(T ) ≥ 5, we have |V (T ′)| ≥ 3. Define f

on V (T ) by f (x) = f ′(x) for every x ∈ V (T ′)− {v3}, f (v3) = 1 if f ′(v3) = −1 and f (v3) = f ′(v3)

otherwise, f (v2) = f (w ) = 2 and f (x) = −1 for each x ∈ {w1,u, v1}. Obviously, f is an SStRDF

of T and by the induction hypothesis we obtain

γssR (T ) ≤ω( f ) ≤ω( f ′)+2+1 ≤
2(n −5)

3
+3 <

2n

3
.

Subcase 2.4. dT (v3)≥ 3 and each neighbor of v3, with exception v2, v4, are leaves.

Let T ′ = T −Tv3
. Obviously, Tv3

is a double star and we have γssR (Tv3
) ≤ 1 by Proposition 12.

Let g be a γssR (Tv3
)-function such that g (v3) ≥ 1 and define f on V (T ) by f (x) = f ′(x) for

every x ∈ V (T ′)− {v4}, f (v4) = 1 if f ′(v4) =−1 and f (v4) = f ′(v4) if f ′(v4) ≥ 1 and f (x) = g (x)

otherwise. It is easy to verify that f is an SStRDF of T and by the induction hypothesis we have

γssR (T ) ≤ω( f ) ≤ω( f ′)+2+1 ≤
2(n −5)

3
+3 <

2n

3
.

Case 3. dT (v2) = 2.

By the choice of the diametral path, we may assume that every end-stem on a diametral path
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has degree 2. In particular, every end-stem adjacent to v3 has degree 2. Thus, it follows that

Tv3
is a spider. If diam(T ) = 4, then T is a spider and by Lemma 14, we have γssR (T ) ≤ ⌈

n
2 ⌉ <

2n
3 .

Let diam(T ) ≥ 5. Consider the following subcases.

Subcase 3.1. dT (v3) ≥ 3.

Let T ′ = T −Tv3
. Since diam(T ) ≥ 5, we have |V (T ′)| ≥ 3. Let g be a γssR (Tv3

)-function such

that g assigns a positive value to each end-stem of Tv3
(Lemma 15) and let |V (Tv3

)| =n′. Note

that n′ ≥ 4. By a closer look at the proof of Lemma 14, we have γssR (Tv3
)= ⌈

n′

2 ⌉ if and only if v3

is adjacent to at most one leaf, and in this case we may assume that g (v3)≥ 1 and g (N [v3])≥ 3.

Define f on V (T ) by f (x) = f ′(x) for every x ∈V (T ′) and f (x) = g (x) for every x ∈V (Tv3
). It is

easy to verify that f is an SStRDF of T and by the induction hypothesis we have

γssR (T ) ≤ω( f ) ≤ω( f ′)+ω(g ) ≤
2(n −n′)

3
+

n′+1

2
≤

2n

3
−

n′−3

6
<

2n

3
.

If γssR (Tv3
) < ⌈

n′

2 ⌉, then define f on V (T ) by assigning f (x) = f ′(x) to every x ∈ V (T ′), f (x) =

g (x) to every x ∈ V (Tv3
)− {v3} and f (v3) = g (v3)+1. Again, f is an SStRDF of T and, by the

induction hypothesis, we have

γssR (T ) ≤
2(n −n′)

3
+

n′−1

2
+1 <

2n

3
.

Subcase 3.2. dT (v3) = 2.

By the choice of the diametral path, we may assume that all vertices adjacent to v4 with depth

2, have degree 2 and also, by symmetry, we may assume d (vk−1) = d (vk−2) = 2. Using an

argument similar to that described in Case 1, we may assume all end-stems adjacent to v4

have degree at most 3.

(a) d (v4) ≥ 3 and v4 is adjacent to an end-stem of degree 3, say w .

Let w1, w2 be the leaves adjacent to w and T ′ = T − {v1, v2, v3, w, w1, w2}. If f ′(v4) = −1,

then define f on T by f (x) = f ′(x) for every x ∈ V (T ′), f (w2) = 1, f (w ) = 2, f (v2) = 3 and

f (x) =−1 for remaining vertices. Also, if f ′(v4) ≥ 1, then define f on T as f (x) = f ′(x) for

every x ∈V (T ′), f (v3) = 1, f (w ) = f (v2) = 2 and f (x) =−1 for remaining vertices. In both

cases, we observe that f is an SStRDF of T and, by the induction hypothesis, we have

γssR (T )≤
2(n −6)

3
+3 <

2n

3
.

(b) d (v4) ≥ 3 and v4 is adjacent to an end-stem of degree 2, say w .

Let w ′ be the leaf adjacent to w and T ′ = T − {v1, v2, v3, w, w ′}. If f ′(v4) =−1, then define

f on T as f (x) = f ′(x) for every x ∈ V (T ′), f (w ) = f (v2) = 3, f (x) = −1 for remaining

vertices, and if f ′(v4) ≥ 1, then define f on T by f (x) = f ′(x) for every x ∈ V (T ′), f (w ) =
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f (v2)= 2, f (w ′) = f (v1) =−1 and f (v3) = 1. Clearly, f is an SStRDF of T of weight at most

ω( f ′)+3 and, by the induction hypothesis, we have

γssR (T ) ≤
2(n −5)

3
+3 <

2n

3
.

Considering (a) and (b), we may assume that all neighbors of v4, with exception v5, are

leaves or vertices of depth 2. On the other hand, by the choice of diametral path, every

neighbor of v4 with depth 2 and its neighbor, other than v4, have degree 2.

(c) d (v4) ≥ 3 and there is a path v4w3w2w1 in T such that w3 6∈ {v3, v5}.

Let T ′ = T − {vi , wi | 1≤ i ≤ 3}. Define f on T as f (x) = f ′(x) for every x ∈V (T ′), f (v2) = 2,

f (w2)= 3, f (v3) = 1 and f (v1) = f (w1) = f (w3) =−1. Obviously, f is an SStRDF of T and

γssR (T ) ≤
2(n −6)

3
+3 <

2n

3
.

(d) d (v4) ≥ 3 and all neighbors of v4, with exception v3, v5, are leaves.

Let Lv4
= {u1, . . . ,ut } and T ′ = T −Tv4

. Define f on T by f (x) = f ′(x) for every x ∈ V (T ′),

f (u1) = ⌊
t
2
⌋−1, f (v4) = ⌈

t
2
⌉+1, f (v3) = 1, f (v2) = 2, and f (x) =−1 otherwise. Obviously f

is an SStRDF of T of weight ω( f ′)+3 and, by the induction hypothesis, we have

γssR (T ) ≤
2(n − (t +4))

3
+3 <

2n

3
.

(e) d (v4) = 2.

First let d (v5) = 2. Let T ′ = T −Tv5
and let f ′ be a γssR (T ′)-function. Since ∆(T ) ≥ 3, we

have |V (T ′)| ≥ 3. Define f on T by f (x) = f ′(x) for every x ∈ V (T ′), f (v5) = f (v2) = 3,

f (v4) = f (v3) = f (v1) = −1. Obviously, f is an SStRDF of T of weight ω( f ′)+ 3 and it

follows from the induction hypothesis that γssR (T ) ≤ 2(n−5)
3

+3 <
2n
3

.

Now let d (v5) ≥ 3. If T −Tv4
has a γssR -function g such that g (v5) ≥ 1, then define f on T

by f (x) = g (x) for every x ∈V (T −Tv4
), f (v4) = 1, f (v3) = f (v1)=−1 and f (v2) = 3. Clearly,

f is an SStRDF of T of weight ω(g )+2 and by the induction hypothesis we have

γssR (T ) ≤
2(n −4)

3
+2 <

2n

3
.

Henceforth, we may assume that all γssR (T −Tv4
)-functions assign −1 to v5. It follows that

v5 is not a stem. Let T0 = T −Tv4
and g be a γssR (T0)-function. If w is a neighbor of v5 with

depth one and dT (w ) ≥ 3, then obviously g (w ) ≥ 1. If g (w1) ≥ 1 for some w1 ∈ N (w )−

{v5}, then the function g ′ defined on V (T0) by g ′(v5) = g (w1), g ′(w1) = −1 and g ′(x) =

g (x) otherwise, is a γssR (T0)-function that assigns a positive value to v5, a contradiction.

Otherwise, the function g1 on V (T0) defined by g1(w ) = g (w )−2, g1(v5) = 1 and g1(x) =

g (x) otherwise, is a γssR (T0)-function that assigns a positive value to v5, a contradiction.

Thus all neighbors of v5 with depth one, have degree 2. If z3 is a neighbor of v5 with depth
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two and v5z3z2z1 is a path in T with d (z1) = 1, then by exploiting the above arguments

up to Subcase 3.1, we may suppose that d (z3) = d (z2) = 2. Also, if w4 is a neighbor of v5

with depth three and v5w4w3w2w1 is a path in T with d (w1) = 1, then by applying the

above arguments, we may assume that d (w4) = d (w3) = d (w2) = 2. Let v5 be adjacent to

mi (i = 1,2,3) vertices of depth i in Tv5
. Suppose v5w i

4w i
3w i

2w i
1 (1 ≤ i ≤ m3) are the paths

of length 4 in Tv5
, v5z

j

3 z
j

2 z
j

1 (0 ≤ j ≤ m2) are the paths of length 3 in Tv5
, and v5uk

2 uk
1 (0 ≤

k ≤ m1) are the paths of length 2 in Tv5
. Define g on Tv5

by g (v5) = 1, g (w i
4) = 1, g (w i

3) =

g (w i
1) = −1, g (w i

2) = 3 for 1 ≤ i ≤ m3, g (z
j
3 ) = 1, g (z

j
2 ) = 2, g (z

j
1 ) = −1 for 0 ≤ j ≤ m2, and

g (uk
2 ) = 2, g (uk

1 ) = −1 for 0 ≤ k ≤ m1. Clearly, g is an SStRDF on Tv5
of weight less than

2|V (T5)|
3 . Now let T ′ = T − Tv5

and f ′ be a γssR (T ′)-function. Define f on T by f (x) =

f ′(x) for x ∈ V (T ′) and f (x) = g (x) for x ∈ V (Tv5
). Clearly f is an SStRDF of T and by the

induction hypothesis we have

γssR (T ) =ω( f ) =ω( f ′)+ω(g ) <
2(n −|V (T5)|)

3
+

2|V (Tv5
)|

3
=

2n

3
.

This completes the proof. ���
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