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PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES
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tor. The relationship between the spectra of M¢ and M), and their various distinguished
parts, has been studied by a large number of authors in the recent past. This paper brings
forth the important role played by SVEP, the single-valued extension property, in the study
of some of these relations. In this work, we prove necessary and sufficient conditions of
implication of the type My satisfies property (w) < M satisfies property (w) to hold.
Moreover, we explore certain conditions on T € .Z(J¢) and S € .Z (%) so that the direct
sum T & S obeys property (w), where ¢ and .# are Hilbert spaces.

Abstract. Let M¢ = ( ) € Z(X,Y) be be an upper triangulate Banach space opera-

1. Introduction

Throughout this paper, X and Y are Banach spaces and .Z (X, Y) denotes the space of all
bounded linear operators from X to Y. For X = Y we write .Z(X,Y) = Z(X). For T € £ (X),
let T*, ker(T), R(T), o(T), 04(T), 0p(T) and 04(T) denote the adjoint, the null space, the
range, the spectrum, the surjective spectrum, the point spectrum and the approximate point
spectrum of T, respectively. Let a(T) and B(T) be the nullity and the deficiency of T defined
by a(T) = dimker(T) and B(T) = codimR(T).

AC
0 BJ
A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems

For A, B and C € .Z(X), let M denote the upper triangular operator matrix M¢ =

for the operator M, and the related diagonal operator My = A @ B, has been carried by a
number of authors in the recent past (see [6, 10, 11, 20] for further references). Of particular
interest here is the relationship between the spectral, the Fredholm, the Browder and the Weyl

properties.

Let a := a(T) be the ascent of an operator T ; i.e., the smallest nonnegative integer p
such that ker(T?) = ker(TP*1). If such integer does not exist we put a(T) = co. Analogously,

let d := d(T) be descent of an operator T ; i.e., the smallest nonnegative integer s such that
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R(TS) = R(TY), and if such integer does not exist we put d(T) = oco. It is well known that if
a(T) and d(T) are both finite then a(T) = d(T) [17, Proposition 38.3].

In this paper, we introduce most of our notation and terminology in Section 2, Section
3 is devoted to proving a number of complementary results, sections 3 and 4 are devoted to
proving our main results. In Section 3, we explore certain conditions on T and S so that the
direct sum T &S obeys property (w). We consider property (w) for the operators Myand M¢ in
Section 4. Here we prove a necessary and sufficient for the equivalence M satisfies property
(w) & Mc satisfies property (w) for operators M¢ such that 0,4, (M¢) = 044(A) UG 4, (B),
which is then applied to deduce a number of known results. For operators M, and M¢ such
that 044 (Mp) = 04 (Mc), we prove a sufficient condition for the implications M, property
(w) = Mc satisfies property (w) and M¢ satisfies property (w) = M, satisfies property (w).

2. Notation and terminology

Let @4 (X) := {T € Z(X): a(T) <oco and T(X) is closed} be the class of all upper semi-
Fredholm operators, and let ®_(X) := {T eZ(X):B(T) < oo} be the class of all lower semi-
Fredholm operators. The class of all semi-Fredholm operators is defined by ®.. (X) := &, (X) U
®_(X), while the class of all Fredholm operators is defined by ®(X)) := @, . (X)n®_(X). If T €
®, (X), the index of T is defined by

ind(T):=a(T) - B(T).

Recall that a bounded operator T is said bounded below if it injective and has closed range.
Evidently, if T is bounded below then T € @, (X) and ind(T) < 0. Define

Wo(X):={Ted,(X):ind(T) <0},
and

W_(X):={T e ®_(X):ind(T)=0}.
The set of Weyl operators is defined by
WX) =W, (X)NnW_(X) ={T e ®(X):ind(T)=0}.
The classes of operators defined above generate the following spectra. Denote by
04(T):={A€C: T - Alis not bounded below}
the approximate point spectrum, and by

04(T):={A€C: T - Alis not surjective}
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the surjectivity spectrum of T € £ (X). The Weyl spectrum is defined by
ow(T):={AeC:T-1¢ WX},

the Weyl essential approximate point spectrum is defined by
Oauw(T):={leC:T-A¢ W, (X)},

while the Weyl essential surjectivity spectrum is defined by
O1w(T)={AeC:T-A1¢ W_(X)},

Obviously, 0, (T) = 04, (T) U0, (T) and from basic Fredholm theory we have

O aw(T) = 0ys(T7) O ws(T) =0 qw(T").

Note that 04, (T) is the intersection of all approximate point spectra o,(T + K) of compact
perturbations K of T, while o, (T) is the intersection of all surjectivity spectra o(T + K) of

compact perturbations K of T, see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators is defined by
B, (X):={T € ®,(X):a(T) <oo},
while the class of all lower semi-Browder operators is defined by
B_(X):={T € ®,.(X):d(T) < oc}.
The class of all Browder operators is defined by
B(X):=B:(X)NB_(X) ={T € ®(X) : a(T),d(T) < oc}.

We have
B(X) s W(X), B (X) € W, (X), B_(X) € W_(X),

see [1, Theorem 3.4]. The Browder spectrumof T € £ (X) is defined by
op(T):={AeC:T-AI¢B(X)},
the upper Browder spectrum is defined by
oup(T):={AeC: T-AI¢ B, (X)},
and analogously the lower Browder spectrumis defined by

op(T):={AeC:T- Al ¢ B_(X)}.
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Clearly, 0p(T) =0y (TY U0 1L(T) and 0, (T) € op(T).

Let write K for the set of all isolated points of K € C. For a bounded operator T € Z(X)
setmo(T) := o(T)\op(T) ={1ea(T): T - Al € Z(X)}. Note that every A € 7o (T) is a pole of the
resolvent and hence an isolated point of o(T), see [17, Proposition 50.2]. Moreover, 7y(T) =
7o (T*). Define

Ey(T):={A€isoo(T):0<a(T—AI) <oo}.

Obviously,
7o(T) € Eo(T) for every T € Z(X).

For a bounded operator T € .Z(X) let us define

E(’)l(T) ={l€isooy(T):0<a(T—-Al) <oo},
and

A(T) =0 4(T)\ 0 up(T) = {A € 04(T) : T — AL € B, (X)}.

Hence we have

mo(T) € m(T) € EX(T) and Ey(T) < E4(T).

Following Harte and W.Y. Lee [16], we shall say that T satisfies Browder’s theorem if
0,(T)=0y(T), while, T € £ (X) is said to satisfy a-Browder’s theoremif o 4, (T) = 0 ,;(T). Let
A(T)=0(T)\ow(T)and Ay(T) = 0 4(T)\0 41, (T). Following Coburn [8], we say that Weyl’s the-
orem holds for T € £ (X) if A(T) = Ey(T). According to Rakocevié [21], an operator T € .Z(X)
is said to satisfy a-Weyl’s theorem if A, (T) = Eg(T). We can write

Ag(T)={AeC: T-AeW, (X)anda(T - A1) > 0}.

It is known (see [21]) that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem
too, but the converse does not hold in general.

Recall that an operator T € Z(X) is said to satisfy property (w) if Az(T) = Eo(T). In [22]
the author introduce the property (w) which is a variant of Weyl’s theorem.

An operator T € .Z(X) has the single-valued extension property at Ay € C, SVEP at Ay, if
for every open disc U, centered at Ay the only analytic function f: Uy, — X which satisfies
(T-ADf(A) =0forall A € Uy, is the function f = 0. Trivially, every operator T has SVEP on
the resolvent set p(T) = C\ o(T); also T has SVEP at points A € o*°(T). Let S(T) denote the
set of A € C where T does not have SVEP: we say that T has SVEP if S(T) = ¢. SVEP plays an
important role in determining the relationship between the Browder and Weyl spectra, and
the Browder and Weyl theorems. Thus 0 ,(T) = 0, (T) US(T) = 0, (T) U S(T"), and if T* has
SVEP then 0 ,(T) = 0 y(T) = 04p(T) = 04, (T) [1, Page 141- 142]; T satisfies Browder’s theo-
rem (resp., a-Browder’s theorem) if and only if T has SVEP at A ¢ 0, (T) (resp., A ¢ 044, (T))
[12, Lemma 2.18]; and if T* has SVEP, then T € # if and only if T € a¥'.
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In the following, the diagonal operator M, and the upper operator M. will defined as in
the introduction, and T € .Z’(g) shall denote a general Banach space operator. It is known that
if either S(A*) = @ or S(B) = @, then o (M) = 0(My) = 0 (A)Uo (B); if S(A) US(B) = @, then M
has SVEPB, o, (M,) = 0, (Mc¢) = 04 (My) = 0, (My), and M € aB. Browders theorem, much less
Weyls theorem, does not transfer from individual operators to direct sums: for example, the
forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder’s
theorem, but their direct sum does not. However, if (S(A)NS(B*))US(A*) = @, then : M, satis-
fies Browder’s theorem (resp., a-Browder’s theorem) implies M satisfies Browder’s theorem
(resp., a-Browder’s theorem); if points A € oiS°(A) are eigenvalues of A€ #/, then My € # im-
plies Mc e # [11, Proposition 4.1 and Theorem 4.2].

It is known that from [6, 7, 9, 10, 11] that

(D) o0x(Mo) =0x(A)U0ox(B)=0x(Mc)U{ox(A) Nox(B)}, where o =a,0) or o;
(i) ow(Mo) Sow(A U0y (B)=0y(Mc)U{oyw(A)Noy(B)};
(iii) ifo,w(Mc) =0, (A)Uo, (B), then o(Me) = 0(My) and
(V) Oaw(Mo) S0 aw(A) U0 41w (B) = 0auw(Mc) U{S(A) US(A")}.

Remark 2.1. Let SP(T) be the spectral picture of T, it is known that: if either SP(A) or SP(B)
has no pseudo holes, then %°¢(My) < o, (My) = 0%°“(M¢) < 04 (M¢) [20, Theorem 2.3]; if
additionally A is an isoloid (the isolated points of o (A) are eigenvalues of A ) and A satisfies
Weyl’s theorem, then My € # = M¢c € # [20, Theorem 2.4]. If {S(A) N S(B*)} US(A*) = @, then
0%¢(My) € 0y (My) = 0%“(Mc) <0, (M) [11, Proposition 4.1]. Again, if 0,(A*) has empty
interior, A is an a-isoloid (isolated points of o ,(A) are eigenvalues of A) and A € a¥#/, then
Mye aW = Mce€ aW [7, Theorem 3.3].

3. Property (w) for direct sum

Let 7 and % be infinite-dimensional Hilbert spaces. In this section we show that if T
and S are two operators on ¢ and % respectively and at least one of them satisfies property
(w) then their direct sum T & S obeys property (w) under certain conditions. We have also
explored various conditions on T and S so that T & S satisfies property (w).

Theorem 3.1. Suppose that property (w) holds for T € £ () and S€ L (). If T and S are
isoloid and 0 4y(T ® S) = 04y (T) U0 41, (S), then property (w) holds for T & S.

Proof. We know that ,(T & S) = 04(T) Uo4(S) for any pairs of operators. If T and S are
a-isoloid, then

Eo(TaS) = [Eo(T)Npa(S)|U[pa(T)NEg(S)| UIEN(T) N Ey(S)],
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where p,(.) =C\o,().
If property (w) holds for T and S, then

[0a(T) VTN [0aw(T) U0 aw(S)]
= [Eo(T) N pa(9)] U [pa(T) N Ey(S)] UEy(T) N Ey(S)].

Thus, Eg(T @ S) =[04(T) U0 4(S)I\[04w(T) U0 44(S)].
fo,u(T®S)=04u(T)U04,(S), then

Eg(ToS)=0,T®S)\04y(ToS).
Hence property (w) holds for T S.

The assumption A and B are isoloid is essential in Theorem 3.1.

Example 3.2. If A, B: ¢?> — ¢? are defined by

1 1
A(x1, x2,...) = (0, x5, x3,...) and B(x, X3,...) = 0,x1,§x2,§x3»-~- ,

then we have that property (w) holds for Aand B; 0,(A) =1{0,1}, 04, (A) = {1}, 04(B) = 0 4, (B)
=1{0}, Eo(A) ={0}, Eo(B) = @; 04,(A®B) ={0,1} =04, (A®B) and Ey(A® B) = {0}. Then property

(w) does not holds for A® B.

Theorem 3.3. Suppose that T € £ () such thatisoc 4(T) = @,0(T)=04(T) and Se L (X)
satisfies property (w). If 0 41 (T ® S) = 0 4(T) U0 4,(S), then property (w) holds for T & S.

Proof. We know that o,(T & S) = 0,(T) Uo 4(S) for any pairs of operators. Then

0a(T®S)\0aw(T®S) =[04(T)V0a(S]\[04(T)V0a(S)]
=048\ [0a(T) V0T 4w (S)]
=[0a($\Oaw(SI\0a(T)
=Eo(S)npa(T)

If Uif"(T) = @ itimplies that 0,(T) = 0%°“(T), where 0%°“(T) = 0 4(T) \UZSO(T) is the set of all

accumulation points of o 4(T). Thus we have

ol (Tes) = ob M uol®)|\[(eh M nete®)u(ormnak®))|

- [aif"(T) \03“(5)] U [aﬁf"(S) \ag“(T)]
=059(S)\ 0 4(T)
=059(S) N pa(T).
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We know thato,(T® S) =0,(T)Uo,(S) and a(T e S) = a(T) + a(S) for any pairs of operators,
so that
opr(T®S)={A€oppr(T)Uopr(S):a(T—AI)+a(S—AI) <oo}.

Therefore,
Eo(T®S) =0 (TeS)nopp(T®S)
=0 (S)Npa(T)Nopp(S)
= Ep(S)npqa(T).
Thuso,(T®S)\o,4,(TeS)=EyTe®S). Hence T & S satisfies property (w). Oa

Corollary 3.4. Suppose that T € £ () is such that Ufls"(T) =@ and S € L () satisfies prop-
erty (w) with o¥°(S) n op(S) =@, and Ao(T & S) = @, then T & S satisfies property (w).

Proof. Since S satisfies property (w), therefore given condition UZSO(S) N ap(S) = ¢ implies
that 0,4(S) = 0,4 (S). Now A (T @ S) = @ gives that 04,y (T & S) =04(T & S) =04(T)UT4,(S).
Thus from Theorem 3.3, we have that T & S satisfies property (w). Oa

Corollary 3.5. SupposethatT € £ () is such thataif"(T) UALT) =@ and Se L (*) satis-
fies property (w). If 0 4 (T ® S) = 04 (T) U0 4 (S), then T & S satisfies property (w).

Theorem 3.6. Let T € £ () be an a-isoloid operator that satisfies property (w). If S€ L (X)
is a normal operator satisfies property (w). Then property (w) holds for T & S.

Proof. If S is normal, then both S and S* have SVEP, and ind (S — AI) = 0 for every A such that
S— Al is a Fredholm. Observe that A ¢ 04, (T ® S) ifand only if S—ATe W, (#)and T— Al €
W, (7€) and ind(T-AD+ind(S—AI) = ind(T—AI) <0ifand onlyif A ¢ A,(T)NA,(S). Hence
Oaw(T®8)=0,4y(T)U04,(S). It is well known that the isolated points of the approximate
point spectrum of a normal operator are simple poles of the resolvent of the operator implies

that S is a-isoloid. So the result follows now from Theorem 3.1. Oa

4. Property (w) for M¢

In the following, let

O, (T)={AeC:T—-AI isuppersemi-Fredholm},
O (T)={AeC:ind(T-AI) <0},
O_(T)={AeC:T—-AI islower semi-Fredholm},
O (T)={AeC:ind(T—-AI) =0},
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O(T) =D, (T)ND_(T), and
®%(T)={Ae®(T):ind(T-AI)=0}.

Then the upper semiFredholm spectrum o sr, (T), the lower semiFredholm spectrumosr (T),
the (Fredholm) essential spectrum o.(7T) and the Weyl essential surjectivity spectrum o g, (T)
of T are the sets

osp, (T ={Aeo(T):A¢ D, (T},

osp (1) ={Aec(T):A¢ Dd_(T)},
0.1 ={Aec(T):A¢®(T)} and

osw(T)={Aea(T): 1 ¢ OL(T)}.

It is easily verified, see [25, Exercise 7, Page 293], that

a(A-AD)sa(Mc—-A) < a(A-AD)+a(B-AD);
d(A—AD)=dMc—-A)<d(A-A)+d(B—-AI)

for every A € C.

Remark 4.1. The following implications hold [1, Theorem 3.4]: a(T —AI) <oco= a(T - AI) <
BT —AD); d(T—Al) <oo= B(T - Al < a(T - AD); if a(T — A1) = B(T — AI), then either of
a(T—A) <ococand d(T—-Al) <oco= a(T—-A)=d(T - AI) <oo. If A € ®, (T), then T has SVEP
atl ¢ a(T-AI)<ocoand T* hasSVEP at A & a(T — AI) <oo [1, Theorems 3.16, 3.17]. From
this it follows that if both T and T* have SVEP at A € ®(T), then A € ®°(T) and A € 7o (T). If
A € my(T) and either of a(T — AI) and d(T — A1) is finite (equivalently, either T or T* has SVEP
at A), then A € mo(T). Again, if 1 € ®,(T) and T has SVEP at A, then A € 75 (T) [1, Theorem
3.23].

For an operator S € .2 (X) and g,(T) a subset of o(T), let
So.n(S)={Aea(T)\ox(T):S doesnothave SVEP at A}.

Remark 4.2. From [6, 7, 14, 15]. The Following relations hold:

() oMy =0c(AuoB)=0cMc)ufoc(A)no(B)}
=0(Mc)U{Ss,0)(A") NSy, 5 (B)}.
(ii) op(Mp) =0p(A)Uop(B)=0p(Mc)U{op(A)Naoyp(B)}

= 0(Mc) U{Se,mc)(A") N Sg, ey (B}
(i)  ow(AUoEB) SowMc)U{Ss, e P)U Sy, e (Q)},
where (P.Q)= (A, A%),(B,B*),(A,B), or(A*,B*).
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Lemma 4.3. [feither A* or B has SVEPand A € O'ZSO(Mc), then A € Uff"(A) U aif" (B).
Proof.The hypothesis A* or B has SVEP implies that
0a(Mc) =04(A)U04(B).

Hence A € (04(A) U0 4(B)*° c ois°(A) Uais°(B). |

Theorem 4.4. Let A and B have SVEP and let dim yg({\}) < oo for all A € oi5°(B). If a-Weyl's
theorem holds for My, then a-Weyl's theorem holds for M for every C € £ (Y, X).

Proof. Since A and B have SVEP, M has SVEP [18, Proposition 3.1], and so M¢ obeys a-
Browder’s theorem. Hence,

0a(Mc)\ 0 g (Mc) =g (Mc) € Ef (Mc).

Let A € E¢(Mc). Then 1 € 05°(Mc). By Lemma 4.3, 1 € 0i$°(A) uo 9 (B). Hence A € 0%5°(Mp).
Since ker(A— AI) ® {0} c ker(M¢c — A1), dimker(A— AI) < oo in the case in which A € Uif"(A) U
pa(A). Again, if 1 € %5°(B), or A € p,(B), then the assumption that dim yp({A}) < co implies
(by [19, Proposition 1.2.16]) that dimker(B — A1) < oo, and hence that

dim(ker(A— Al @ker(B— A1) < oo

Evidently, the non-triviality of ker(M¢ — AI) implies that ker(A — AI) uker(B — A1) # {0}, i.e.,
0 <dim(ker(A—AD @ ker(B—-AI)). Hence, 1 € O'ZSO(M()) and

0 <dim(ker(A— A eker(B—AI)) < oo,

ie, 1€ ng(Mo) =04(My) \ 0 41w (Mp). By [7, Theorem 3.1] this implies that A ¢ 04, (M¢). O

Recall that an operator T € .Z(X) is said to be polaroid (resp., isoloid) at A € ¢'$°(T) if
a(T —AI) =d(T - AI) < oo (resp., A is an eigenvalue of T). Trivially, T polaroid at A implies T
isoloid at A. We say that T is a-polaroid if T is polaroid at A € i5°(T).

Lemma 4.5. Let A € Z(X) and B € £(Y) have SVEP If A and B are polaroid, then Mc¢ is
polaroid for every C € Z (Y, X).

Proof. Suppose that A € ais"(Mc). If B has SVEP then o (B) coincides with the defect spec-
trum of B. It follows from [10, Theorem 2.3] that o(M¢) = 0(A) U o (B). Therefore A € (g(A) U
o(B))is°, Suppose that A € g(A). Then A € oiS9(A). Since A is isoloid, ker(A — AI) # {0}. Ob-
serve that ker(A—AI) ® {0} € ker(M¢— A1), and hence ker(M¢c — AI) # {0}. Since ker(M¢c — AI) #
{0} then ker(My— AI) # {0}; also, dim(ker(M¢ — A1)) < oo implies dim(ker(A— A1) < co. We
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claim that dim(ker(B — A1)) < oo. For suppose to the contrary that dim(ker(B — AI)) is infinite.
Since
(Mc—-AD(x®y)={(A-ADx+Cy)® (B—ADy},

either dim(C(ker(B — AI)) < oo or dim(C(ker(B — AI)) = co. If dim(C(ker(B — AI)) < oo, then
ker(B — A1) contains an orthonormal sequence {yj} such that (Mc —AD(0® y;) = 0 for all
j=1,2,.... But then dimker(M¢ — AI) = 0o, a contradiction. Assume now that dim(C(ker(B —
AI)) = oco. Since A € p(A) U oS9(A), A satisfies Browder’s theorem, A is polaroid and a(A -
Al < o0, B(A—AI) < oco. Hence dim {C(ker(B — AI)) nR(A — A1)} = co implies the existence of
asequence {x; such that (A—Al)x; = Cy;forall j=1,2,.... Butthen (Mc—-AD(x;j®-y;) =0
forall j =1,2,.... Thus dimker(M¢ — AI) = oo, again a contradiction. Our claim having been
proved, we conclude that A € n(My). Thus n(M¢) < m(My). O

Remark 4.6. If S(A*) U S(B*) = @, then Mé has SVEP. Hence
o (My) = 0(Mc), 0 aw(Mc) = 0w(Mc) = 0(Mp) and o (Mc) = 75 (M).
Evidently, both M, and M satisfy a-Browder’s theorem. Since
Eo(My) = (Eo(A) np(B)) U (p(A) N Ey(B)) U (Eo(A) N Ey(B))

if My is polaroid at A € Ey(My), then either A or B is polaroid at A; in particular, A and B are
polaroid at A € Ey(A) N Ep(B). Conversely, if A is polaroid at A € Ey(A) and B is polaroid at
1€ Ey(B), then M is polaroid at v € Ey(My).

Theorem 4.7. If S(A*) U S(B*) = @, A is polaroid at A € Ef(Mc) (or, A is isoloid and satisfies
Weyl’s theorem) and B is polaroid at . € Ef (B), then Mc satisfies property (w).

Proof. Since A* and B* have SVEP, both M and M, have SVEP. Hence M (also, M) satis-
fies Browder’s theorem, which implies that o(M¢) \ 0, (M¢) = mo(Mc) € Eo(Mc). Apparently,
0(Mp) = 0(Mc) = 04(Mc),0,(Mp) = 04 (Mc) = 0qw(Mc), Eo(Mc) = Ef(Mc) and oS (Mc) =
0'5°(My). Following (part of) the argument of the proof of the sufficiency part of Theorem
3.7 of [14], it follows that if A € Ey(M(), then A € Ey(A) N Ex(B). By assumption, both A and
B are polaroid at A. Hence M, is polaroid at A, which implies that A € 7my(M;). Since M
satisfies Browder’s theorem, A ¢ o,,(My) = 0, (Mc), which in view of the fact that M satis-
fies Browder’s theorem implies that A € my(M¢). Hence o(M¢) \ 0, (Mc) = Ey(Mc) implies
0a(Mc)\ 0 qw(Mc) = Ef(Mc) = Eg(Mc), i.e., Mc satisfies property (w). O

Example 4.8. Let A, B and C € £ (¢?) be the operators

1 1
A(x1,X%2,...)=10,x1,0,=x2, —X3,...|,
(x1,X2,...) 1,0, 5%z, 23
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B(xl»xZ»n-) = (0) x2)0»x4)0»-~-)»
and

C(x1,x2,...)=1(0,0,x2,0, x3,...).
Then A, A*, B and B* have SVEP, 0(A) = 04(A) = 0, (A) = 04w (A) = {0}, 1y = Ey(A) = @, and
A satisfies property (w). Since o ,(My) = 04, = {0,1} and Ey(My) = mo(My) = @, My satisfies

property (w). However, since 0,(M¢) = 04 = {0,1} and Ez(M¢) = {0}, M¢ does not satisfy
property (w). Observe that A is not polaroid on Ey(M¢).

Remark 4.9. Ifthe operators A and B have SVEP, then M, and M¢ have SVEP, 0(M,) = o (M¢) =
o(ME) =0q(ME), 0" (M) = 0'5°(M}) = 05°(M(), Eo (M) = E§ (M) and 0, (M) = 0 (Mc)
= O'W(Mé) = aaw(Mé). Evidently, A*, B*, M and Mé satisfy Browder’s theorem; in particular,
mo(My) = mo(M(,) € Eo(M).

Theorem 4.10. If the polaroid operators A and B have SVER then M, satisfies property (w).

Proof. Since the polaroid hypothesis on A and B implies that A* and B* are polaroid, an
argument similar to that in the proof of Theorem 4.7 to M/, implies that if A € Eq(M(.), then
A€ Eg(A*)NEy(B*) implies A € mo(A*)Nmo(B*). So A ¢ 0y (M[)) = O'w(Mé) implies Mé satisfies
Weyl’s theorem. Hence it follows from Remark 4.9 that O'(Mé) \aw(Mé) = Eo(Mé) = aa(Mé) \
0aw(Mg). Thatis, M, satisfies property (w). O

Let H(K) denote the space of functions holomorphic on an open neighborhood of K c C.
Lemma4.11. Let Ae £ (X) and B € LB(Y) have SVEP Then

Oaw(f(M) = floaw(Me))  forevery f € H(o(Mc)).

Proof. Since A and B have SVEP, M also has SVEP. Then f (M) has SVEP by Corollary 2.40 of
[1]. Then it follows from [7, Theorem 3.1] that f (M) satisfies a-Browder’s theorem. That is,
O ap(f(Mc)) =0 qw(f(Mc)). The proof is follows now from Theorem 3.71 of [1]. O

Theorem 4.12. If A* € £ (X) and B* € £ (Y) are each polaroid, and have the single valued
extension property, then property (w) holds for f(Mc) for arbitrary f € H(o(Mc)) and for ar-
bitrary bounded operators C € £ (Y, X).

Proof. Since M¢ is polaroid by Lemma 4.5, then it is a-isoloid. Then
floa(Mc)\Eg(Mc)) = 0q(f(Mc)\Eo(f(Mc))  forevery f € H(o(Mc)).
It from From Theorem 4.10 and Lemma 4.11 that

floa(Mc)\ Eg(Mc)) = 04(f(Mc)\ Eo(f (Mc)) = 0 aw(f(Mc)) = f(0aw(Mc))
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for every f € H(o(Mc)). O

An operator T € .Z(X) is said to be a-isoloid if all isolated points of o ,(T) are eigenvalues
of T, and T € .Z(X) is called finite a-isoloid if every isolated point of o,(T) is an eigenvalue
of T of finite multiplicity. Note that finite-a-isoloid implies a-isoloid but the converse is not

true.

Theorem 4.13. Suppose that o ;(A) has no interior points. If A is finite-a-isoloid and property
(w) holds for A, then for every B € £ (Y) and C € £ (Y, X), property (w) holds for My implies
property (w) holds for Mc.

Proof. It follows from Theorem 3.1 of [7] that M satisfies a-Browder’s theorem, i.e.,
0a(Mc)\ 0 qw(Mc) =i (M) € Ef (Mc).

Conversely, suppose that A € Ef(Mc). Then Mc—AIisbounded below if [A-Ay| is sufficiently
small and hence A is not in g,(M¢). Since o ,4(A) has no interior points, by [7, Corollary 2.4],
04(Mc) =0,(A)U04(B) =0,(Mp). Then Ais notin o ,(My) if |1 — Ag| is sufficiently small, that
is Ao € 0I5°(Mjy). Without loss of generality, we suppose that Ay € 04(A), then Ay € 0%5°(A).
Since ker(A — AgI) ® {0} < ker(M¢ — AgI), we know that a(A— Ayl) < co. A is finite-a-isoloid,
then Ay € Ey(A). Since property (w) holds for 4, it follows that A— Ayl € &, (X) and a(A -
AoI) < co. The condition o ;(A) has no interior points asserts that 1y is not in o 4(A) or A €
00 4(A). Then in any neighborhood U of 1, there exists 1; € U such that R(A—-A1;1) = X. By
perturbation theory of upper semi-Fredholm operator A— A I, we get that A— A1 is invertible
and ind(A—-ApD) = ind(A—AI)=0if |1 - Ayl is sufficiently small, which means that A— (1 is
Weyl with finite ascent. [24, Theorem 4.5] asserts that A— A is Browder. Using the same way
in Theorem 2.4 in [20], we get that 0 < dim([ker(A—AgI)@ker(B—AI)] < oo, which implies that
Ao € Eg(Mp). Since property (w) theorem holds for My, it follows that My — Aol € P, (X @ Y).
Hence M¢c—2Apl € @, (X@Y), then Ay € 0,(Mc)\0 4 (Mc). Now we have proved that o,(Mc)\
0 qw(Mc) = Eg(M¢), which means that property (w) holds for M¢ forevery Ce Z(X,Y). O

Similar to the proof in Theorem 4.13, we can prove that:

Theorem 4.14. Suppose that o ;(A) N0 4,(B) has no interior points. If SP(A) has no pseudo-
holes (or 0,(A) = 04,(A)), where SP(A) denote the spectral picture of A and if A is finite-a-
isoloid operator for which property (w) holds, then for every C € £ (X,Y), then property (w)
holds for My implies property (w) holds for Mc.

Theorem 4.15. Let A and B have SVEP If A is finite-a-isoloid, and if property (w) holds for
both A and My, then property (w) holds for M for every C € £ (Y, X).
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Proof. Since A and B have SVEB, M¢ also has SVEP and M obeys a-Browder’s theorem, i.e.
0a(Mc)\ O qw(Mc) =t (Mc) € Eg (Mc).

Suppose now that A € Ef (Mc¢). Then, it follows from Lemma 4.3 that A € oS (A)uaiso(B),
then A € O'ZSO(M()), dimker(My — AI) > 0 and dimker(A—AI) > 0. If A € 0,(A), then A is an
isolated point and (by the finite-a-isoloid hypothesis) A € Ey(A) = 0 4(A)\0 4 (A). If A € 0,(A),
then again A ¢ 04,,(A). Hence, in either case, A ¢ 0,4, (A), R(A— AI) is closed and 0 < a(A -
AD) = BA—AI) < 0.

Next, we prove that dimker(B — A1) is finite. Suppose to the contrary that dimker(B — A1)
is infinite. Then there exists an infinite sequence {u}} | of linearly independent vectors in
ker(B — AI). Since dimker(Mc — A1) < oo, there exists a natural number ng such that Cuj # 0
for every natural number n > ny. (For if not, then (M¢c—AI)(0 & ué’) = 0 for all n, and then
dimker(M¢c — AI) = co.) Without loss of generality we may assume that C ué’ # 0 for all n. Since
B(A—AI) < oo, there exists a natural number 7n; such that Cu; € R(A-AI) for every n > ny, i.e.
there exists a sequence {u]'}"" | in X such that (A-AI)(-u}) = Cu}. Then (Mc—AI) (u]' ®u}) =
0 for every n > ny, i.e. dimker(M¢ — A1) = co.

The conclusion that dimker(B — AI) < co implies that 0 < dimker(My—AI) <ocoand A €
UZSO(MC). Moreover, since A € Eg(My) = 0 4(Mp) \ 0 g1 (My), A € 0 4,0(Mc). Hence property (w)
holds for M. O

Theorem 4.16. If the finite-a-isoloid operators A and B have SVER and if property (w) holds
for both A and B, then property (w) holds for M¢ for every C € £ (Y, X).

Proof. If the hypotheses of the theorem are satisfied then it follows from the argument of the
proof of Theorem 4.15 that M¢ obeys a-Browder’s theorem, and if A € Ey(M¢) then (by the
finite-a-isoloid property of A) A ¢ 04, (A), A € 0%°(B) U p4(B) and dimker(B — AI) < co. Since
B s finite-a-isoloid operator for which property (w) holds, A € Ey(B) = 04(B)\0 4, (B). Hence,
A¢0au(A)U04,(B)andso A ¢ o gy, (Mc). O

We consider now necessary and(/or) sufficient conditions for the implications M satis-
fies property (w) <& M satisfies property (w). As one would expect, My satisfies property (w)
does not imply M satisfies property (w). For example, if A, B, C € £ (¢?®(?) are the operators
A=U®I, B=U"®Iand Cis the diagonal operator with entries (0, [-UU*,[-UU*,...), where
U € Z(¢£?) is the forward unilateral shift, then o ,(My) = 0 4, (M), ng(Mo) =@ = Ey(Mp) and
My satisfies property (w); however, o(M() is the closed unit disc D, o, (M() is the boundary
0D of D, ny(M¢) = @, and M¢ does not satisfy Browder’s theorem (much less property (w)).

Conversely, M satisfies property (w) does not imply M, satisfies property (w), as the example
I-UuU*

*

U
of the operator ( 0 ) shows. Recall, however, that M, satisfies a-Browder’s theorem

if and only if A and B have SVEP on A,(M)); hence, if M¢ has SVEP on 7 ,,,(Mp) \ 0 4, (Mc¢),
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then, since M, satisfies a-Browder’s theorem implies M¢ has SVEP on A,(M¢), M¢ satisfies
a-Browder’s theorem.

Theorem 4.17.
(@) Ifoqw(Mc) =040 (A) U0 4(B), and either A* or B has SVEP on A,(Mc¢). Then the equiv-
alence

My satisfies property (w) < Mc satisfies property (w)

holds if and only if Eo(My) = Eo(Mc).
(b) IfAand A*, or A* and B*, have SVEP on A,(Mc). Then the equivalence

M, satisfies property (W) < Mc satisfies property (w)

holds if and only if Eo(My) = Eo(Mc).

(c) IfAand A* have SVEP on A,(Mc) \ ok, (A), or A* has SVEP on A,(Mc) \ osr, (A) and B*
has SVEP on A,(Mc) \ o sk, (B). Then the equivalence

M, satisfies property (W) & Mc  satisfies property (w)
holds if and only if Eo(My) = Eo(Mc).

Proof.

(@) Thehypothesiso 4, (Mc) = 041 (A)U0O 41, (B) implies that 0 4, (My) = 0 41 (Mc) = 0 g (AU
Oaw(B). If M) satisfies property (w) then M, satisfies a-Browder’s theorem, so A and
B have SVEP on A,(M,) implies that M has SVEP on A,(M(), and so M satisfies a-
Browder’s theorem. Hence

0a(Mc)\ 0 qw(Mc) = 0 4(Mo) \ 0 41 (M) = Eo(Mp) = 115 (Mo) = 75 (Mc) < Eo(Mc)

Assume now that M satisfies property (w), then M satisfies a-Browder’s theorem

O aw(Mc) = 0 4(A) U0o 40 (B), and either A* or B has SVEP on A,(M¢). Since M satisfies
a-Browder’s theorem implies A has SVEP on A, (M), if B has SVEP on A,(M¢), then M,
has SVEP on A, (M) = Aqy(Mc), and so M, satisfies a-Browder’s theorem. Assume now
that A* has SVEP on A,(M¢): we prove that ,(My) = 04(A)U0d4(B) =0,(M¢). Ifu¢
04(Mc), then M¢ — pl and A— ul are left invertible, p € A,(M¢). The left invertibility of
A-plimplies the right invertibility of A* —uI*; hence, since A* has SVEP on A,(M¢), A* -
uI* is invertible. But then the invertibility of A— ulI, taken along with the left invertibility
of M¢ — ul, implies that B— I is left invertible. Hence p ¢ 0 ,(A)uo,(B). Since o,(Mc¢) <
04(A)Uo,(B) always, 0,(Mc) = 04(A) Uo4(B) = 04(Mp). Assume now that M satisfies
a-Browder’s theorem. Then A € A,(M¢) implies that A € UZSO(MC) = Uff"(A) U Uff"(B);
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hence (A and B have SVEP on A, (M) = A,(M¢) implies) My has SVEP on A, (M), and so
M, satisfies a-Browder’s theorem, and so

04(Mo) \ 0 a1 (Mp) = 04(Mc) \ 0 g (Mc) = Eo(Mc) = mg(Mc) = 75 (Mo) S Eo(Mo)-

Thus, the statements of the theorem are equivalent if and only if Eo(My) = Eo(Mc¢).

(b) Let A € A,(Mc). Then the hypothesis that A and A* have SVEP on A, (M) implies that
Aed(A)n @, (B) € P, (A) udL(B). Consequently, 0,y (A) U0, (B) €04, (Mc); hence
O aw(Mc) = 04w (A) U0 4y, (B). Again, if A* and B* have SVEP on A,(M¢), then 1 € A, (M)
=>Aed, (A),ind(A-AD+ind(B—A) <0B(A-AD) <a(A-AD), B(B—AD < a(B-Al).
Hence, in view of Proposition 3.3 of [15], 1 € ®°(A) n®°(B) € @} (A) ud (B), which (once
again) leads to the conclusion that o4, (M¢) = 04(A) U0, (B). Applying part (a), the
proof follows.

(c) Let A € Ay(M¢). Then A € @, (A) and ind(A—-AI)+ind(B—-AI) <0. If Aand A* have
SVEPon A,(Mc)\osF, (A), then A € @Y (A) (isisolated in o 4(A)), and this forces A € D, (B).
Hence A ¢ 04, (A) U0 4, (B), which leads us to the equality o 4, (M¢) = 0 41 (A) U0 41 (B).
Again, if A* has SVEP on A,(Mc) \ osf, (A), then A € @ (A) and this implies A € @, (B);
thus, if B* has SVEP on A,(Mc¢) \ osr, (B), then A € @7 (B), which forces A € ®°(A) N ®°(B)
and A € 05°(A) U ¢'°(B). Once again, we conclude that 0,4, (M¢) = 04(A) U0 4 (B).
The proof now follows from an application of part (b) (since both A and A* have SVEP on
Aa(MC))- O

Theorem 4.18. (a). Ifo 4, (My) = 04 (M), then My satisfies property (w) implies M¢ satisfies
property (w) if and only if Eo(M¢) < Eo(My).

(D). If 0 4w(Mp) = 0 4w (Mc) and A* has SVEP on A,(Mc), then then Mc satisfies property (w)
implies My satisfies property (w) if and only if Eo(My) < Eo(Mc¢).

Proof.

(a) Since M satisfies property (w) implies M, satisfies a-Browder’s theorem, A and B have
SVEP on A, (Mc). (0 qw(Mc) = 0 qiw(Mp) = 0 4 (A) U0 40 (B)). Hence M satisfies
a-Browder’s theorem by Theorem 4.12 of [15]. Thus A € 7{(Mc¢) ifand onlyif 1 € A,(Mc) =
A4 (Mo) = 5 (M) = Eo(Mp). It follows that

0a(Mc)\ 0 a1 (Mc) = 715 (Mc) = 5 (Mo) = Eo(Mo) € Eo(Mc),

which proves that M satisfies property (w) if and only if Eo(M¢) € Eo(M).

(b) The argument of th proof of Theorem 4.12 part(i) of [15] shows thatif o, (My) = 04 (Mc)
and A* has SVEP on A, (M¢), then o ,(M¢) = 0,(My) = 04(A)Uo 4(B). Thus, if M satisfies
property (w), then My satisfies a-Browder’s theorem, i.e., A, (M) = 7§ (M) and

Aa(Mp) = Ag(Mc) = 5 (Mc) = mg (Mo) = Eo(Mp) < Eo(Mc),
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where the equality ﬂg(M()) = n(‘)’(MC) follows from the implications
Aeml(Mc) & AeAg(Mc) = Ay(Mp) & A€ wl(Mp).
hence M satisfies property (w) if and only if Eq(M¢) < Eo(My). O

Theorem 4.19. Ifo 4, (A) = ok, (B), Ais a-isoloid and property (w), then M satisfies property
(w) implies M satisfies property (w).

Proof. Start by observing that if A € @ (M¢) and ind(A— AI) > 0, then A € ®(A) N D, (B)
and ind(A- D)+ ind(B - AD) < 0; if, instead, ind(A—AI) <0, then 04, (A) = osf, (B) and
A€ O (Mc) imply that A € L (A) N, (B) and ind(A—- Al +ind(B— Al) < 0. In either case,
A e (Mc) implies A € @ (My); henceo 4, (M¢) = 0 4, (Mp). In view of Theorem 4.18, we are
thus left to prove that Eq(M¢) € Eg(My). If A € Eq(M¢), then A € O'ZSU(A) U aff"(B), andso 1 €
Ey(A) = Ay(A) = 0,4(B) \ osr, (B) (since A is a-isoloid, A satisfies property (w) and 04, (A) =
osr, (B). But then, since M) satisfies a-Browder’s theorem implies B has SVEP at A, A € 7 (B).
Hence 1 € ng(Mo) = Eo(My). O

Remark 4.20. If A* has SVEB then A € A,(M¢) implies A € ®(A)NDL(B), ind(A—AI)) =0 and
ind(A—AI)+ind(B— AI) < 0; this in turn implies that A ¢ ¢4, (A) U0 4,y (B). Thus, if A* has
SVEP and M, satisfies a-Browder’s theorem, then o ,,, (M) = 0 41 (A) U0 41 (B) = 0 40 (Mc).

Theorem 4.21. Ifo,(A*) has empty interior, A is a-isoloid and property (w), then My satisfies
property (w) implies M satisfies property (w).

Proof. Evidently, A* has SVEB, M, satisfies a-Browder’s theorem and o ,,,(My) = 0 4, (M¢).
Now argue as in the (latter part of the) proof of Theorem 4.19. O

For an operator T € .Z(X) such that T* has SVEP, T satisfies Weyl’s theorem if and only if
T property (w) (3, Theorem 2.16]. Thus, if A* and B* have SVEP, then M} = M or M/, has
SVEP and the (two way) implication My satisfies Weyl’s theorem if and only if Mx satisfies

property (w). The following theorem, proves more.

Theorem 4.22. If Sy, (4)(A") U Sog;., 8)(B*) = @, then Mc satisfies Weyl's theorem if and only
Mc¢ satisfies a-Weyl's theorem if and only if M satisfies property (w).

Proof. The implication M satisfies a-Weyl’s theorem or M satisfies property (w) implies M¢
satisfies Weyl's theorem being clear, we prove the reverse implication. For this, it would suffice
to prove that o0(Mc) = 04(Mc) (which would then imply Eo(Mc) = Ef(Mc) and 0 (Mc) =
0 aw(Mc)).

Evidently, 0,(M¢) €o(Mc). Let A ¢ 0,(M¢). Then M¢c— AT and A— AT are left invertible.
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The left invertibility of A— AT implies A € ®,(A). Since A* has SVEP at points 1 € @, (A), it
follows that A—AI is invertible. But then B — A1 is left invertible, which (because B* has SVEP
at points A € @ (B) implies that B—A[ is invertible. Thus, A ¢ 0 (A)uo(B), i.e., 0 (M¢) S o(A)U
0(B) € 04(Mc). Next, we prove that o,,(Mc) € 04, (Mc): this would then imply the equality
Ow(Mc) = 04w (Mc). Let A ¢ 04,0 (Mc); then A € @, (A) (and ind(A—AI) +ind(B—AI) <0).
Since A* has SVEP at points A € @, (A), it follows that ind(A— AI) = 0) implies A € ®(A) (with
ind(A— AI) = 0). Since this forces A € @, (B), it follows (from the hypothesis B* has SVEP on
thesetof A € @, (B)) that A € ®(B) and ind(B—AI) =0.Since ind(A-AI)+ind(B—AI) <0, we
conclude that A € ®°(A) N ®°(B). Hence Ow(Mc) Coyw(A)Uoy(B) S oaw(Mc), and the proof

is achieved. O

Two important T-invariant subspaces of T are defined as follows. The quasinilpotent
part Hy(T — AI) and the analytic core K(T — AI) of T — AI are defined by
Ho(T = AD):= {xe X: lim |[(T=AD"x|* =0}.
and
K(T — AI) ={x € X : there exists a sequence {x,} c Xand 6>0 forwhich

x=x0,(T=ADXxp41 = xpand  ||x,l <6"||x|lforall n=1,2,...}.
Note that (T - ADK(T - AI)= K(T — AI) [1, Chapter 1], Moreover (see [2]),
Hy(T — AlI) is closed = T has SVEP atA.

Lemma 4.23. ( [4]) Suppose that for a bounded linear operator T € £ (X) there exists Ay € C
such that K(T — Ao I) = {0} and ker(T — AgI) = {0}. Then o ,(T) = @.

Proof. Since ker(T — AI) cker(T — AgI) for all A # Ay, so thatker(T—AI) ={0} forallAeC. O
Theorem 4.24. Suppose that there exists Ay € C such that

K(A—-2ApI)={0},ker(A—ApI) ={0},K(B—ApI) ={0} and ker(B—Ayl)={0}.
Then property (w) holds for f(Mc) forall f € H(o(f(Mc)).

Proof. It follows from Lemma 4.23 that 0,(A) = 0,(B) = @, so A and B have SVEP and
hence M¢ has SVEP. We show that also o, (f (Mc)) = 8. Let p € o (f (Mc))) and write (1) —u =
p(1)g(A), where g is analytic on an open neighborhood U containing o (M) and without ze-
ros in 0(Mc¢), p a polynomial of the form p(1) = ]_[Z:1 (A — Ap)V%, with distinct roots A4,...,4,
lying in 0 (M¢). Then

fMe)—pI =[] (Mc - D g(M).
k=1
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Since g(Mc) is invertible, o, (Mc) € 0, (A) U0 ,(B) = ¢ implies that ker(f (Mc) — pI) = {0} for
all u € C. Since M¢ has SVEP then f (M) has SVEPB see Theorem 2.40 of [1], so that f(M¢) € aB
[5]. To prove that property (w) holds for f(Mc), by Theorem 2.7 of [3] it then suffices to prove
that

g (f (Mc)) = Eo(f (Mc)).

Obviously, the condition o, (f (Mc¢)) = @ entails that
Eo(f (M) = E§ (f (M¢)) = .

On the other hand, the inclusion 7{(f(Mc)) < E{(f(Mc)) holds for every operator Mc €
Z(X,Y), so also 7§ (f (Mc)) is empty. Hence, the result follows. a

Recall that an operator T € £ (X) is an a-polaroid if ¢%5°(T) € 7 (T). Since 7(T) < Eg(T),
then if T is a-polaroid then 7o (T) = Eg (T).

Theorem 4.25. Let A and B be a-polaroid with the SVER. Then M obeys property (w) for every
Ce.Z(Y,X).

Proof. A and B are a-polaroid hence 7¢(A) = Ef(A) and 7o(B) = Ej(B). Since A and B have
the SVEP, we have by by [3] that A and B satisfy property (w). Therefore,

Ey(Mp) = Aa(Mo) = Aa(Mc).

Hence it is enough to show that Eq(Mp) = Eo(Mc). Let A € Eg(Mc). Then A € 0, (Mc) € 0,(A)U
op(B). Hence A € 0p(My). Since A € 6'5°(M¢) = 0'5°(Mp) we have A € Eg(Mp). Now let A €
Eg(Mp). If A € 04(A) then A € o°(A). Since A is a-isoloid, we have A € ¢,(A) € 0, (Mc).
Hence A € Eg(M¢). If Ao ,(B)\o4(A), then 1 € 0p(B). Since A is invertible, we conclude that
A€ap(Mc). Thus A € Eg(Mc). So the proof of the theorem is achieved. O

Theorem 4.26. Let A be an a-isoloid. Assume that A and B (or A* and B*) have the SVEP If A
and My satisfy property (w) then Mc satisfies property (w) for every C € £ (Y, X).

Proof. Let A € A,(M¢). Then o,(M¢) = 0,(Mp) and hence A,(M¢) = A, (M) = Eo(My) since
M, satisfies property (w). Thus A € oi5°(My) = 01 (Mc). If A € 05°(A), since A is a-isoloid
then 1 € 0, (A). Hence A € 0, (Mc). Then A € Eg(Mc). Now assume that A € 0%3°(B) \ 65°(A).
If 1 ¢ 04(A) then it is not difficult to see that A € o, (Mc). Also if A € 0, (A) then A € 0, (Mc),
so assume that A € 0, (B) \ 0, (A). Then A ¢ Eg(A). Since A satisfies property (w), then A €
0 aw(A). This is impossible. Therefore, A € Ey(M¢). Conversely, assume that A € Eg(M¢). Then
A €0l (Mc) = 015°(Mp). On the other hand, A € 0 ,(Mc¢) S 0, (A) Uo ,(B). Hence A € 0, (Mp).
Thus

A € Eg(Mo) = Aa(Mo) = Ag(Mc). 0
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