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FURTHER RESULTS ON DIFFERENTIAL INEQUALITY OF
A CLASS OF SECOND ORDER NEUTRAL TYPE

PEIGUANG WANG AND YONGHONG WU

Abstract. In this paper, we develop several new results related to the nonexistence criteria
for eventually positive solutions of a class of second order neutral differential inequalities with

distributed deviating arguments. The work generalizes various existing result.

1. Introduction

We consider the following second order neutral equations with distributed deviating
arguments

b
[w(t) + c()a(t — 7)) + / p(t.€) f(zlg (6, ©)))do (€) <0, (1)

a

b
o®) + etalt =)+ [ p(t.Falo(t.)d(©) = 0 2)
where 7 > 0 is a constant; c(t) € C([tg,0),I), I =[0,1]; f(z) € C(R, R) and = f(x) > 0,
for x # 0, p(t,&) € C([to,0) X [a,b], R+), and p(t,§) is not eventually zero on any
ray [t,uaoo) x [aab]a tu 2 to, R+ = [0,00); g(t,E) € C’([to,oo) x [avb]vR)a %g(taa) ex-
ists, g(t,&) <t, £ € [a,b]; g(t, &) is nondecreasing with respect to ¢ and & respectively;
and liminf, . cciap1{9(t,§)} = o005 (&) € ([a,b], R) is nondecreasing, the integral of
equation (1) is a Stieltjes one.

Recently, there has been an increasing interest in delay differential inequalities, and
a number of results have been obtained. For more details, we refer the reader to the lit-
erature [1-5]. In this paper, we establish some general nonexistence criteria of eventually
positive solutions for inequality (1).

As is customary, the solution z(t) € C([tp,0), R) of inequality (1) is said to be
eventually positive if there exists a sufficiently large positive number p such that the
inequality x(¢) > 0 holds for t > p.
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2. Nonexistence Criteria

The following theorems provide the sufficient conditions leading to nonexistence of
eventually positive solutions for inequality (1).

Theorem 1. Assume that f(—z) = —f(x), x € (0,00), and
f(z)

—=>)\ z€(0,00), forsome constant A > 0. (3)
x

If for any integer m > 2,
t

b
lim sup im [A(t - S)m/ p(s, {1 — clg(s, &)} do(§) —

t—o0 to

m2(t — s)?
4g'(s, a)

then inequality (1) has no eventually positive solutions.

Proof. Assume the contrary, without loss of generality, x(¢) is an eventually positive
solution of inequality (1). Then from liminf, o cciq,p{9(t,€)} = oo, there exists a
t1 > to such that x(t) >0, (t —7) > 0 and z[g(t,&)] >0, t > t1, & € [a,b]. Set

y(t) = x(t) + c(t)a(t — 1), (5)

then, we have y(¢) > x(t) > 0, y”(t) <0, t > t1, and we can claim that ¢'(¢) > 0, ¢
In fact, assume that it is not true, then there exists a ty > ¢; such that y'(¢2)
From the fact that y(t) is decreasing, there exists a t3 > ¢2 such that y'(t3) < 0
y'(t) <y'(ts) <0, t > t3. Integrating from t3 to ¢, we have y(t) < y(ts) + y'(t3)(t — t3).
Thus, we conclude that lim;_,o y(t) = —oc. This contradicts y(¢) > 0. From (1)
condition of Theorem 1, we obtain

2
Yy

0> y"(t) + / p(t,€) F(2lg(t, &)))do(€)

b
>y"(t) + A/ p(t, {ylg(t, )] — clg(t, §)]z[g(t, &) — 7]}do(§). (6)

Using y'(t) > 0, and y(t) > x(t), t > t1, we have y[g(t,£)] > y[g(t, &) — 7] > 2[g(t,£) — 7],
thus

b
V4 [ Pt~ ot Olot. Oldo(©) <0, ¢zt 7)
Furthermore, as g(t, ) is nondecreasing with respect to &, we have
b
v'O)+ ot )] [ p(e 1~ ot o€ <0, 2t (8)
Set ,
o(t) = L0 9)
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Then z(t) > 0. From the fact that there exists a Lg(¢,a), we obtain y'[g (

Zg C‘litg( a). Further, by noting that g(t, £) is nondecreasing with respect to &, g

€ € [a,b], andy()<0 we obtain y'(t) < y'[g(t,a)]. Thus

() = y'(t)  y')y'lg(t,a)lg'(t a)
ylg(t, a)] y?ly(t,a)]

b
<2 / Pt L — clg(t, &)]}do(€) — o' (ta)2(t), ¢ > ty.

Integrating by parts for any ¢ > T > t;, we have
/ At — )" / &1 - clg(s, O} do(€)d
<- /T (4= ()i | (1= 57 (5,0)22(s)ds
- /T (= 9mda(s) - / (¢~ )" (5,0)2%(5)ds
m/ ds/Tt(ts)mg’(s a)2%(s)ds

mt—s 2

— (t-T)"™(T) - /T [ TG a7 a() +

sa

which implies that for t > T > tg

[

g(tT)mz(T)/T[ g’(s,a)(ts)mz(s)Jr%] ds.

2y/g'(s,a

b 2t—s)m?
At =)™ [ (s, {1 elals, o) - %] "

Furthermore, we have

t b
/t [A(t —sym / p(s, )1 — clg(s, )]} dor(€) —

< (t*tl)mz(tl)*/t l g’(s,a)(ts)mz(8)+ﬁ(s_a;‘| ds
< (t—t1)™2(t1) < (t —to)™z(t1).

Thus, we have that

t b 20 — s m—2
tim to [A(t — s)m/a p(s,){1 —clg(s,&)]}do(€) — m(t/i,)} ds

a)

m?
ds
+/ 4gsa

45

| =
<t,

(10)



46 PEIGUANG WANG AND YONGHONG WU

=[] [A(t o [ oo 9~ gt aote) - "L
(1 ) st A1) [ w00 - dits.aoteris

0 a

2(t) + A / ){1 — clg(s, €)]}do(€)ds, (12)

which implies that

m2 (t _ S)m—2

d
4¢g'(s,a) 5

¢ b
hmsupﬁim [)\(ts) / p(s, {1 = clg(s,§)]}do(§) —

+(t) “/tl/ (5,6){1 — clg(s. &) }do(€)ds < oo, (13)

this contradicts (4). Therefore, the proof of Theorem 1 is completed.
From the proof of Theorem 1, we have the following corollary.

Corollary 1. If the condition (4) of Theorem 1 is replaced by

t

b
lim sup im (t— s)m/ p(s,6){1 = clg(s,£)]}do(&)ds = o0, (14)

t—o0 to

1 t t — m—2
limsup — (#)

ds < o0, 15
t—oo T Sy, g'(s,a) ( )

then inequality (1) has no eventually positive solutions.

Theorem 2. Assume that the condition of (3) holds, and there exists a constant
m > 2 and function p(t) € C'([tg, 00), (0,00)) such that

irnsui twm s) — (t — s8)p'(s)]2ds < oo

limsup o [y mols) — (¢~ s)g () s < (16)
1 t b

timsup - [ (¢ = 9" (s / p(s,€){1 — clg(s,€)]}do (€)ds = oo, (17)

then inequality (1) has no eventually positive solutions.

Proof. Assume the contrary, without loss of generality, that x(t) is an eventually
positive solution of inequality (1). Then proceeding as Theorem 1, there exists a t1 > ¢
such that

b
() < - / p(t {1 — clglt, €)}do(€) — g ()22 (), ¢ > to. (10)
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Thus
t b
/t At — 5)™ p(s) / p(s, )11 — lg(s,€)]}do(€)ds
<- / (t — 5)™ p(s)2 (s)dls — / (t — )™ p(s)g' (5, @) 2 (s)ds
= (t— t2)"p(tr)=(t1) — / (t — )™ mp(s) — (¢t — )0/ (s)](s)ds
- / (t — )™ p(s)g' (5, @) (s)ds. (18)
Furthermore, we conclude that

t b
/t At — 5)™ p(s) / p(s, {1 — clg(s, €)]}do (€)ds

< (t—t1)"p(t1)2(t1)

1 t(t—s)m_Qm $)— (1 — )0 (s)12ds
+4/t1 S mes) = (= s

<= t)"plen)stn) + 5 [ S mals) — (¢ )l o). (19)

From (19), for t > T > ¢, we obtain

t b
L REERE / p(s, )11 — lg(s,€)]}do(€)ds

/ o

b
[A (4= "0() [ 9l €1 = clals. )} | do(e)ds

tm

<o [ 2= 900 [0 - oo s + (0~ ) 0)2(0)
L t(tis)m—2m87 781825
i | Ay lmete) = (¢ ) (s (20

which implies that

t

b
timsup 7 [ At~ 9)"p(s) [ p(s. €)1 clg(s, )]} do(e)ds

t—o00 t1
1 [t (t—s)m2
<L+ - hmsu —
1 5P ) 0e)g (5a)

[mp(s) = (t = s)p/ (s)]*ds, (21)
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where L = p(t1)z(t1). Thus, from condition (16), we conclude that
t b

lim sup im (t— s)mp(s)/ p(s,){1 —clg(s,&)]}do(§)ds < oo, (22)

t—o0 t1
which contradicts (17). Therefore, the proof of Theorem 2 is completed.

Theorem 3. Assume that the condition of (3) holds, and there exists a constant
m > 2 and function p(t) € C'([tg, 00), (0,00)) such that

t b

lim sup tim (t— s)mp(s)/ p(s,){1 —clg(s,&)]}do(§)ds < oo, (23)

t—oo to

and there exists a function ¢(t) € C([to,00), R) satisfying

t—o0

t b
hminftim/u [)\(t—s)mp(s)/a p(s, {1 — clg(s, )]} do(€)

(t _ S)m—2 ) )
,m[mp(s) —(t—s)p'(9)] ‘|ds > o), u>ty, (24)
o1 [P (t—8)mg (s,a)p%(s)
ML, /ltO (s) —ds =00, pu(s) = max{p(s), 0}, (25)

then inequality (1) has no eventually positive solutions.

Proof. Assume the contrary, without loss of generality, that x(t) is an eventually
positive solution of inequality (1). Then proceeding as for Theorem 2, there exists a
t1 > u > tg such that

[ ae=srmoto) [ b5, )01 = clals. do()ds
Lt —s)m2
o9 .

1

< (1= w)"plu)2(u) + / mp(s) — (¢ =)o (s)Pds. (21)

Furthermore, for t > u > tg, we have

=/ [A(t = 97p(s) [ pls. (1 = clo(s. }o(6)

)t eV | ds
LI mpls) — >p<>1]d -

From (24), we conclude that
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< p(u)2(u) (27)
which implies that
2 (1) < p2(u) 22 () (28)
Let
o(t) = o / 2(3)(t — )™ [mp(s) — (& — )¢/ (s)]ds
w(t) = o / p(3)g'(5,a)(t — 5)™ 2 (5)ds

then, from (20), we have

t b
o)+ (t) < Gt= )" p(t)=(0) =) [ (4= 5" pls) [ (s.)(1 = s, o s
1 ' (29)
Further, from (24), we have
1 t b
timint ;o [ A= 970(s) [ p(s, €)1~ clo(s, ) Ho()ds = (),
1 b t ‘ b
imsup o [ A= 5)70(0) [ vl 1= clots. o )ds
fimini twm s) — (t — 8)p'(s)])%ds
it [y o) = (¢ = /() ds > (). (30)
From (30) and (23), we conclude that
it [T () 2ds < o
timinf - / oraglmes) = (£ = )9/ (s)ds < .
Thus, there exists a sequence {t,,}5° in (t1,00) such that lim,,_, ¢, = co and
) i t7l(tn*5)m72m N . /528 o
Jin e ey mets) = (b = ) () < o (1)
which implies that
1i{risoljp{v(t) +w(t)}
t b
< plta)aten) ~Bmint o [ A= 9)"0(s) [ p(s. (1 = clo(s. O} (e)ds
< pltr)z(t) — p(t)2M. (32)
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Hence, for any sufficiently large n, we have
u(ty) +v(ty) < My, (33)

where My > M, M and M; are constant. From the definition of w(¢), we have

t / m—1
W (t) = / %g(s,a) (1 _ f) 2(s)ds > 0.
" t t
Therefore, w(t) is an increasing function, and lim;_. w(t) = [ exists, where is either
finite or infinite. In the case | = oo, limy,_,oc w(t,) = 0o, which implies, from (33), that

lim v(t,) = —o0, (34)
n—oo
and ; v
oltn) Ly o M

wt) 7wt

Thus, for any 0 < € < 1, and for any sufficiently large n, we have

v(tn)
—-1<0. 35
w(tn) <e < (35)
On the other hand, by using the Schwartz inequality, for ¢ > ¢, we obtain
1 [t ’
020 = g { [ 262t = 9" mpte) = (60— ) o)
n t1
1 tn / m 2
<A [ o) (5.0t — 5 22(s)ds
tn t1
! / (1 — )™ e }
— —————[mp(s) = (t, — s)p'(s)]|“ds
Vi, ey mete) = (=)
1 /tn (th — 5)m72 1roN12
=w(ty,)— ————F——[mp(s) — (tn — s)p'(s)]|"ds.
g | i taay o)t = 9 (9]
Then 2(,,) b -2
ve(t 1 "t —8)™
0< "g—/ ~ L _[mp(s) — (tn, — s)p'(s))%ds. 36
w(tn) =t Sy, p(s)g'(s,a) bmels) = ote] 56
It follows from (31) that
v*(tn)
0< lim (37)
From (35), we have
!/
i U)oy V)
n—oc w(ty)  n—oo w(ty)
then 5 ,
2
lim ~ tn) _ lim 2u(tn)v'(tn) > 2 lim v(t,)(e — 1) = o0,
n—oo w(tn n—oo w’(tn) n—oo
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which contradicts (37). Thus, we have lim;_, o, w(t) = ¢ < co. Furthermore, according
o (28), we conclude that

L[t (t—5)"g (s,0)9% (s) 1 /t , 2
m — ds<hm— s)g'(s,a)(t —s)"2%(s)ds
Jim g | o tim o [ e st = 9720
= tlim w(t) < oo, (38)

which implies that

tli%tim tt (t—S)miJ)’((Sa)wi( )dS—tEI{,g— [/t /t} (t—s)" () )i (s)

"t —s)"g'(s,a)p% (s)
g/to o05) ds+hmw()<oo,

which contradicts (25). Therefore, the proof of Theorem 3 is completed.
Similar to the above results on inequality (1), we can also obtain some results on
inequality (2).

Theorem 4. Suppose that the conditions of Theorem 1 hold, then inequality (2) has
no eventually negative solutions.

Theorem 5. Suppose that the conditions of Theorem 2 hold, then inequality (2) has
no eventually negative solutions.

Theorem 6. Suppose that the conditions of Theorem 3 hold, then inequality (2) has
no eventually negative solutions.
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