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PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES

MOHAMMAD H. M. RASHID

Abstract. Let MC =

(

A C

0 B

)

∈ L (X,Y) be be an upper triangulate Banach space opera-

tor. The relationship between the spectra of MC and M0, and their various distinguished

parts, has been studied by a large number of authors in the recent past. This paper brings

forth the important role played by SVEP, the single-valued extension property, in the study

of some of these relations. In this work, we prove necessary and sufficient conditions of

implication of the type M0 satisfies property (w) ⇔ MC satisfies property (w) to hold.

Moreover, we explore certain conditions on T ∈L (H ) and S ∈L (K ) so that the direct

sum T ⊕S obeys property (w), where H and K are Hilbert spaces.

1. Introduction

Throughout this paper, X and Y are Banach spaces and L (X,Y) denotes the space of all

bounded linear operators from X to Y. For X = Y we write L (X,Y) = L (X). For T ∈ L (X),

let T ∗, ker(T ), ℜ(T ), σ(T ), σd (T ), σp (T ) and σa (T ) denote the adjoint, the null space, the

range, the spectrum, the surjective spectrum, the point spectrum and the approximate point

spectrum of T , respectively. Let α(T ) and β(T ) be the nullity and the deficiency of T defined

by α(T ) = dimker(T ) and β(T ) = co dimℜ(T ).

For A,B and C ∈L (X), let MC denote the upper triangular operator matrix MC =

(

A C

0 B

)

.

A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems

for the operator MC , and the related diagonal operator M0 = A ⊕B , has been carried by a

number of authors in the recent past (see [6, 10, 11, 20] for further references). Of particular

interest here is the relationship between the spectral, the Fredholm, the Browder and the Weyl

properties.

Let a := a(T ) be the ascent of an operator T ; i.e., the smallest nonnegative integer p

such that ker(T p ) = ker(T p+1). If such integer does not exist we put a(T ) =∞. Analogously,

let d := d (T ) be descent of an operator T ; i.e., the smallest nonnegative integer s such that
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ℜ(T s ) = ℜ(T s+1), and if such integer does not exist we put d (T ) =∞. It is well known that if

a(T ) and d (T ) are both finite then a(T )= d (T ) [17, Proposition 38.3].

In this paper, we introduce most of our notation and terminology in Section 2, Section

3 is devoted to proving a number of complementary results, sections 3 and 4 are devoted to

proving our main results. In Section 3, we explore certain conditions on T and S so that the

direct sum T ⊕S obeys property (w ). We consider property (w ) for the operators M0 and MC in

Section 4. Here we prove a necessary and sufficient for the equivalence M0 satisfies property

(w ) ⇔ MC satisfies property (w ) for operators MC such that σaw (MC ) = σaw (A)∪σaw (B ),

which is then applied to deduce a number of known results. For operators M0 and MC such

that σaw (M0) = σaw (MC ), we prove a sufficient condition for the implications M0 property

(w ) ⇒ MC satisfies property (w ) and MC satisfies property (w ) ⇒ M0 satisfies property (w ).

2. Notation and terminology

Let Φ+(X) :=
{

T ∈L (X) : α(T ) <∞ and T (X) is closed
}

be the class of all upper semi-

Fredholm operators, and let Φ−(X) :=
{

T ∈L (X) : β(T ) <∞
}

be the class of all lower semi-

Fredholm operators. The class of all semi-Fredholm operators is defined by Φ±(X) :=Φ+(X)∪

Φ−(X), while the class of all Fredholm operators is defined by Φ(X)) :=Φ+(X)∩Φ−(X). If T ∈

Φ±(X), the index of T is defined by

i nd (T ) :=α(T )−β(T ).

Recall that a bounded operator T is said bounded below if it injective and has closed range.

Evidently, if T is bounded below then T ∈Φ+(X) and i nd (T )≤ 0. Define

W+(X) := {T ∈Φ+(X) : i nd (T )≤ 0},

and

W−(X) := {T ∈Φ−(X) : i nd (T )≥ 0}.

The set of Weyl operators is defined by

W (X) :=W+(X)∩W−(X) = {T ∈Φ(X) : i nd (T )= 0} .

The classes of operators defined above generate the following spectra. Denote by

σa (T ) := {λ ∈C : T −λI is not bounded below}

the approximate point spectrum, and by

σd (T ) :=
{

λ ∈C : T −λI is not surjective
}
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the surjectivity spectrum of T ∈L (X). The Weyl spectrum is defined by

σw (T ) := {λ ∈C : T −λ ∉W (X)} ,

the Weyl essential approximate point spectrum is defined by

σaw (T ) := {λ∈C : T −λ ∉W+(X)} ,

while the Weyl essential surjectivity spectrum is defined by

σl w (T ) := {λ∈C : T −λ ∉W−(X)} ,

Obviously, σw (T ) =σaw (T )∪σl w (T ) and from basic Fredholm theory we have

σaw (T ) =σw s (T ∗) σw s (T ) =σaw (T ∗).

Note that σaw (T ) is the intersection of all approximate point spectra σa (T +K ) of compact

perturbations K of T , while σl w (T ) is the intersection of all surjectivity spectra σs (T +K ) of

compact perturbations K of T , see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators is defined by

B+(X) := {T ∈Φ+(X) : a(T ) <∞} ,

while the class of all lower semi-Browder operators is defined by

B−(X) := {T ∈Φ+(X) : d (T ) <∞} .

The class of all Browder operators is defined by

B (X) := B+(X)∩B−(X)= {T ∈Φ(X) : a(T ),d (T )<∞} .

We have

B (X)⊆W (X), B+(X) ⊆W+(X), B−(X) ⊆W−(X),

see [1, Theorem 3.4]. The Browder spectrum of T ∈L (X) is defined by

σb(T ) := {λ ∈C : T −λI ∉ B (X)} ,

the upper Browder spectrum is defined by

σub (T ) := {λ ∈C : T −λI ∉ B+(X)} ,

and analogously the lower Browder spectrum is defined by

σlb (T ) := {λ ∈C : T −λI ∉ B−(X)} .
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Clearly, σb(T ) =σub (T )∪σlb (T ) and σw (T ) ⊆σb (T ).

Let write K i so for the set of all isolated points of K ⊆C. For a bounded operator T ∈L (X)

set π0(T ) :=σ(T )\σb(T ) =
{

λ ∈σ(T ) : T −λI ∈L (X)
}

. Note that everyλ∈π0(T ) is a pole of the

resolvent and hence an isolated point of σ(T ), see [17, Proposition 50.2]. Moreover, π0(T ) =

π0(T ∗). Define

E0(T ) := {λ ∈ i soσ(T ) : 0 <α(T −λI )<∞} .

Obviously,

π0(T ) ⊆ E0(T ) for every T ∈L (X).

For a bounded operator T ∈L (X) let us define

E a
0 (T ) :={λ ∈ i soσa(T ) : 0 <α(T −λI )<∞},

and

πa
0 (T ) :=σa (T ) \σub (T ) = {λ ∈σa (T ) : T −λI ∈ B+(X)} .

Hence we have

π0(T ) ⊆πa
0 (T ) ⊆E a

0 (T ) and E0(T ) ⊆ E a
0 (T ).

Following Harte and W.Y. Lee [16], we shall say that T satisfies Browder’s theorem if

σw (T ) =σb(T ), while, T ∈L (X) is said to satisfy a-Browder’s theorem if σaw (T ) =σub(T ). Let

∆(T ) =σ(T )\σw (T ) and∆a(T ) =σa (T )\σaw (T ). Following Coburn [8], we say that Weyl’s the-

orem holds for T ∈L (X) if ∆(T ) = E0(T ). According to Rakoc̃ević [21], an operator T ∈L (X)

is said to satisfy a-Weyl’s theorem if ∆a(T ) = E a
0 (T ). We can write

∆a(T ) = {λ ∈C : T −λ ∈W+(X)andα(T −λI )> 0} .

It is known (see [21]) that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem

too, but the converse does not hold in general.

Recall that an operator T ∈ L (X) is said to satisfy property (w ) if ∆a(T ) = E0(T ). In [22]

the author introduce the property (w ) which is a variant of Weyl’s theorem.

An operator T ∈ L (X) has the single-valued extension property at λ0 ∈ C, SVEP at λ0, if

for every open disc Uλ0
centered at λ0 the only analytic function f : Uλ0

−→X which satisfies

(T −λI ) f (λ) = 0 for all λ ∈Uλ0
is the function f ≡ 0. Trivially, every operator T has SVEP on

the resolvent set ρ(T ) = C \σ(T ); also T has SVEP at points λ ∈ σi so(T ). Let S(T ) denote the

set of λ ∈ C where T does not have SVEP: we say that T has SVEP if S(T ) = ;. SVEP plays an

important role in determining the relationship between the Browder and Weyl spectra, and

the Browder and Weyl theorems. Thus σb(T ) = σw (T )∪S(T ) = σw (T )∪S(T ∗), and if T ∗ has

SVEP then σb (T ) = σw (T ) = σab(T ) = σaw (T ) [1, Page 141- 142]; T satisfies Browder’s theo-

rem (resp., a-Browder’s theorem) if and only if T has SVEP at λ ∉ σw (T ) (resp., λ ∉ σaw (T ))

[12, Lemma 2.18]; and if T ∗ has SVEP, then T ∈W if and only if T ∈ aW .
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In the following, the diagonal operator M0 and the upper operator MC will defined as in

the introduction, and T ∈L (q) shall denote a general Banach space operator. It is known that

if either S(A∗) =; or S(B )=;, then σ(MC ) =σ(M0)=σ(A)∪σ(B ); if S(A)∪S(B )=;, then MC

has SVEP, σb(Mc ) =σw (MC ) =σw (M0) =σb(M0), and MC ∈ aB. Browders theorem, much less

Weyls theorem, does not transfer from individual operators to direct sums: for example, the

forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder’s

theorem, but their direct sum does not. However, if (S(A)∩S(B∗))∪S(A∗) =;, then : M0 satis-

fies Browder’s theorem (resp., a-Browder’s theorem) implies MC satisfies Browder’s theorem

(resp., a-Browder’s theorem); if points λ ∈σi so(A) are eigenvalues of A ∈W , then M0 ∈W im-

plies MC ∈W [11, Proposition 4.1 and Theorem 4.2].

It is known that from [6, 7, 9, 10, 11] that

(i) σx (M0) =σx (A)∪σx (B )=σx (MC )∪ {σx (A)∩σx (B )}, where σx =σ,σb or σe ;

(ii) σw (M0) ⊆σw (A)∪σw (B ) =σw (MC )∪ {σw (A)∩σw (B )} ;

(iii) if σw (MC )=σw (A)∪σw (B ), then σ(MC )=σ(M0) and

(iv) σaw (M0) ⊆σaw (A)∪σaw (B )=σaw (MC )∪
{

S(A)∪S(A∗)
}

.

Remark 2.1. Let SP(T ) be the spectral picture of T , it is known that: if either SP(A) or SP(B )

has no pseudo holes, then σacc (M0) ⊆ σw (M0) ⇒ σacc(MC ) ⊆ σw (MC ) [20, Theorem 2.3]; if

additionally A is an isoloid (the isolated points of σ(A) are eigenvalues of A ) and A satisfies

Weyl’s theorem, then M0 ∈W ⇒ MC ∈W [20, Theorem 2.4]. If {S(A)∩S(B∗)}∪S(A∗)=;, then

σacc(M0) ⊆ σw (M0) ⇒σacc (MC ) ⊆ σw (MC ) [11, Proposition 4.1]. Again, if σa (A∗) has empty

interior, A is an a-isoloid (isolated points of σa (A) are eigenvalues of A) and A ∈ aW , then

M0 ∈ aW ⇒ MC ∈ aW [7, Theorem 3.3].

3. Property (w ) for direct sum

Let H and K be infinite-dimensional Hilbert spaces. In this section we show that if T

and S are two operators on H and K respectively and at least one of them satisfies property

(w ) then their direct sum T ⊕S obeys property (w ) under certain conditions. We have also

explored various conditions on T and S so that T ⊕S satisfies property (w ).

Theorem 3.1. Suppose that property (w ) holds for T ∈ L (H ) and S ∈L (K ). If T and S are

isoloid and σaw (T ⊕S)=σaw (T )∪σaw (S), then property (w ) holds for T ⊕S.

Proof. We know that σa(T ⊕ S) = σa (T )∪σa (S) for any pairs of operators. If T and S are

a-isoloid, then

E0(T ⊕S)=
[

E0(T )∩ρa (S)
]

∪
[

ρa(T )∩E0(S)
]

∪ [E0(T )∩E0(S)] ,
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where ρa(.) =C\σa (.).

If property (w ) holds for T and S, then

[σa(T )∪σa (S)] \ [σaw (T )∪σaw (S)]

=
[

E0(T )∩ρa (S)
]

∪
[

ρa(T )∩E0(S)
]

∪ [E0(T )∩E0(S)] .

Thus, E0(T ⊕S)= [σa (T )∪σa (S)] \ [σaw (T )∪σaw (S)].

If σaw (T ⊕S)=σaw (T )∪σaw (S), then

E0(T ⊕S)=σa (T ⊕S) \σaw (T ⊕S).

Hence property (w ) holds for T ⊕S. ���

The assumption A and B are isoloid is essential in Theorem 3.1.

Example 3.2. If A,B : ℓ2 → ℓ2 are defined by

A(x1, x2, . . .) = (0, x2, x3, . . .) and B (x1, x2, . . .)=

(

0, x1,
1

2
x2,

1

3
x3, . . .

)

,

then we have that property (w ) holds for A and B ; σa (A) = {0,1}, σaw (A) = {1}, σa (B )=σaw (B )

= {0}, E0(A) = {0}, E0(B )=;; σa(A⊕B ) = {0,1} =σaw (A⊕B ) and E0(A⊕B )= {0}. Then property

(w ) does not holds for A⊕B .

Theorem 3.3. Suppose that T ∈L (H ) such that i soσa(T ) =;,σ(T ) =σa (T ) and S ∈L (K )

satisfies property (w ). If σaw (T ⊕S)=σa(T )∪σaw (S), then property (w ) holds for T ⊕S.

Proof. We know that σa (T ⊕S)=σa (T )∪σa (S) for any pairs of operators. Then

σa(T ⊕S) \σaw (T ⊕S)= [σa (T )∪σa (S)] \ [σa (T )∪σaw (S)]

=σa (S) \ [σa (T )∪σaw (S)]

= [σa (S) \σaw (S)] \σa (T )

= E0(S)∩ρa(T )

If σi so
a (T ) =; it implies that σa(T ) =σacc

a (T ), where σacc
a (T ) =σa (T ) \σi so

a (T ) is the set of all

accumulation points of σa (T ). Thus we have

σi so
a (T ⊕S)=

[

σi so
a (T )∪σi so

a (S)
]

\
[(

σi so
a (T )∩σacc

a (S)
)

∪

(

σacc
a (T )∩σi so

a (S)
)]

=

[

σi so
a (T ) \σacc

a (S)
]

∪

[

σi so
a (S) \σacc

a (T )
]

=σi so
a (S) \σa (T )

=σi so
a (S)∩ρa(T ).
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We know that σp (T ⊕S)=σp (T )∪σp (S) and α(T ⊕S)=α(T )+α(S) for any pairs of operators,

so that

σPF (T ⊕S)= {λ∈σPF (T )∪σPF (S) : α(T −λI )+α(S −λI )<∞} .

Therefore,

E0(T ⊕S)=σi so
a (T ⊕S)∩σPF (T ⊕S)

=σi so
a (S)∩ρa(T )∩σPF (S)

=E0(S)∩ρa(T ).

Thus σa (T ⊕S) \σaw (T ⊕S)=E0(T ⊕S). Hence T ⊕S satisfies property (w ). ���

Corollary 3.4. Suppose that T ∈L (H ) is such that σi so
a (T ) =; and S ∈L (K ) satisfies prop-

erty (w ) with σi so
a (S)∩σp (S)=;, and ∆a(T ⊕S)=;, then T ⊕S satisfies property (w ).

Proof. Since S satisfies property (w ), therefore given condition σi so
a (S)∩σp (S) = ; implies

that σa (S) = σaw (S). Now ∆a (T ⊕S) = ; gives that σaw (T ⊕S) = σa (T ⊕S) = σa (T )∪σaw (S).

Thus from Theorem 3.3, we have that T ⊕S satisfies property (w ). ���

Corollary 3.5. Suppose that T ∈L (H ) is such that σi so
a (T )∪∆a(T ) =; and S ∈L (K ) satis-

fies property (w ). If σaw (T ⊕S)=σaw (T )∪σaw (S), then T ⊕S satisfies property (w ).

Theorem 3.6. Let T ∈L (H ) be an a-isoloid operator that satisfies property (w ). If S ∈L (K )

is a normal operator satisfies property (w ). Then property (w ) holds for T ⊕S.

Proof. If S is normal, then both S and S∗ have SVEP, and i nd (S −λI )= 0 for every λ such that

S −λI is a Fredholm. Observe that λ ∉σaw (T ⊕S) if and only if S −λI ∈W+(K ) and T −λI ∈

W+(H ) and i nd (T −λI )+i nd (S−λI )= i nd (T −λI )≤ 0 if and only if λ ∉∆a(T )∩∆a (S). Hence

σaw (T ⊕ S) = σaw (T )∪σaw (S). It is well known that the isolated points of the approximate

point spectrum of a normal operator are simple poles of the resolvent of the operator implies

that S is a-isoloid. So the result follows now from Theorem 3.1. ���

4. Property (w ) for MC

In the following, let

Φ+(T ) =
{

λ∈C : T −λI is upper semi-Fredholm
}

,

Φ
−
+(T ) = {λ ∈C : i nd (T −λI )≤ 0} ,

Φ−(T ) = {λ ∈C : T −λI is lower semi-Fredholm},

Φ
+
−(T ) = {λ ∈C : i nd (T −λI )≥ 0} ,
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Φ(T ) =Φ+(T )∩Φ−(T ), and

Φ
0(T ) = {λ ∈Φ(T ) : i nd (T −λI ) = 0} .

Then the upper semiFredholm spectrumσSF+
(T ), the lower semiFredholm spectrumσSF−

(T ),

the (Fredholm) essential spectrum σe (T ) and the Weyl essential surjectivity spectrum σsw (T )

of T are the sets

σSF+
(T ) = {λ ∈σ(T ) : λ∉Φ+(T )} ,

σSF−
(T ) = {λ ∈σ(T ) : λ∉Φ−(T )} ,

σe (T ) = {λ ∈σ(T ) : λ∉Φ(T )} and

σsw (T ) =
{

λ ∈σ(T ) : λ∉Φ
+
−(T )

}

.

It is easily verified, see [25, Exercise 7, Page 293], that

a(A−λI )≤ a(MC −λI ) ≤ a(A−λI )+a(B −λI );

d (A−λI )≤ d (MC −λI )≤ d (A−λI )+d (B −λI )

for every λ∈C.

Remark 4.1. The following implications hold [1, Theorem 3.4]: a(T −λI )<∞⇒α(T −λI )≤

β(T −λI )); d (T −λI ) < ∞ ⇒ β(T −λI ) ≤ α(T −λI ); if α(T −λI ) = β(T −λI ), then either of

a(T −λI )<∞ and d (T −λI )<∞⇒ a(T −λI )= d (T −λI )<∞. If λ∈Φ
−
+(T ), then T has SVEP

at λ⇔ a(T −λI ) <∞ and T ∗ has SVEP at λ⇔ a(T −λI ) <∞ [1, Theorems 3.16, 3.17]. From

this it follows that if both T and T ∗ have SVEP at λ ∈Φ
−
+(T ), then λ ∈Φ

0(T ) and λ ∈ π0(T ). If

λ ∈π0(T ) and either of a(T −λI ) and d (T −λI ) is finite (equivalently, either T or T ∗ has SVEP

at λ), then λ ∈ π0(T ). Again, if λ ∈ Φ
−
+(T ) and T has SVEP at λ, then λ ∈ πa

0 (T ) [1, Theorem

3.23].

For an operator S ∈L (X) and σx (T ) a subset of σ(T ), let

Sσx (T )(S)= {λ ∈σ(T ) \σx (T ) : S does not have SVEP at λ} .

Remark 4.2. From [6, 7, 14, 15]. The Following relations hold:

(i) σ(M0) =σ(A)∪σ(B ) =σ(MC )∪ {σ(A)∩σ(B )}

=σ(MC )∪
{

Sσa (A)(A∗)∩Sσa (B )(B )
}

.

(ii) σb (M0) =σb(A)∪σb (B )=σb(MC )∪ {σb (A)∩σb (B )}

=σb(MC )∪
{

Sσb(MC )(A∗)∩Sσb (MC )(B )
}

.

(iii) σw (A)∪σw (B ) ⊆σw (MC )∪
{

Sσw (MC )(P)∪Sσw (MC )(Q)
}

,

where (P,Q) = (A, A∗), (B ,B∗), (A,B ), or (A∗,B∗).
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Lemma 4.3. If either A∗ or B has SVEP and λ ∈σi so
a (MC ), then λ∈σi so

a (A)∪σi so
a (B ).

Proof.The hypothesis A∗ or B has SVEP implies that

σa (MC ) =σa(A)∪σa (B ).

Hence λ ∈ (σa (A)∪σa (B ))i so ⊂σi so
a (A)∪σi so

a (B ). ���

Theorem 4.4. Let A and B have SVEP, and let dimχB ({λ}) <∞ for all λ ∈ σi so
a (B ). If a-Weyl’s

theorem holds for M0, then a-Weyl’s theorem holds for MC for every C ∈L (Y,X).

Proof. Since A and B have SVEP, MC has SVEP [18, Proposition 3.1], and so MC obeys a-

Browder’s theorem. Hence,

σa (MC ) \σaw (MC ) =πa
0 (MC ) ⊆ E a

0 (MC ).

Let λ ∈ E a
0 (MC ). Then λ∈σi so

a (MC ). By Lemma 4.3, λ ∈σi so
a (A)∪σi so

a (B ). Hence λ ∈σi so
a (M0).

Since ker(A−λI )⊕ {0} ⊂ ker(MC −λI ), dimker(A−λI ) <∞ in the case in which λ ∈σi so
a (A)∪

ρa(A). Again, if λ ∈ σi so
a (B ), or λ ∈ ρa(B ), then the assumption that dimχB ({λ}) <∞ implies

(by [19, Proposition 1.2.16]) that dimker(B −λI ) <∞, and hence that

dim(ker(A−λI )⊕ker(B −λI )) <∞

Evidently, the non-triviality of ker(MC −λI ) implies that ker(A −λI )∪ ker(B −λI ) 6= {0}, i.e.,

0 <dim(ker(A−λI )⊕ker(B −λI )). Hence, λ∈σi so
a (M0) and

0 < dim(ker(A−λI )⊕ker(B −λI )) <∞,

i.e., λ∈πa
0 (M0) =σa (M0) \σaw (M0). By [7, Theorem 3.1] this implies that λ ∉σaw (MC ). ���

Recall that an operator T ∈ L (X) is said to be polaroid (resp., isoloid) at λ ∈ σi so(T ) if

a(T −λI ) = d (T −λI ) <∞ (resp., λ is an eigenvalue of T ). Trivially, T polaroid at λ implies T

isoloid at λ. We say that T is a-polaroid if T is polaroid at λ∈σi so
a (T ).

Lemma 4.5. Let A ∈ L (X) and B ∈ L (Y) have SVEP. If A and B are polaroid, then MC is

polaroid for every C ∈L (Y,X).

Proof. Suppose that λ ∈ σi so(MC ). If B has SVEP then σ(B ) coincides with the defect spec-

trum of B . It follows from [10, Theorem 2.3] that σ(MC ) =σ(A)∪σ(B ). Therefore λ ∈ (σ(A)∪

σ(B ))i so . Suppose that λ ∈ σ(A). Then λ ∈ σi so(A). Since A is isoloid, ker(A −λI ) 6= {0}. Ob-

serve that ker(A−λI )⊕{0} ⊆ ker(MC −λI ), and hence ker(MC −λI ) 6= {0}. Since ker(MC −λI ) 6=

{0} then ker(M0 −λI ) 6= {0} ; also, dim(ker(MC −λI )) < ∞ implies dim(ker(A −λI )) <∞. We
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claim that dim(ker(B −λI )) <∞. For suppose to the contrary that dim(ker(B −λI )) is infinite.

Since

(MC −λI )(x ⊕ y)=
{

(A−λI )x +C y)⊕ (B −λI )y
}

,

either dim(C (ker(B −λI )) < ∞ or dim(C (ker(B −λI )) =∞. If dim(C (ker(B −λI )) < ∞, then

ker(B −λI ) contains an orthonormal sequence
{

y j

}

such that (MC −λI )(0⊕ y j ) = 0 for all

j = 1,2, . . . . But then dimker(MC −λI ) =∞, a contradiction. Assume now that dim(C (ker(B −

λI )) = ∞. Since λ ∈ ρ(A)∪σi so(A), A satisfies Browder’s theorem, A is polaroid and α(A −

λI ) <∞, β(A −λI ) <∞. Hence dim{C (ker(B −λI ))∩ℜ(A−λI )} =∞ implies the existence of

a sequence
{

x j

}

such that (A−λI )x j =C y j for all j = 1,2, . . . . But then (MC −λI )(x j ⊕−y j ) = 0

for all j = 1,2, . . . . Thus dim ker(MC −λI ) =∞, again a contradiction. Our claim having been

proved, we conclude that λ∈π(M0). Thus π(MC ) ⊆π(M0). ���

Remark 4.6. If S(A∗)∪S(B∗)=;, then M∗
C has SVEP. Hence

σ(M0) =σ(MC ),σaw (MC ) =σw (MC ) =σw (M0)andπ0(MC ) =πa
0 (MC ).

Evidently, both M0 and MC satisfy a-Browder’s theorem. Since

E0(M0) =
(

E0(A)∩ρ(B )
)

∪
(

ρ(A)∩E0(B )
)

∪ (E0(A)∩E0(B ))

if M0 is polaroid at λ ∈ E0(M0), then either A or B is polaroid at λ; in particular, A and B are

polaroid at λ ∈ E0(A)∩E0(B ). Conversely, if A is polaroid at λ ∈ E0(A) and B is polaroid at

µ ∈ E0(B ), then M0 is polaroid at ν ∈ E0(M0).

Theorem 4.7. If S(A∗)∪S(B∗) = ;, A is polaroid at λ ∈ E a
0 (MC ) (or, A is isoloid and satisfies

Weyl’s theorem) and B is polaroid at µ ∈ E a
0 (B ), then MC satisfies property (w ).

Proof. Since A∗ and B∗ have SVEP, both M∗
0 and M∗

C have SVEP. Hence MC (also, M0) satis-

fies Browder’s theorem, which implies that σ(MC ) \σw (MC ) = π0(MC ) ⊆ E0(MC ). Apparently,

σ(M0) = σ(MC ) = σa(MC ),σw (M0) = σw (MC ) = σaw (MC ), E0(MC ) = E a
0 (MC ) and σi so(MC ) =

σi so(M0). Following (part of) the argument of the proof of the sufficiency part of Theorem

3.7 of [14], it follows that if λ ∈ E0(MC ), then λ ∈ E0(A)∩E0(B ). By assumption, both A and

B are polaroid at λ. Hence M0 is polaroid at λ, which implies that λ ∈ π0(M0). Since M0

satisfies Browder’s theorem, λ ∉ σw (M0) = σw (MC ), which in view of the fact that MC satis-

fies Browder’s theorem implies that λ ∈ π0(MC ). Hence σ(MC ) \σw (MC ) = E0(MC ) implies

σa (MC ) \σaw (MC ) = E a
0 (MC ) = E0(MC ), i.e., MC satisfies property (w ). ���

Example 4.8. Let A,B and C ∈L (ℓ2) be the operators

A(x1, x2, . . .) =

(

0, x1,0,
1

2
x2,

1

3
x3, . . .

)

,
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B (x1, x2, . . .) = (0, x2,0, x4,0, . . .),

and

C (x1, x2, . . .) = (0,0, x2,0, x3, . . .).

Then A, A∗,B and B∗ have SVEP, σ(A) = σa (A) = σw (A) = σaw (A) = {0}, π0 = E0(A) = ;, and

A satisfies property (w ). Since σa (M0) = σaw = {0,1} and E0(M0) = π0(M0) = ;, M0 satisfies

property (w ). However, since σa (MC ) = σaw = {0,1} and E0(MC ) = {0}, MC does not satisfy

property (w ). Observe that A is not polaroid on E0(MC ).

Remark 4.9. If the operators A and B have SVEP, then M0 and MC have SVEP,σ(M0) =σ(MC ) =

σ(M∗
C ) =σa (M∗

C ), σi so(M∗
0 ) =σi so(M∗

C ) =σi so
a (M∗

C ),E0(M∗
C ) =E a

0 (M∗
C ) and σw (M0) =σw (MC )

=σw (M∗
C ) =σaw (M∗

C ). Evidently, A∗,B∗, M∗
0 and M∗

C satisfy Browder’s theorem; in particular,

π0(M∗
0 ) =π0(M∗

C ) ⊆ E0(M∗
C ).

Theorem 4.10. If the polaroid operators A and B have SVEP, then M∗
C satisfies property (w ).

Proof. Since the polaroid hypothesis on A and B implies that A∗ and B∗ are polaroid, an

argument similar to that in the proof of Theorem 4.7 to M∗
C implies that if λ ∈ E0(M∗

C ), then

λ∈ E0(A∗)∩E0(B∗) implies λ ∈π0(A∗)∩π0(B∗). So λ∉σw (M∗
0 ) =σw (M∗

C ) implies M∗
C satisfies

Weyl’s theorem. Hence it follows from Remark 4.9 that σ(M∗
C )\σw (M∗

C ) = E0(M∗
C ) =σa (M∗

C )\

σaw (M∗
C ). That is, M∗

C satisfies property (w ). ���

Let H (K ) denote the space of functions holomorphic on an open neighborhood of K ⊂C.

Lemma 4.11. Let A ∈L (X) and B ∈ LB (Y) have SVEP. Then

σaw ( f (MC )) = f (σaw (MC )) for every f ∈ H (σ(MC )).

Proof. Since A and B have SVEP, MC also has SVEP. Then f (MC ) has SVEP by Corollary 2.40 of

[1]. Then it follows from [7, Theorem 3.1] that f (MC ) satisfies a-Browder’s theorem. That is,

σab( f (MC )) =σaw ( f (MC )). The proof is follows now from Theorem 3.71 of [1]. ���

Theorem 4.12. If A∗ ∈ L (X) and B∗ ∈ L (Y) are each polaroid, and have the single valued

extension property, then property (w ) holds for f (MC ) for arbitrary f ∈ H (σ(MC )) and for ar-

bitrary bounded operators C ∈L (Y,X).

Proof. Since MC is polaroid by Lemma 4.5, then it is a-isoloid. Then

f (σa (MC ) \ E0(MC )) =σa( f (MC )) \ E0( f (MC )) for every f ∈ H (σ(MC )).

It from From Theorem 4.10 and Lemma 4.11 that

f (σa (MC ) \ E0(MC )) =σa( f (MC )) \ E0( f (MC )) =σaw ( f (MC )) = f (σaw (MC ))
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for every f ∈ H (σ(MC )). ���

An operator T ∈L (X) is said to be a-isoloid if all isolated points of σa (T ) are eigenvalues

of T, and T ∈ L (X) is called finite a-isoloid if every isolated point of σa (T ) is an eigenvalue

of T of finite multiplicity. Note that finite-a-isoloid implies a-isoloid but the converse is not

true.

Theorem 4.13. Suppose that σd (A) has no interior points. If A is finite-a-isoloid and property

(w ) holds for A, then for every B ∈ L (Y) and C ∈ L (Y,X), property (w ) holds for M0 implies

property (w ) holds for MC .

Proof. It follows from Theorem 3.1 of [7] that MC satisfies a-Browder’s theorem, i.e.,

σa(MC ) \σaw (MC )=πa
0 (MC )⊆ E a

0 (MC ).

Conversely, suppose that λ0 ∈ E a
0 (MC ). Then MC−λI is bounded below if |λ−λ0| is sufficiently

small and hence λ is not in σa(MC ). Since σd (A) has no interior points, by [7, Corollary 2.4],

σa (MC ) =σa(A)∪σa (B )=σa (M0). Then λ is not in σa (M0) if |λ−λ0| is sufficiently small, that

is λ0 ∈ σi so
a (M0). Without loss of generality, we suppose that λ0 ∈ σa(A), then λ0 ∈ σi so

a (A).

Since ker(A −λ0 I )⊕ {0} ⊆ ker(MC −λ0I ), we know that α(A −λ0I ) <∞. A is finite-a-isoloid,

then λ0 ∈ E0(A). Since property (w ) holds for A, it follows that A −λ0 I ∈ Φ+(X) and a(A −

λ0I ) <∞. The condition σd (A) has no interior points asserts that λ0 is not in σd (A) or λ0 ∈

∂σd (A). Then in any neighborhood U of λ0, there exists λ1 ∈U such that ℜ(A −λ1 I ) =X. By

perturbation theory of upper semi-Fredholm operator A−λ0 I , we get that A−λI is invertible

and i nd (A−λ0I )= i nd (A−λI )= 0 if |λ−λ0| is sufficiently small, which means that A−λ0 I is

Weyl with finite ascent. [24, Theorem 4.5] asserts that A−λ0 I is Browder. Using the same way

in Theorem 2.4 in [20], we get that 0 < dim[ker(A−λ0 I )⊕ker(B−λ0I )] <∞, which implies that

λ0 ∈ E0(M0). Since property (w ) theorem holds for M0, it follows that M0 −λ0I ∈ Φ
−
+(X⊕Y).

Hence MC −λ0I ∈Φ
−
+(X⊕Y), then λ0 ∈σa(MC )\σaw (MC ). Now we have proved that σa(MC )\

σaw (MC )= E0(MC ), which means that property (w ) holds for MC for every C ∈L (X,Y). ���

Similar to the proof in Theorem 4.13, we can prove that:

Theorem 4.14. Suppose that σd (A)∩σab(B ) has no interior points. If SP(A) has no pseudo-

holes (or σe (A) = σab(A)), where SP(A) denote the spectral picture of A and if A is finite-a-

isoloid operator for which property (w ) holds, then for every C ∈ L (X,Y), then property (w )

holds for M0 implies property (w ) holds for MC .

Theorem 4.15. Let A and B have SVEP. If A is finite-a-isoloid, and if property (w ) holds for

both A and M0, then property (w ) holds for MC for every C ∈L (Y,X).
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Proof. Since A and B have SVEP, MC also has SVEP and MC obeys a-Browder’s theorem, i.e.

σa (MC ) \σaw (MC ) =πa
0 (MC )⊆ E a

0 (MC ).

Suppose now thatλ ∈ E a
0 (MC ). Then, it follows from Lemma 4.3 thatλ ∈σi so

a (A)∪σi so
a (B ),

then λ ∈ σi so
a (M0), dim ker(M0 −λI ) > 0 and dim ker(A −λI ) > 0. If λ ∈ σa(A), then λ is an

isolated point and (by the finite-a-isoloid hypothesis)λ ∈ E0(A) =σa (A)\σaw (A). If λ ∉σa (A),

then again λ ∉ σaw (A). Hence, in either case, λ ∉ σaw (A), ℜ(A −λI ) is closed and 0 ≤ α(A −

λI )=β(A−λI )<∞.

Next, we prove that dimker(B −λI ) is finite. Suppose to the contrary that dimker(B −λI )

is infinite. Then there exists an infinite sequence
{

un
2

}∞

n=1
of linearly independent vectors in

ker(B −λI ). Since dimker(MC −λI ) <∞, there exists a natural number n0 such that Cun
2 6= 0

for every natural number n > n0. (For if not, then (MC −λI )(0⊕un
2 ) = 0 for all n, and then

dimker(MC −λI )=∞.) Without loss of generality we may assume that Cun
2 6= 0 for all n. Since

β(A−λI ) <∞, there exists a natural number n1 such that Cun
2 ∈ℜ(A−λI ) for every n > n1, i.e.

there exists a sequence
{

un
1

}∞

n=1
in X such that (A−λI )(−un

1 ) =Cun
2 . Then (MC−λI )(un

1 ⊕un
2 )=

0 for every n > n1, i.e. dim ker(MC −λI ) =∞.

The conclusion that dim ker(B −λI ) <∞ implies that 0 < dim ker(M0 −λI ) <∞ and λ ∈

σi so
a (MC ). Moreover, since λ∈ E0(M0) =σa (M0)\σaw (M0), λ ∉σaw (MC ). Hence property (w )

holds for MC . ���

Theorem 4.16. If the finite-a-isoloid operators A and B have SVEP, and if property (w ) holds

for both A and B , then property (w ) holds for MC for every C ∈L (Y,X).

Proof. If the hypotheses of the theorem are satisfied then it follows from the argument of the

proof of Theorem 4.15 that MC obeys a-Browder’s theorem, and if λ ∈ E0(MC ) then (by the

finite-a-isoloid property of A) λ ∉σaw (A), λ ∈σi so
a (B )∪ρa(B ) and dim ker(B −λI )<∞. Since

B is finite-a-isoloid operator for which property (w ) holds, λ∈ E0(B )=σa (B )\σaw (B ). Hence,

λ∉σaw (A)∪σaw (B ) and so λ∉σaw (MC ). ���

We consider now necessary and(/or) sufficient conditions for the implications M0 satis-

fies property (w ) ⇔ MC satisfies property (w ). As one would expect, M0 satisfies property (w )

does not imply MC satisfies property (w ). For example, if A,B ,C ∈L (ℓ2⊕ℓ2) are the operators

A =U⊗I , B =U∗⊗I and C is the diagonal operator with entries (0, I−UU∗, I−UU∗, . . .), where

U ∈L (ℓ2) is the forward unilateral shift, then σa (M0) = σaw (M0), πa
0 (M0) =; = E0(M0) and

M0 satisfies property (w ); however, σ(MC ) is the closed unit disc D, σw (MC ) is the boundary

∂D of D, π0(MC ) = ;, and MC does not satisfy Browder’s theorem (much less property (w )).

Conversely, MC satisfies property (w ) does not imply M0 satisfies property (w ), as the example

of the operator

(

U I −UU∗

0 U∗

)

shows. Recall, however, that M0 satisfies a-Browder’s theorem

if and only if A and B have SVEP on ∆a(M0); hence, if MC has SVEP on σaw (M0) \σaw (MC ),
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then, since M0 satisfies a-Browder’s theorem implies MC has SVEP on ∆a(MC ), MC satisfies

a-Browder’s theorem.

Theorem 4.17.

(a) If σaw (MC ) =σaw (A)∪σaw (B ), and either A∗ or B has SVEP on ∆a(MC ). Then the equiv-

alence

M0 satisfies property (w )⇔ MC satisfies property (w )

holds if and only if E0(M0) = E0(MC ).

(b) If A and A∗, or A∗ and B∗, have SVEP on ∆a(MC ). Then the equivalence

M0 satisfies property (w )⇔ MC satisfies property (w )

holds if and only if E0(M0) = E0(MC ).

(c) If A and A∗ have SVEP on ∆a(MC ) \σSF+
(A), or A∗ has SVEP on ∆a (MC ) \σSF+

(A) and B∗

has SVEP on ∆a(MC ) \σSF+
(B ). Then the equivalence

M0 satisfies property (w )⇔ MC satisfies property (w )

holds if and only if E0(M0) = E0(MC ).

Proof.

(a) The hypothesisσaw (MC ) =σaw (A)∪σaw (B ) implies thatσaw (M0) =σaw (MC )=σaw (A)∪

σaw (B ). If M0 satisfies property (w ) then M0 satisfies a-Browder’s theorem, so A and

B have SVEP on ∆a (M0) implies that MC has SVEP on ∆a (MC ), and so MC satisfies a-

Browder’s theorem. Hence

σa (MC ) \σaw (MC ) =σa(M0) \σaw (M0) = E0(M0) =πa
0 (M0) =πa

0 (MC ) ⊆E0(MC )

Assume now that MC satisfies property (w ), then MC satisfies a-Browder’s theorem

σaw (MC ) =σaw (A)∪σaw (B ), and either A∗ or B has SVEP on ∆a(MC ). Since MC satisfies

a-Browder’s theorem implies A has SVEP on ∆a(MC ), if B has SVEP on ∆a (MC ), then M0

has SVEP on ∆a (M0) = ∆a (MC ), and so M0 satisfies a-Browder’s theorem. Assume now

that A∗ has SVEP on ∆a(MC ): we prove that σa (M0) = σa (A)∪σa (B ) = σa (MC ). If µ ∉

σa(MC ), then MC −µI and A −µI are left invertible, µ ∈ ∆a(MC ). The left invertibility of

A−µI implies the right invertibility of A∗−µI∗; hence, since A∗ has SVEP on ∆a (MC ), A∗−

µI∗ is invertible. But then the invertibility of A−µI , taken along with the left invertibility

of MC −µI , implies that B −µI is left invertible. Hence µ ∉σa (A)∪σa (B ). Since σa (MC ) ⊆

σa(A)∪σa (B ) always, σa(MC ) = σa (A)∪σa (B ) = σa(M0). Assume now that MC satisfies

a-Browder’s theorem. Then λ ∈ ∆a(MC ) implies that λ ∈ σi so
a (MC ) = σi so

a (A)∪σi so
a (B );
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hence (A and B have SVEP on ∆a (M0) =∆a(MC ) implies) M0 has SVEP on ∆a (M0), and so

M0 satisfies a-Browder’s theorem, and so

σa (M0) \σaw (M0) =σa (MC ) \σaw (MC ) =E0(MC )=πa
0 (MC )=πa

0 (M0) ⊆E0(M0).

Thus, the statements of the theorem are equivalent if and only if E0(M0) =E0(MC ).

(b) Let λ ∈ ∆a (MC ). Then the hypothesis that A and A∗ have SVEP on ∆a(MC ) implies that

λ ∈ Φ
0(A)∩Φ

−
+(B ) ⊆Φ

−
+(A)∪Φ

−
+(B ). Consequently, σaw (A)∪σaw (B ) ⊂ σaw (MC ); hence

σaw (MC ) =σaw (A)∪σaw (B ). Again, if A∗ and B∗ have SVEP on ∆a (MC ), then λ ∈∆a(MC )

⇒ λ ∈Φ+(A), i nd (A −λI )+ i nd (B−λI ) ≤ 0 β(A −λI ) ≤ α(A −λI ), β(B −λI ) ≤α(B −λI ).

Hence, in view of Proposition 3.3 of [15], λ ∈Φ
0(A)∩Φ

0(B ) ⊆Φ
−
+(A)∪Φ

−
+(B ), which (once

again) leads to the conclusion that σaw (MC ) = σaw (A)∪σaw (B ). Applying part (a), the

proof follows.

(c) Let λ ∈ ∆a(MC ). Then λ ∈ Φ+(A) and i nd (A −λI )+ i nd (B −λI ) ≤ 0 . If A and A∗ have

SVEP on ∆a(MC )\σSF+
(A), then λ ∈Φ

0(A) (is isolated in σa (A)), and this forces λ∈Φ
−
+(B ).

Hence λ ∉σaw (A)∪σaw (B ), which leads us to the equality σaw (MC ) =σaw (A)∪σaw (B ).

Again, if A∗ has SVEP on ∆a(MC ) \σSF+
(A), then λ ∈ Φ

−
+(A) and this implies λ ∈ Φ+(B );

thus, if B∗ has SVEP on ∆a(MC ) \σSF+
(B ), then λ∈Φ

−
+(B ), which forces λ∈Φ

0(A)∩Φ
0(B )

and λ ∈ σi so(A)∪σi so (B ). Once again, we conclude that σaw (MC ) = σaw (A)∪σaw (B ).

The proof now follows from an application of part (b) (since both A and A∗ have SVEP on

∆a (MC )). ���

Theorem 4.18. (a). If σaw (M0) =σaw (MC ), then M0 satisfies property (w ) implies MC satisfies

property (w ) if and only if E0(MC ) ⊆E0(M0).

(b). If σaw (M0) = σaw (MC ) and A∗ has SVEP on ∆a(MC ), then then MC satisfies property (w )

implies M0 satisfies property (w ) if and only if E0(M0) ⊆ E0(MC ).

Proof.

(a) Since M0 satisfies property (w ) implies M0 satisfies a-Browder’s theorem, A and B have

SVEP on ∆a(MC ). (σaw (MC ) =σaw (M0) =σaw (A)∪σaw (B )). Hence MC satisfies

a-Browder’s theorem by Theorem 4.12 of [15]. Thusλ∈πa
0 (MC ) if and only ifλ ∈∆a (MC ) =

∆a (M0) =πa
0 (M0) = E0(M0). It follows that

σa(MC ) \σaw (MC )=πa
0 (MC )=πa

0 (M0) =E0(M0) ⊆ E0(MC ),

which proves that MC satisfies property (w ) if and only if E0(MC ) ⊆ E0(M0).

(b) The argument of th proof of Theorem 4.12 part(i) of [15] shows that ifσaw (M0) =σaw (MC )

and A∗ has SVEP on ∆a (MC ), then σa (MC ) =σa(M0) =σa (A)∪σa (B ). Thus, if MC satisfies

property (w ), then M0 satisfies a-Browder’s theorem, i.e., ∆a (M0) =πa
0 (M0) and

∆a (M0) =∆a(MC ) =πa
0 (MC ) =πa

0 (M0) = E0(M0) ⊆ E0(MC ),
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where the equality πa
0 (M0) =πa

0 (MC ) follows from the implications

λ ∈πa
0 (MC ) ⇔λ ∈∆a(MC ) =∆a(M0) ⇔λ∈πa

0 (M0).

hence M0 satisfies property (w ) if and only if E0(MC ) ⊆ E0(M0). ���

Theorem 4.19. If σaw (A) =σSF+
(B ), A is a-isoloid and property (w ), then M0 satisfies property

(w ) implies MC satisfies property (w ).

Proof. Start by observing that if λ ∈ Φ
−
+(MC ) and i nd (A −λI ) > 0, then λ ∈ Φ(A) ∩Φ+(B )

and i nd (A −λI ))+ i nd (B −λI )) ≤ 0; if, instead, i nd (A −λI ) ≤ 0, then σaw (A) = σSF+
(B ) and

λ ∈ Φ
−
+(MC ) imply that λ ∈ Φ

−
+(A)∩Φ+(B ) and i nd (A −λI )+ i nd (B −λI ) ≤ 0. In either case,

λ ∈Φ
−
+(MC ) implies λ ∈Φ

−
+(M0); henceσaw (MC ) =σaw (M0). In view of Theorem 4.18, we are

thus left to prove that E0(MC ) ⊆ E0(M0). If λ ∈ E0(MC ), then λ ∈σi so
a (A)∪σi so

a (B ), and so λ ∈

E0(A) = ∆a(A) = σa (B ) \σSF+
(B ) (since A is a-isoloid, A satisfies property (w ) and σaw (A) =

σSF+
(B ). But then, since M0 satisfies a-Browder’s theorem implies B has SVEP at λ, λ ∈πa

0 (B ).

Hence λ ∈πa
0 (M0) = E0(M0). ���

Remark 4.20. If A∗ has SVEP, then λ ∈∆a(MC ) implies λ ∈Φ(A)∩Φ
−
+(B ), i nd (A−λI ))≥ 0 and

i nd (A −λI )+ i nd (B −λI ) ≤ 0; this in turn implies that λ ∉ σaw (A)∪σaw (B ). Thus, if A∗ has

SVEP and M0 satisfies a-Browder’s theorem, then σaw (M0) =σaw (A)∪σaw (B ) =σaw (MC ).

Theorem 4.21. If σa (A∗) has empty interior, A is a-isoloid and property (w ), then M0 satisfies

property (w ) implies MC satisfies property (w ).

Proof. Evidently, A∗ has SVEP, M0 satisfies a-Browder’s theorem and σaw (M0) = σaw (MC ).

Now argue as in the (latter part of the) proof of Theorem 4.19. ���

For an operator T ∈L (X) such that T ∗ has SVEP, T satisfies Weyl’s theorem if and only if

T property (w ) [3, Theorem 2.16]. Thus, if A∗ and B∗ have SVEP, then M∗
X = M∗

0 or M∗
C has

SVEP, and the (two way) implication MX satisfies Weyl’s theorem if and only if MX satisfies

property (w ). The following theorem, proves more.

Theorem 4.22. If SσSF+ (A)(A∗)∪SσSF+ (B )(B∗) =;, then MC satisfies Weyl’s theorem if and only

MC satisfies a-Weyl’s theorem if and only if MC satisfies property (w ).

Proof. The implication MC satisfies a-Weyl’s theorem or MC satisfies property (w ) implies MC

satisfies Weyl’s theorem being clear, we prove the reverse implication. For this, it would suffice

to prove that σ(MC ) = σa (MC ) (which would then imply E0(MC ) = E a
0 (MC ) and σw (MC ) =

σaw (MC )).

Evidently, σa (MC ) ⊆σ(MC ). Let λ ∉σa(MC ). Then MC −λI and A−λI are left invertible.
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The left invertibility of A −λI implies λ ∈ Φ+(A). Since A∗ has SVEP at points λ ∈ Φ+(A), it

follows that A−λI is invertible. But then B −λI is left invertible, which (because B∗ has SVEP

at points λ ∈Φ+(B ) implies that B−λI is invertible. Thus, λ ∉σ(A)∪σ(B ), i.e., σ(MC ) ⊆σ(A)∪

σ(B ) ⊆ σa(MC ). Next, we prove that σw (MC ) ⊆ σaw (MC ): this would then imply the equality

σw (MC ) = σaw (MC ). Let λ ∉ σaw (MC ); then λ ∈ Φ+(A) (and i nd (A −λI )+ i nd (B −λI ) ≤ 0).

Since A∗ has SVEP at points λ ∈Φ+(A), it follows that i nd (A−λI )≥ 0) implies λ ∈Φ(A) (with

i nd (A −λI )≥ 0). Since this forces λ ∈Φ+(B ), it follows (from the hypothesis B∗ has SVEP on

the set of λ ∈Φ+(B )) that λ ∈Φ(B ) and i nd (B−λI )≥ 0. Since i nd (A−λI )+i nd (B−λI )≤ 0, we

conclude that λ ∈Φ
0(A)∩Φ

0(B ). Hence σw (MC ) ⊆σw (A)∪σw (B ) ⊆σaw (MC ), and the proof

is achieved. ���

Two important T -invariant subspaces of T are defined as follows. The quasinilpotent

part H0(T −λI ) and the analytic core K (T −λI ) of T −λI are defined by

H0(T −λI ) := {x ∈X : lim
n−→∞

‖(T −λI )n x‖
1
n = 0}.

and

K (T −λI )={x ∈X : there exists a sequence {xn} ⊂X and δ> 0 for which

x = x0, (T −λI )xn+1 = xnand ‖xn‖≤ δn
‖x‖for all n = 1,2, . . .}.

Note that (T −λI )K (T −λI )= K (T −λI ) [1, Chapter 1], Moreover (see [2]),

H0(T −λI ) is closed =⇒ T has SVEP atλ.

Lemma 4.23. ( [4]) Suppose that for a bounded linear operator T ∈ L (X) there exists λ0 ∈ C

such that K (T −λ0I )= {0} and ker(T −λ0I )= {0} . Then σp (T )=;.

Proof. Since ker(T −λI ) ⊆ ker(T −λ0I ) for all λ 6=λ0, so that ker(T −λI )= {0} for all λ∈C. ���

Theorem 4.24. Suppose that there exists λ0 ∈C such that

K (A−λ0I )= {0} ,ker(A−λ0I )= {0} ,K (B −λ0 I )= {0} and ker(B −λ0I )= {0} .

Then property (w ) holds for f (MC ) for all f ∈ H (σ( f (MC )).

Proof. It follows from Lemma 4.23 that σp (A) = σp (B ) = ;, so A and B have SVEP and

hence MC has SVEP. We show that also σp ( f (MC )) =;. Let µ ∈σ( f (MC ))) and write f (λ)−µ=

p(λ)g (λ), where g is analytic on an open neighborhood U containing σ(MC ) and without ze-

ros in σ(MC ), p a polynomial of the form p(λ) =
∏n

k=1
(λ−λk )νk , with distinct roots λ1, . . . ,λn

lying in σ(MC ). Then

f (MC )−µI =
n
∏

k=1

(MC −λk I )νk g (MC ).
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Since g (MC ) is invertible, σp (MC ) ⊆σp (A)∪σp (B ) =; implies that ker( f (MC )−µI ) = {0} for

all µ ∈C. Since MC has SVEP then f (MC ) has SVEP, see Theorem 2.40 of [1], so that f (MC ) ∈ aB

[5]. To prove that property (w ) holds for f (MC ), by Theorem 2.7 of [3] it then suffices to prove

that

πa
0 ( f (MC )) = E0( f (MC )).

Obviously, the condition σp ( f (MC )) =; entails that

E0( f (MC )) = E a
0 ( f (MC )) =;.

On the other hand, the inclusion πa
0 ( f (MC )) ⊆ E a

0 ( f (MC )) holds for every operator MC ∈

L (X,Y), so also πa
0 ( f (MC )) is empty. Hence, the result follows. ���

Recall that an operator T ∈L (X) is an a-polaroid if σi so
a (T ) ⊆π(T ). Since π0(T ) ⊆ E a

0 (T ),

then if T is a-polaroid then π0(T ) =E a
0 (T ).

Theorem 4.25. Let A and B be a-polaroid with the SVEP. Then MC obeys property (w ) for every

C ∈L (Y,X).

Proof. A and B are a-polaroid hence π0(A) = E a
0 (A) and π0(B ) = E a

0 (B ). Since A and B have

the SVEP, we have by by [3] that A and B satisfy property (w ). Therefore,

E0(M0) =∆a(M0)=∆a(MC ).

Hence it is enough to show that E0(M0) = E0(MC ). Let λ ∈ E0(MC ). Then λ∈σp (MC )⊆σp (A)∪

σp (B ). Hence λ ∈ σp (M0). Since λ ∈ σi so(MC ) = σi so(M0) we have λ ∈ E0(M0). Now let λ ∈

E0(M0). If λ ∈ σa (A) then λ ∈ σi so
a (A). Since A is a-isoloid, we have λ ∈ σp (A) ⊆ σp (MC ).

Hence λ ∈ E0(MC ). If λσa (B ) \σa(A), then λ ∈ σp (B ). Since A is invertible, we conclude that

λ ∈σp (MC ). Thus λ ∈ E0(MC ). So the proof of the theorem is achieved. ���

Theorem 4.26. Let A be an a-isoloid. Assume that A and B (or A∗ and B∗) have the SVEP. If A

and M0 satisfy property (w ) then MC satisfies property (w ) for every C ∈L (Y,X).

Proof. Let λ ∈ ∆a(MC ). Then σa (MC ) = σa (M0) and hence ∆a(MC ) = ∆a(M0) = E0(M0) since

M0 satisfies property (w ). Thus λ ∈ σi so
a (M0) = σi so

a (MC ). If λ ∈ σi so
a (A), since A is a-isoloid

then λ ∈σp (A). Hence λ ∈σp (MC ). Then λ ∈ E0(MC ). Now assume that λ ∈σi so
a (B ) \σi so

a (A).

If λ ∉ σa (A) then it is not difficult to see that λ ∈ σp (MC ). Also if λ ∈ σp (A) then λ ∈ σp (MC ),

so assume that λ ∈ σp (B ) \σp (A). Then λ ∉ E0(A). Since A satisfies property (w ), then λ ∈

σaw (A). This is impossible. Therefore, λ ∈ E0(MC ). Conversely, assume that λ ∈ E0(MC ). Then

λ ∈σi so
a (MC )=σi so

a (M0). On the other hand, λ∈σp (MC ) ⊆σp (A)∪σp (B ). Hence λ∈σp (M0).

Thus

λ ∈ E0(M0)=∆a(M0) =∆a(MC ). ���
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