

PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES

MOHAMMAD H. M. RASHID

Abstract. Let $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$ be be an upper triangulate Banach space operator. The relationship between the spectra of M_C and M_0 , and their various distinguished parts, has been studied by a large number of authors in the recent past. This paper brings forth the important role played by SVEP, the *single-valued extension property*, in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type M_0 satisfies property $(w) \Leftrightarrow M_C$ satisfies property (w) to hold. Moreover, we explore certain conditions on $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$ so that the direct sum $T \oplus S$ obeys property (w), where \mathscr{H} and \mathscr{K} are Hilbert spaces.

1. Introduction

Throughout this paper, \mathbb{X} and \mathbb{Y} are Banach spaces and $\mathscr{L}(\mathbb{X}, \mathbb{Y})$ denotes the space of all bounded linear operators from \mathbb{X} to \mathbb{Y} . For $\mathbb{X} = \mathbb{Y}$ we write $\mathscr{L}(\mathbb{X}, \mathbb{Y}) = \mathscr{L}(\mathbb{X})$. For $T \in \mathscr{L}(\mathbb{X})$, let T^* , ker(T), $\Re(T)$, $\sigma(T)$, $\sigma_d(T)$, $\sigma_p(T)$ and $\sigma_a(T)$ denote the adjoint, the null space, the range, the spectrum, the surjective spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T) = \dim \ker(T)$ and $\beta(T) = co \dim \Re(T)$.

For *A*, *B* and *C* $\in \mathscr{L}(\mathbb{X})$, let M_C denote the upper triangular operator matrix $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems for the operator M_C , and the related diagonal operator $M_0 = A \oplus B$, has been carried by a number of authors in the recent past (see [6, 10, 11, 20] for further references). Of particular interest here is the relationship between the spectral, the Fredholm, the Browder and the Weyl properties.

Let a := a(T) be the ascent of an operator T; i.e., the smallest nonnegative integer p such that $ker(T^p) = ker(T^{p+1})$. If such integer does not exist we put $a(T) = \infty$. Analogously, let d := d(T) be descent of an operator T; i.e., the smallest nonnegative integer s such that

2010 Mathematics Subject Classification. 47A55, 47A53.

Key words and phrases. Weyl's theorem, Weyl spectrum, polaroid operators, property (*w*), matrix theory.

 $\Re(T^s) = \Re(T^{s+1})$, and if such integer does not exist we put $d(T) = \infty$. It is well known that if a(T) and d(T) are both finite then a(T) = d(T) [17, Proposition 38.3].

In this paper, we introduce most of our notation and terminology in Section 2, Section 3 is devoted to proving a number of complementary results, sections 3 and 4 are devoted to proving our main results. In Section 3, we explore certain conditions on *T* and *S* so that the direct sum $T \oplus S$ obeys property (*w*). We consider property (*w*) for the operators M_0 and M_C in Section 4. Here we prove a necessary and sufficient for the equivalence M_0 satisfies property (*w*) $\Leftrightarrow M_C$ satisfies property (*w*) for operators M_C such that $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$, which is then applied to deduce a number of known results. For operators M_0 and M_C such that $\sigma_{aw}(M_0) = \sigma_{aw}(M_C)$, we prove a sufficient condition for the implications M_0 property (*w*) $\Rightarrow M_C$ satisfies property (*w*) and M_C satisfies property (*w*) $\Rightarrow M_0$ satisfies property (*w*).

2. Notation and terminology

Let $\Phi_+(\mathbb{X}) := \{T \in \mathscr{L}(\mathbb{X}) : \alpha(T) < \infty$ and $T(\mathbb{X})$ is closed} be the class of all *upper semi-Fredholm* operators, and let $\Phi_-(\mathbb{X}) := \{T \in \mathscr{L}(\mathbb{X}) : \beta(T) < \infty\}$ be the class of all *lower semi-Fredholm* operators. The class of all *semi-Fredholm* operators is defined by $\Phi_{\pm}(\mathbb{X}) := \Phi_+(\mathbb{X}) \cup \Phi_-(\mathbb{X})$, while the class of all *Fredholm* operators is defined by $\Phi(\mathbb{X}) := \Phi_+(\mathbb{X}) \cap \Phi_-(\mathbb{X})$. If $T \in \Phi_{\pm}(\mathbb{X})$, the *index* of *T* is defined by

$$ind(T) := \alpha(T) - \beta(T).$$

Recall that a bounded operator *T* is said *bounded below* if it injective and has closed range. Evidently, if *T* is bounded below then $T \in \Phi_+(X)$ and $ind(T) \le 0$. Define

$$W_+(X) := \{T \in \Phi_+(X) : ind(T) \le 0\},\$$

and

$$W_{-}(X) := \{T \in \Phi_{-}(X) : ind(T) \ge 0\}.$$

The set of Weyl operators is defined by

$$W(X) := W_{+}(X) \cap W_{-}(X) = \{T \in \Phi(X) : ind(T) = 0\}$$

The classes of operators defined above generate the following spectra. Denote by

 $\sigma_a(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not bounded below}\}\$

the approximate point spectrum, and by

$$\sigma_d(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not surjective} \}$$

the *surjectivity spectrum* of $T \in \mathscr{L}(X)$. The *Weyl spectrum* is defined by

$$\sigma_{W}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W(\mathbb{X})\},\$$

the Weyl essential approximate point spectrum is defined by

$$\sigma_{aw}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W_+(\mathbb{X})\},\$$

while the Weyl essential surjectivity spectrum is defined by

$$\sigma_{lw}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin W_{-}(\mathbb{X})\},\$$

Obviously, $\sigma_w(T) = \sigma_{aw}(T) \cup \sigma_{lw}(T)$ and from basic Fredholm theory we have

$$\sigma_{aw}(T) = \sigma_{ws}(T^*) \qquad \sigma_{ws}(T) = \sigma_{aw}(T^*)$$

Note that $\sigma_{aw}(T)$ is the intersection of all approximate point spectra $\sigma_a(T + K)$ of compact perturbations *K* of *T*, while $\sigma_{lw}(T)$ is the intersection of all surjectivity spectra $\sigma_s(T + K)$ of compact perturbations *K* of *T*, see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators is defined by

$$B_+(\mathbb{X}) := \{T \in \Phi_+(\mathbb{X}) : a(T) < \infty\},\$$

while the class of all lower semi-Browder operators is defined by

 $B_{-}(\mathbb{X}) := \{T \in \Phi_{+}(\mathbb{X}) : d(T) < \infty\}.$

The class of all Browder operators is defined by

 $B(\mathbb{X}) := B_+(\mathbb{X}) \cap B_-(\mathbb{X}) = \{T \in \Phi(\mathbb{X}) : a(T), d(T) < \infty\}.$

We have

$$B(\mathbb{X}) \subseteq W(\mathbb{X}), \qquad B_+(\mathbb{X}) \subseteq W_+(\mathbb{X}), \qquad B_-(\mathbb{X}) \subseteq W_-(\mathbb{X}),$$

see [1, Theorem 3.4]. The *Browder spectrum* of $T \in \mathscr{L}(X)$ is defined by

$$\sigma_b(T) := \{\lambda \in \mathbb{C} : T - \lambda I \notin B(\mathbb{X})\},\$$

the upper Browder spectrum is defined by

$$\sigma_{ub}(T) := \{\lambda \in \mathbb{C} : T - \lambda I \notin B_+(\mathbb{X})\},\$$

and analogously the *lower Browder spectrum* is defined by

$$\sigma_{lb}(T) := \{\lambda \in \mathbb{C} : T - \lambda I \notin B_{-}(\mathbb{X})\}.$$

Clearly, $\sigma_b(T) = \sigma_{ub}(T) \cup \sigma_{lb}(T)$ and $\sigma_w(T) \subseteq \sigma_b(T)$.

Let write K^{iso} for the set of all isolated points of $K \subseteq \mathbb{C}$. For a bounded operator $T \in \mathscr{L}(\mathbb{X})$ set $\pi_0(T) := \sigma(T) \setminus \sigma_b(T) = \{\lambda \in \sigma(T) : T - \lambda I \in \mathscr{L}(\mathbb{X})\}$. Note that every $\lambda \in \pi_0(T)$ is a pole of the resolvent and hence an isolated point of $\sigma(T)$, see [17, Proposition 50.2]. Moreover, $\pi_0(T) = \pi_0(T^*)$. Define

$$E_0(T) := \{\lambda \in i \, so\sigma(T) : 0 < \alpha(T - \lambda I) < \infty\}$$

Obviously,

 $\pi_0(T) \subseteq E_0(T) \qquad \text{for every } T \in \mathcal{L}(\mathbb{X}).$

For a bounded operator $T \in \mathscr{L}(X)$ let us define

$$E_0^a(T) := \{ \lambda \in i \, so\sigma_a(T) : 0 < \alpha(T - \lambda I) < \infty \},\$$

and

$$\pi_0^a(T) := \sigma_a(T) \setminus \sigma_{ub}(T) = \{\lambda \in \sigma_a(T) : T - \lambda I \in B_+(\mathbb{X})\}$$

Hence we have

 $\pi_0(T) \subseteq \pi_0^a(T) \subseteq E_0^a(T)$ and $E_0(T) \subseteq E_0^a(T)$.

Following Harte and W.Y. Lee [16], we shall say that *T* satisfies *Browder's theorem* if $\sigma_w(T) = \sigma_b(T)$, while, $T \in \mathscr{L}(\mathbb{X})$ is said to satisfy *a*-*Browder's theorem* if $\sigma_{aw}(T) = \sigma_{ub}(T)$. Let $\Delta(T) = \sigma(T) \setminus \sigma_w(T)$ and $\Delta_a(T) = \sigma_a(T) \setminus \sigma_{aw}(T)$. Following Coburn [8], we say that Weyl's theorem holds for $T \in \mathscr{L}(\mathbb{X})$ if $\Delta(T) = E_0(T)$. According to Rakočević [21], an operator $T \in \mathscr{L}(\mathbb{X})$ is said to satisfy *a*-Weyl's theorem if $\Delta_a(T) = E_0^a(T)$. We can write

$$\Delta_a(T) = \{\lambda \in \mathbb{C} : T - \lambda \in W_+(\mathbb{X}) \text{ and } \alpha(T - \lambda I) > 0\}.$$

It is known (see [21]) that an operator satisfying *a*-Weyl's theorem satisfies Weyl's theorem too, but the converse does not hold in general.

Recall that an operator $T \in \mathscr{L}(X)$ is said to satisfy property (*w*) if $\Delta_a(T) = E_0(T)$. In [22] the author introduce the property (*w*) which is a variant of Weyl's theorem.

An operator $T \in \mathscr{L}(\mathbb{X})$ has the *single-valued extension property* at $\lambda_0 \in \mathbb{C}$, SVEP at λ_0 , if for every open disc U_{λ_0} centered at λ_0 the only analytic function $f : U_{\lambda_0} \longrightarrow \mathbb{X}$ which satisfies $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in U_{\lambda_0}$ is the function $f \equiv 0$. Trivially, every operator T has SVEP on the resolvent set $\rho(T) = \mathbb{C} \setminus \sigma(T)$; also T has SVEP at points $\lambda \in \sigma^{iso}(T)$. Let S(T) denote the set of $\lambda \in \mathbb{C}$ where T does not have SVEP: we say that T has SVEP if $S(T) = \emptyset$. SVEP plays an important role in determining the relationship between the Browder and Weyl spectra, and the Browder and Weyl theorems. Thus $\sigma_b(T) = \sigma_w(T) \cup S(T) = \sigma_w(T) \cup S(T^*)$, and if T^* has SVEP then $\sigma_b(T) = \sigma_w(T) = \sigma_{ab}(T) = \sigma_{aw}(T)$ [1, Page 141- 142]; T satisfies Browder's theorem (resp., *a*-Browder's theorem) if and only if T has SVEP at $\lambda \notin \sigma_w(T)$ (resp., $\lambda \notin \sigma_{aw}(T)$) [12, Lemma 2.18]; and if T^* has SVEP, then $T \in \mathcal{W}$ if and only if $T \in a\mathcal{W}$. In the following, the diagonal operator M_0 and the upper operator M_C will defined as in the introduction, and $T \in \mathscr{L}(q)$ shall denote a general Banach space operator. It is known that if either $S(A^*) = \phi$ or $S(B) = \phi$, then $\sigma(M_C) = \sigma(M_0) = \sigma(A) \cup \sigma(B)$; if $S(A) \cup S(B) = \phi$, then M_C has SVEP, $\sigma_b(M_c) = \sigma_w(M_c) = \sigma_w(M_0) = \sigma_b(M_0)$, and $M_C \in aB$. Browders theorem, much less Weyls theorem, does not transfer from individual operators to direct sums: for example, the forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder's theorem, but their direct sum does not. However, if $(S(A) \cap S(B^*)) \cup S(A^*) = \phi$, then : M_0 satisfies Browder's theorem (resp., *a*-Browder's theorem) implies M_C satisfies Browder's theorem (resp., *a*-Browder's theorem); if points $\lambda \in \sigma^{iso}(A)$ are eigenvalues of $A \in W$, then $M_0 \in W$ implies $M_C \in W$ [11, Proposition 4.1 and Theorem 4.2].

It is known that from [6, 7, 9, 10, 11] that

(i)
$$\sigma_x(M_0) = \sigma_x(A) \cup \sigma_x(B) = \sigma_x(M_C) \cup \{\sigma_x(A) \cap \sigma_x(B)\}, \text{ where } \sigma_x = \sigma, \sigma_b \text{ or } \sigma_e;$$

- (ii) $\sigma_w(M_0) \subseteq \sigma_w(A) \cup \sigma_w(B) = \sigma_w(M_C) \cup \{\sigma_w(A) \cap \sigma_w(B)\};$
- (iii) if $\sigma_w(M_C) = \sigma_w(A) \cup \sigma_w(B)$, then $\sigma(M_C) = \sigma(M_0)$ and
- (iv) $\sigma_{aw}(M_0) \subseteq \sigma_{aw}(A) \cup \sigma_{aw}(B) = \sigma_{aw}(M_C) \cup \{S(A) \cup S(A^*)\}.$

Remark 2.1. Let SP(T) be the spectral picture of T, it is known that: if either SP(A) or SP(B) has no pseudo holes, then $\sigma^{acc}(M_0) \subseteq \sigma_w(M_0) \Rightarrow \sigma^{acc}(M_C) \subseteq \sigma_w(M_C)$ [20, Theorem 2.3]; if additionally A is an isoloid (the isolated points of $\sigma(A)$ are eigenvalues of A) and A satisfies Weyl's theorem, then $M_0 \in \mathcal{W} \Rightarrow M_C \in \mathcal{W}$ [20, Theorem 2.4]. If $\{S(A) \cap S(B^*)\} \cup S(A^*) = \emptyset$, then $\sigma^{acc}(M_0) \subseteq \sigma_w(M_0) \Rightarrow \sigma^{acc}(M_C) \subseteq \sigma_w(M_C)$ [11, Proposition 4.1]. Again, if $\sigma_a(A^*)$ has empty interior, A is an a-isoloid (isolated points of $\sigma_a(A)$ are eigenvalues of A) and $A \in a\mathcal{W}$, then $M_0 \in a\mathcal{W} \Rightarrow M_C \in a\mathcal{W}$ [7, Theorem 3.3].

3. Property (*w*) for direct sum

Let \mathscr{H} and \mathscr{H} be infinite-dimensional Hilbert spaces. In this section we show that if *T* and *S* are two operators on \mathscr{H} and \mathscr{K} respectively and at least one of them satisfies property (*w*) then their direct sum $T \oplus S$ obeys property (*w*) under certain conditions. We have also explored various conditions on *T* and *S* so that $T \oplus S$ satisfies property (*w*).

Theorem 3.1. Suppose that property (*w*) holds for $T \in \mathcal{L}(\mathcal{H})$ and $S \in \mathcal{L}(\mathcal{H})$. If T and S are isoloid and $\sigma_{aw}(T \oplus S) = \sigma_{aw}(T) \cup \sigma_{aw}(S)$, then property (*w*) holds for $T \oplus S$.

Proof. We know that $\sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_a(S)$ for any pairs of operators. If *T* and *S* are *a*-isoloid, then

$$E_0(T \oplus S) = \left[E_0(T) \cap \rho_a(S) \right] \cup \left[\rho_a(T) \cap E_0(S) \right] \cup \left[E_0(T) \cap E_0(S) \right],$$

where $\rho_a(.) = \mathbb{C} \setminus \sigma_a(.)$. If property (*w*) holds for *T* and *S*, then

$$\begin{split} [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{aw}(T) \cup \sigma_{aw}(S)] \\ &= \left[E_0(T) \cap \rho_a(S) \right] \cup \left[\rho_a(T) \cap E_0(S) \right] \cup \left[E_0(T) \cap E_0(S) \right]. \end{split}$$

Thus, $E_0(T \oplus S) = [\sigma_a(T) \cup \sigma_a(S)] \setminus [\sigma_{aw}(T) \cup \sigma_{aw}(S)].$ If $\sigma_{aw}(T \oplus S) = \sigma_{aw}(T) \cup \sigma_{aw}(S)$, then

$$E_0(T \oplus S) = \sigma_a(T \oplus S) \setminus \sigma_{aw}(T \oplus S).$$

Hence property (*w*) holds for $T \oplus S$.

The assumption *A* and *B* are isoloid is essential in Theorem 3.1.

Example 3.2. If $A, B : \ell^2 \to \ell^2$ are defined by

$$A(x_1, x_2, \ldots) = (0, x_2, x_3, \ldots) \text{ and } B(x_1, x_2, \ldots) = \left(0, x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots\right),$$

then we have that property (*w*) holds for *A* and *B*; $\sigma_a(A) = \{0, 1\}$, $\sigma_{aw}(A) = \{1\}$, $\sigma_a(B) = \sigma_{aw}(B) = \{0\}$, $E_0(A) = \{0\}$, $E_0(B) = \emptyset$; $\sigma_a(A \oplus B) = \{0, 1\} = \sigma_{aw}(A \oplus B)$ and $E_0(A \oplus B) = \{0\}$. Then property (*w*) does not holds for $A \oplus B$.

Theorem 3.3. Suppose that $T \in \mathcal{L}(\mathcal{H})$ such that $i so \sigma_a(T) = \phi, \sigma(T) = \sigma_a(T)$ and $S \in \mathcal{L}(\mathcal{H})$ satisfies property (w). If $\sigma_{aw}(T \oplus S) = \sigma_a(T) \cup \sigma_{aw}(S)$, then property (w) holds for $T \oplus S$.

Proof. We know that $\sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_a(S)$ for any pairs of operators. Then

$$\sigma_{a}(T \oplus S) \setminus \sigma_{aw}(T \oplus S) = [\sigma_{a}(T) \cup \sigma_{a}(S)] \setminus [\sigma_{a}(T) \cup \sigma_{aw}(S)]$$
$$= \sigma_{a}(S) \setminus [\sigma_{a}(T) \cup \sigma_{aw}(S)]$$
$$= [\sigma_{a}(S) \setminus \sigma_{aw}(S)] \setminus \sigma_{a}(T)$$
$$= E_{0}(S) \cap \rho_{a}(T)$$

If $\sigma_a^{iso}(T) = \emptyset$ it implies that $\sigma_a(T) = \sigma_a^{acc}(T)$, where $\sigma_a^{acc}(T) = \sigma_a(T) \setminus \sigma_a^{iso}(T)$ is the set of all accumulation points of $\sigma_a(T)$. Thus we have

$$\begin{split} \sigma_a^{iso}(T \oplus S) &= \left[\sigma_a^{iso}(T) \cup \sigma_a^{iso}(S) \right] \setminus \left[\left(\sigma_a^{iso}(T) \cap \sigma_a^{acc}(S) \right) \cup \left(\sigma_a^{acc}(T) \cap \sigma_a^{iso}(S) \right) \right] \\ &= \left[\sigma_a^{iso}(T) \setminus \sigma_a^{acc}(S) \right] \cup \left[\sigma_a^{iso}(S) \setminus \sigma_a^{acc}(T) \right] \\ &= \sigma_a^{iso}(S) \setminus \sigma_a(T) \\ &= \sigma_a^{iso}(S) \cap \rho_a(T). \end{split}$$

86

 \Box

We know that $\sigma_p(T \oplus S) = \sigma_p(T) \cup \sigma_p(S)$ and $\alpha(T \oplus S) = \alpha(T) + \alpha(S)$ for any pairs of operators, so that

$$\sigma_{PF}(T \oplus S) = \{\lambda \in \sigma_{PF}(T) \cup \sigma_{PF}(S) : \alpha(T - \lambda I) + \alpha(S - \lambda I) < \infty\}.$$

Therefore,

$$\begin{split} E_0(T \oplus S) &= \sigma_a^{iso}(T \oplus S) \cap \sigma_{PF}(T \oplus S) \\ &= \sigma_a^{iso}(S) \cap \rho_a(T) \cap \sigma_{PF}(S) \\ &= E_0(S) \cap \rho_a(T). \end{split}$$

Thus $\sigma_a(T \oplus S) \setminus \sigma_{aw}(T \oplus S) = E_0(T \oplus S)$. Hence $T \oplus S$ satisfies property (*w*).

Corollary 3.4. Suppose that $T \in \mathcal{L}(\mathcal{H})$ is such that $\sigma_a^{iso}(T) = \emptyset$ and $S \in \mathcal{L}(\mathcal{H})$ satisfies property (w) with $\sigma_a^{iso}(S) \cap \sigma_p(S) = \emptyset$, and $\Delta_a(T \oplus S) = \emptyset$, then $T \oplus S$ satisfies property (w).

Proof. Since *S* satisfies property (*w*), therefore given condition $\sigma_a^{iso}(S) \cap \sigma_p(S) = \emptyset$ implies that $\sigma_a(S) = \sigma_{aw}(S)$. Now $\Delta_a(T \oplus S) = \emptyset$ gives that $\sigma_{aw}(T \oplus S) = \sigma_a(T \oplus S) = \sigma_a(T) \cup \sigma_{aw}(S)$. Thus from Theorem 3.3, we have that $T \oplus S$ satisfies property (*w*).

Corollary 3.5. Suppose that $T \in \mathcal{L}(\mathcal{H})$ is such that $\sigma_a^{iso}(T) \cup \Delta_a(T) = \emptyset$ and $S \in \mathcal{L}(\mathcal{H})$ satisfies property (w). If $\sigma_{aw}(T \oplus S) = \sigma_{aw}(T) \cup \sigma_{aw}(S)$, then $T \oplus S$ satisfies property (w).

Theorem 3.6. Let $T \in \mathcal{L}(\mathcal{H})$ be an *a*-isoloid operator that satisfies property (*w*). If $S \in \mathcal{L}(\mathcal{H})$ is a normal operator satisfies property (*w*). Then property (*w*) holds for $T \oplus S$.

Proof. If *S* is normal, then both *S* and *S*^{*} have SVEP, and $ind(S - \lambda I) = 0$ for every λ such that $S - \lambda I$ is a Fredholm. Observe that $\lambda \notin \sigma_{aw}(T \oplus S)$ if and only if $S - \lambda I \in W_+(\mathscr{H})$ and $T - \lambda I \in W_+(\mathscr{H})$ and $ind(T - \lambda I) + ind(S - \lambda I) = ind(T - \lambda I) \leq 0$ if and only if $\lambda \notin \Delta_a(T) \cap \Delta_a(S)$. Hence $\sigma_{aw}(T \oplus S) = \sigma_{aw}(T) \cup \sigma_{aw}(S)$. It is well known that the isolated points of the approximate point spectrum of a normal operator are simple poles of the resolvent of the operator implies that *S* is *a*-isoloid. So the result follows now from Theorem 3.1.

4. Property (w) for M_C

In the following, let

$$\Phi_{+}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is upper semi-Fredholm}\},$$

$$\Phi_{+}^{-}(T) = \{\lambda \in \mathbb{C} : ind(T - \lambda I) \le 0\},$$

$$\Phi_{-}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is lower semi-Fredholm}\},$$

$$\Phi_{-}^{+}(T) = \{\lambda \in \mathbb{C} : ind(T - \lambda I) \ge 0\},$$

$$\Phi(T) = \Phi_+(T) \cap \Phi_-(T), \text{ and}$$
$$\Phi^0(T) = \{\lambda \in \Phi(T) : ind(T - \lambda I) = 0\}.$$

Then the upper semiFredholm spectrum $\sigma_{SF_+}(T)$, the lower semiFredholm spectrum $\sigma_{SF_-}(T)$, the (Fredholm) essential spectrum $\sigma_e(T)$ and the Weyl essential surjectivity spectrum $\sigma_{sw}(T)$ of T are the sets

$$\begin{split} \sigma_{SF_+}(T) &= \{\lambda \in \sigma(T) : \lambda \notin \Phi_+(T)\},\\ \sigma_{SF_-}(T) &= \{\lambda \in \sigma(T) : \lambda \notin \Phi_-(T)\},\\ \sigma_e(T) &= \{\lambda \in \sigma(T) : \lambda \notin \Phi(T)\} \text{ and }\\ \sigma_{sw}(T) &= \{\lambda \in \sigma(T) : \lambda \notin \Phi_-^+(T)\}. \end{split}$$

It is easily verified, see [25, Exercise 7, Page 293], that

$$a(A - \lambda I) \le a(M_C - \lambda I) \le a(A - \lambda I) + a(B - \lambda I);$$

$$d(A - \lambda I) \le d(M_C - \lambda I) \le d(A - \lambda I) + d(B - \lambda I)$$

for every $\lambda \in \mathbb{C}$.

Remark 4.1. The following implications hold [1, Theorem 3.4]: $a(T - \lambda I) < \infty \Rightarrow \alpha(T - \lambda I) \le \beta(T - \lambda I)$; $d(T - \lambda I) < \infty \Rightarrow \beta(T - \lambda I) \le \alpha(T - \lambda I)$; if $\alpha(T - \lambda I) = \beta(T - \lambda I)$, then either of $a(T - \lambda I) < \infty$ and $d(T - \lambda I) < \infty \Rightarrow a(T - \lambda I) = d(T - \lambda I) < \infty$. If $\lambda \in \Phi_+^-(T)$, then *T* has SVEP at $\lambda \Leftrightarrow a(T - \lambda I) < \infty$ [1, Theorems 3.16, 3.17]. From this it follows that if both *T* and *T*^{*} have SVEP at $\lambda \in \Phi_+^-(T)$, then $\lambda \in \Phi^0(T)$ and $\lambda \in \pi_0(T)$. If $\lambda \in \pi_0(T)$ and either of $a(T - \lambda I)$ and $d(T - \lambda I)$ is finite (equivalently, either *T* or *T*^{*} has SVEP at λ), then $\lambda \in \pi_0(T)$. Again, if $\lambda \in \Phi_+^-(T)$ and *T* has SVEP at λ , then $\lambda \in \pi_0^a(T)$ [1, Theorem 3.23].

For an operator $S \in \mathscr{L}(X)$ and $\sigma_x(T)$ a subset of $\sigma(T)$, let

 $S_{\sigma_x(T)}(S) = \{\lambda \in \sigma(T) \setminus \sigma_x(T) : S \text{ does not have SVEP at } \lambda\}.$

Remark 4.2. From [6, 7, 14, 15]. The Following relations hold:

(i)

$$\sigma(M_{0}) = \sigma(A) \cup \sigma(B) = \sigma(M_{C}) \cup \{\sigma(A) \cap \sigma(B)\}$$

$$= \sigma(M_{C}) \cup \{S_{\sigma_{a}(A)}(A^{*}) \cap S_{\sigma_{a}(B)}(B)\}.$$
(ii)

$$\sigma_{b}(M_{0}) = \sigma_{b}(A) \cup \sigma_{b}(B) = \sigma_{b}(M_{C}) \cup \{\sigma_{b}(A) \cap \sigma_{b}(B)\}$$

$$= \sigma_{b}(M_{C}) \cup \{S_{\sigma_{b}(M_{C})}(A^{*}) \cap S_{\sigma_{b}(M_{C})}(B)\}.$$
(iii)

$$\sigma_{w}(A) \cup \sigma_{w}(B) \subseteq \sigma_{w}(M_{C}) \cup \{S_{\sigma_{w}(M_{C})}(P) \cup S_{\sigma_{w}(M_{C})}(Q)\},$$
where

$$(P,Q) = (A, A^{*}), (B, B^{*}), (A, B), \text{ or } (A^{*}, B^{*}).$$

Lemma 4.3. If either A^* or B has SVEP and $\lambda \in \sigma_a^{iso}(M_C)$, then $\lambda \in \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$.

Proof. The hypothesis A^* or *B* has SVEP implies that

$$\sigma_a(M_C) = \sigma_a(A) \cup \sigma_a(B).$$

Hence $\lambda \in (\sigma_a(A) \cup \sigma_a(B))^{iso} \subset \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$.

Theorem 4.4. Let A and B have SVEP, and let $\dim \chi_B(\{\lambda\}) < \infty$ for all $\lambda \in \sigma_a^{iso}(B)$. If a-Weyl's theorem holds for M_0 , then a-Weyl's theorem holds for M_C for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since *A* and *B* have SVEP, M_C has SVEP [18, Proposition 3.1], and so M_C obeys *a*-Browder's theorem. Hence,

$$\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \pi_0^a(M_C) \subseteq E_0^a(M_C).$$

Let $\lambda \in E_0^a(M_C)$. Then $\lambda \in \sigma_a^{iso}(M_C)$. By Lemma 4.3, $\lambda \in \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$. Hence $\lambda \in \sigma_a^{iso}(M_0)$. Since ker $(A - \lambda I) \oplus \{0\} \subset$ ker $(M_C - \lambda I)$, dim ker $(A - \lambda I) < \infty$ in the case in which $\lambda \in \sigma_a^{iso}(A) \cup \rho_a(A)$. Again, if $\lambda \in \sigma_a^{iso}(B)$, or $\lambda \in \rho_a(B)$, then the assumption that dim $\chi_B(\{\lambda\}) < \infty$ implies (by [19, Proposition 1.2.16]) that dim ker $(B - \lambda I) < \infty$, and hence that

$$\dim(\ker(A - \lambda I) \oplus \ker(B - \lambda I)) < \infty$$

Evidently, the non-triviality of ker $(M_C - \lambda I)$ implies that ker $(A - \lambda I) \cup$ ker $(B - \lambda I) \neq \{0\}$, i.e., $0 < \dim(\ker(A - \lambda I) \oplus \ker(B - \lambda I))$. Hence, $\lambda \in \sigma_a^{iso}(M_0)$ and

$$0 < \dim(\ker(A - \lambda I) \oplus \ker(B - \lambda I)) < \infty,$$

i.e., $\lambda \in \pi_0^a(M_0) = \sigma_a(M_0) \setminus \sigma_{aw}(M_0)$. By [7, Theorem 3.1] this implies that $\lambda \notin \sigma_{aw}(M_C)$.

Recall that an operator $T \in \mathscr{L}(\mathbb{X})$ is said to be polaroid (resp., isoloid) at $\lambda \in \sigma^{iso}(T)$ if $a(T - \lambda I) = d(T - \lambda I) < \infty$ (resp., λ is an eigenvalue of *T*). Trivially, *T* polaroid at λ implies *T* isoloid at λ . We say that *T* is *a*-polaroid if *T* is polaroid at $\lambda \in \sigma_a^{iso}(T)$.

Lemma 4.5. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$ have SVEP. If A and B are polaroid, then M_C is polaroid for every $C \in \mathcal{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Suppose that $\lambda \in \sigma^{iso}(M_C)$. If *B* has SVEP then $\sigma(B)$ coincides with the defect spectrum of *B*. It follows from [10, Theorem 2.3] that $\sigma(M_C) = \sigma(A) \cup \sigma(B)$. Therefore $\lambda \in (\sigma(A) \cup \sigma(B))^{iso}$. Suppose that $\lambda \in \sigma(A)$. Then $\lambda \in \sigma^{iso}(A)$. Since *A* is isoloid, $\ker(A - \lambda I) \neq \{0\}$. Observe that $\ker(A - \lambda I) \oplus \{0\} \subseteq \ker(M_C - \lambda I)$, and hence $\ker(M_C - \lambda I) \neq \{0\}$. Since $\ker(M_C - \lambda I) \neq \{0\}$; also, $\dim(\ker(M_C - \lambda I)) < \infty$ implies $\dim(\ker(A - \lambda I)) < \infty$. We

claim that dim(ker($B - \lambda I$)) < ∞ . For suppose to the contrary that dim(ker($B - \lambda I$)) is infinite. Since

$$(M_C - \lambda I)(x \oplus y) = \{(A - \lambda I)x + Cy) \oplus (B - \lambda I)y\},\$$

either dim($C(\ker(B - \lambda I)) < \infty$ or dim($C(\ker(B - \lambda I)) = \infty$. If dim($C(\ker(B - \lambda I)) < \infty$, then $\ker(B - \lambda I)$ contains an orthonormal sequence $\{y_j\}$ such that $(M_C - \lambda I)(0 \oplus y_j) = 0$ for all $j = 1, 2, \ldots$. But then dim $\ker(M_C - \lambda I) = \infty$, a contradiction. Assume now that dim($C(\ker(B - \lambda I)) = \infty$. Since $\lambda \in \rho(A) \cup \sigma^{iso}(A)$, A satisfies Browder's theorem, A is polaroid and $\alpha(A - \lambda I) < \infty$, $\beta(A - \lambda I) < \infty$. Hence dim $\{C(\ker(B - \lambda I)) \cap \Re(A - \lambda I)\} = \infty$ implies the existence of a sequence $\{x_j\}$ such that $(A - \lambda I)x_j = Cy_j$ for all $j = 1, 2, \ldots$. But then $(M_C - \lambda I)(x_j \oplus - y_j) = 0$ for all $j = 1, 2, \ldots$. Thus dim $\ker(M_C - \lambda I) = \infty$, again a contradiction. Our claim having been proved, we conclude that $\lambda \in \pi(M_0)$. Thus $\pi(M_C) \subseteq \pi(M_0)$.

Remark 4.6. If $S(A^*) \cup S(B^*) = \emptyset$, then M_C^* has SVEP. Hence

$$\sigma(M_0) = \sigma(M_C), \sigma_{aw}(M_C) = \sigma_w(M_C) = \sigma_w(M_0) \text{ and } \pi_0(M_C) = \pi_0^a(M_C).$$

Evidently, both M_0 and M_C satisfy *a*-Browder's theorem. Since

$$E_0(M_0) = (E_0(A) \cap \rho(B)) \cup (\rho(A) \cap E_0(B)) \cup (E_0(A) \cap E_0(B))$$

if M_0 is polaroid at $\lambda \in E_0(M_0)$, then either *A* or *B* is polaroid at λ ; in particular, *A* and *B* are polaroid at $\lambda \in E_0(A) \cap E_0(B)$. Conversely, if *A* is polaroid at $\lambda \in E_0(A)$ and *B* is polaroid at $\mu \in E_0(B)$, then M_0 is polaroid at $\nu \in E_0(M_0)$.

Theorem 4.7. If $S(A^*) \cup S(B^*) = \emptyset$, A is polaroid at $\lambda \in E_0^a(M_C)$ (or, A is isoloid and satisfies Weyl's theorem) and B is polaroid at $\mu \in E_0^a(B)$, then M_C satisfies property (w).

Proof. Since A^* and B^* have SVEP, both M_0^* and M_C^* have SVEP. Hence M_C (also, M_0) satisfies Browder's theorem, which implies that $\sigma(M_C) \setminus \sigma_w(M_C) = \pi_0(M_C) \subseteq E_0(M_C)$. Apparently, $\sigma(M_0) = \sigma(M_C) = \sigma_a(M_C), \sigma_w(M_0) = \sigma_w(M_C) = \sigma_{aw}(M_C), E_0(M_C) = E_0^a(M_C)$ and $\sigma^{iso}(M_C) = \sigma^{iso}(M_0)$. Following (part of) the argument of the proof of the sufficiency part of Theorem 3.7 of [14], it follows that if $\lambda \in E_0(M_C)$, then $\lambda \in E_0(A) \cap E_0(B)$. By assumption, both A and B are polaroid at λ . Hence M_0 is polaroid at λ , which implies that $\lambda \in \pi_0(M_0)$. Since M_0 satisfies Browder's theorem, $\lambda \notin \sigma_w(M_0) = \sigma_w(M_C)$, which in view of the fact that M_C satisfies Browder's theorem implies that $\lambda \in \pi_0(M_C)$. Hence $\sigma(M_C) \setminus \sigma_w(M_C) = E_0(M_C)$ implies $\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = E_0(M_C) = E_0(M_C)$, i.e., M_C satisfies property (w).

Example 4.8. Let *A*, *B* and $C \in \mathcal{L}(\ell^2)$ be the operators

$$A(x_1, x_2, \ldots) = \left(0, x_1, 0, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots\right),$$

$$B(x_1, x_2, \ldots) = (0, x_2, 0, x_4, 0, \ldots),$$

and

$$C(x_1, x_2, \ldots) = (0, 0, x_2, 0, x_3, \ldots).$$

Then *A*, *A*^{*}, *B* and *B*^{*} have SVEP, $\sigma(A) = \sigma_a(A) = \sigma_w(A) = \sigma_{aw}(A) = \{0\}$, $\pi_0 = E_0(A) = \emptyset$, and *A* satisfies property (*w*). Since $\sigma_a(M_0) = \sigma_{aw} = \{0, 1\}$ and $E_0(M_0) = \pi_0(M_0) = \emptyset$, M_0 satisfies property (*w*). However, since $\sigma_a(M_C) = \sigma_{aw} = \{0, 1\}$ and $E_0(M_C) = \{0\}$, M_C does not satisfy property (*w*). Observe that *A* is not polaroid on $E_0(M_C)$.

Remark 4.9. If the operators *A* and *B* have SVEP, then M_0 and M_C have SVEP, $\sigma(M_0) = \sigma(M_C) = \sigma(M_C^*) = \sigma_a(M_C^*)$, $\sigma^{iso}(M_0^*) = \sigma^{iso}(M_C^*) = \sigma_a^{iso}(M_C^*)$, $E_0(M_C^*) = E_0^a(M_C^*)$ and $\sigma_w(M_0) = \sigma_w(M_C) = \sigma_w(M_C^*) = \sigma_aw(M_C^*)$. Evidently, A^*, B^*, M_0^* and M_C^* satisfy Browder's theorem; in particular, $\pi_0(M_0^*) = \pi_0(M_C^*) \subseteq E_0(M_C^*)$.

Theorem 4.10. If the polaroid operators A and B have SVEP, then M_C^* satisfies property (w).

Proof. Since the polaroid hypothesis on *A* and *B* implies that *A*^{*} and *B*^{*} are polaroid, an argument similar to that in the proof of Theorem 4.7 to M_C^* implies that if $\lambda \in E_0(M_C^*)$, then $\lambda \in E_0(A^*) \cap E_0(B^*)$ implies $\lambda \in \pi_0(A^*) \cap \pi_0(B^*)$. So $\lambda \notin \sigma_w(M_0^*) = \sigma_w(M_C^*)$ implies M_C^* satisfies Weyl's theorem. Hence it follows from Remark 4.9 that $\sigma(M_C^*) \setminus \sigma_w(M_C^*) = E_0(M_C^*) = \sigma_a(M_C^*) \setminus \sigma_{aw}(M_C^*)$. That is, M_C^* satisfies property (*w*).

Let H(K) denote the space of functions holomorphic on an open neighborhood of $K \subset \mathbb{C}$.

Lemma 4.11. Let $A \in \mathscr{L}(X)$ and $B \in LB(Y)$ have SVEP. Then

$$\sigma_{aw}(f(M_C)) = f(\sigma_{aw}(M_C))$$
 for every $f \in H(\sigma(M_C))$.

Proof. Since *A* and *B* have SVEP, M_C also has SVEP. Then $f(M_C)$ has SVEP by Corollary 2.40 of [1]. Then it follows from [7, Theorem 3.1] that $f(M_C)$ satisfies *a*-Browder's theorem. That is, $\sigma_{ab}(f(M_C)) = \sigma_{aw}(f(M_C))$. The proof is follows now from Theorem 3.71 of [1].

Theorem 4.12. If $A^* \in \mathcal{L}(\mathbb{X})$ and $B^* \in \mathcal{L}(\mathbb{Y})$ are each polaroid, and have the single valued extension property, then property (*w*) holds for $f(M_C)$ for arbitrary $f \in H(\sigma(M_C))$ and for arbitrary bounded operators $C \in \mathcal{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since M_C is polaroid by Lemma 4.5, then it is *a*-isoloid. Then

$$f(\sigma_a(M_C) \setminus E_0(M_C)) = \sigma_a(f(M_C)) \setminus E_0(f(M_C)) \quad \text{for every } f \in H(\sigma(M_C)).$$

It from From Theorem 4.10 and Lemma 4.11 that

$$f(\sigma_a(M_C) \setminus E_0(M_C)) = \sigma_a(f(M_C)) \setminus E_0(f(M_C)) = \sigma_{aw}(f(M_C)) = f(\sigma_{aw}(M_C))$$

for every $f \in H(\sigma(M_C))$.

An operator $T \in \mathscr{L}(X)$ is said to be *a*-isoloid if all isolated points of $\sigma_a(T)$ are eigenvalues of *T*, and $T \in \mathscr{L}(X)$ is called finite *a*-isoloid if every isolated point of $\sigma_a(T)$ is an eigenvalue of *T* of finite multiplicity. Note that finite-*a*-isoloid implies *a*-isoloid but the converse is not true.

Theorem 4.13. Suppose that $\sigma_d(A)$ has no interior points. If A is finite-a-isoloid and property (w) holds for A, then for every $B \in \mathcal{L}(\mathbb{Y})$ and $C \in \mathcal{L}(\mathbb{Y}, \mathbb{X})$, property (w) holds for M_0 implies property (w) holds for M_C .

Proof. It follows from Theorem 3.1 of [7] that M_C satisfies *a*-Browder's theorem, i.e.,

$$\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \pi_0^a(M_C) \subseteq E_0^a(M_C).$$

Conversely, suppose that $\lambda_0 \in E_0^a(M_C)$. Then $M_C - \lambda I$ is bounded below if $|\lambda - \lambda_0|$ is sufficiently small and hence λ is not in $\sigma_a(M_C)$. Since $\sigma_d(A)$ has no interior points, by [7, Corollary 2.4], $\sigma_a(M_C) = \sigma_a(A) \cup \sigma_a(B) = \sigma_a(M_0)$. Then λ is not in $\sigma_a(M_0)$ if $|\lambda - \lambda_0|$ is sufficiently small, that is $\lambda_0 \in \sigma_a^{iso}(M_0)$. Without loss of generality, we suppose that $\lambda_0 \in \sigma_a(A)$, then $\lambda_0 \in \sigma_a^{iso}(A)$. Since $\ker(A - \lambda_0 I) \oplus \{0\} \subseteq \ker(M_C - \lambda_0 I)$, we know that $\alpha(A - \lambda_0 I) < \infty$. *A* is finite-a-isoloid, then $\lambda_0 \in E_0(A)$. Since property (*w*) holds for *A*, it follows that $A - \lambda_0 I \in \Phi_+(X)$ and $a(A - A_0 I \in \Phi_+(X))$ $\lambda_0 I < \infty$. The condition $\sigma_d(A)$ has no interior points asserts that λ_0 is not in $\sigma_d(A)$ or $\lambda_0 \in$ $\partial \sigma_d(A)$. Then in any neighborhood U of λ_0 , there exists $\lambda_1 \in U$ such that $\Re(A - \lambda_1 I) = \mathbb{X}$. By perturbation theory of upper semi-Fredholm operator $A - \lambda_0 I$, we get that $A - \lambda I$ is invertible and $ind(A - \lambda_0 I) = ind(A - \lambda I) = 0$ if $|\lambda - \lambda_0|$ is sufficiently small, which means that $A - \lambda_0 I$ is Weyl with finite ascent. [24, Theorem 4.5] asserts that $A - \lambda_0 I$ is Browder. Using the same way in Theorem 2.4 in [20], we get that $0 < \dim[\ker(A - \lambda_0 I) \oplus \ker(B - \lambda_0 I)] < \infty$, which implies that $\lambda_0 \in E_0(M_0)$. Since property (*w*) theorem holds for M_0 , it follows that $M_0 - \lambda_0 I \in \Phi^-_+(\mathbb{X} \oplus \mathbb{Y})$. Hence $M_C - \lambda_0 I \in \Phi_+^-(\mathbb{X} \oplus \mathbb{Y})$, then $\lambda_0 \in \sigma_a(M_C) \setminus \sigma_{aw}(M_C)$. Now we have proved that $\sigma_a(M_C) \setminus \sigma_{aw}(M_C)$. $\sigma_{aw}(M_C) = E_0(M_C)$, which means that property (*w*) holds for M_C for every $C \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$. \Box

Similar to the proof in Theorem 4.13, we can prove that:

Theorem 4.14. Suppose that $\sigma_d(A) \cap \sigma_{ab}(B)$ has no interior points. If SP(A) has no pseudoholes (or $\sigma_e(A) = \sigma_{ab}(A)$), where SP(A) denote the spectral picture of A and if A is finiteisoloid operator for which property (w) holds, then for every $C \in \mathscr{L}(X, Y)$, then property (w) holds for M_0 implies property (w) holds for M_C .

Theorem 4.15. Let A and B have SVEP. If A is finite-a-isoloid, and if property (w) holds for both A and M_0 , then property (w) holds for M_C for every $C \in \mathcal{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since *A* and *B* have SVEP, M_C also has SVEP and M_C obeys *a*-Browder's theorem, i.e. $\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \pi_0^a(M_C) \subseteq E_0^a(M_C)$.

Suppose now that $\lambda \in E_0^a(M_C)$. Then, it follows from Lemma 4.3 that $\lambda \in \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$, then $\lambda \in \sigma_a^{iso}(M_0)$, dim ker $(M_0 - \lambda I) > 0$ and dim ker $(A - \lambda I) > 0$. If $\lambda \in \sigma_a(A)$, then λ is an isolated point and (by the finite-*a*-isoloid hypothesis) $\lambda \in E_0(A) = \sigma_a(A) \setminus \sigma_{aw}(A)$. If $\lambda \notin \sigma_a(A)$, then again $\lambda \notin \sigma_{aw}(A)$. Hence, in either case, $\lambda \notin \sigma_{aw}(A)$, $\Re(A - \lambda I)$ is closed and $0 \le \alpha(A - \lambda I) = \beta(A - \lambda I) < \infty$.

Next, we prove that dim ker $(B - \lambda I)$ is finite. Suppose to the contrary that dim ker $(B - \lambda I)$ is infinite. Then there exists an infinite sequence $\{u_2^n\}_{n=1}^{\infty}$ of linearly independent vectors in ker $(B - \lambda I)$. Since dim ker $(M_C - \lambda I) < \infty$, there exists a natural number n_0 such that $Cu_2^n \neq 0$ for every natural number $n > n_0$. (For if not, then $(M_C - \lambda I)(0 \oplus u_2^n) = 0$ for all n, and then dim ker $(M_C - \lambda I) = \infty$.) Without loss of generality we may assume that $Cu_2^n \neq 0$ for all n. Since $\beta(A - \lambda I) < \infty$, there exists a natural number n_1 such that $Cu_2^n \in \Re(A - \lambda I)$ for every $n > n_1$, i.e. there exists a sequence $\{u_1^n\}_{n=1}^{\infty}$ in \mathbb{X} such that $(A - \lambda I)(-u_1^n) = Cu_2^n$. Then $(M_C - \lambda I)(u_1^n \oplus u_2^n) = 0$ for every $n > n_1$, i.e. dim ker $(M_C - \lambda I) = \infty$.

The conclusion that dim ker($B - \lambda I$) < ∞ implies that 0 < dim ker($M_0 - \lambda I$) < ∞ and $\lambda \in \sigma_a^{iso}(M_C)$. Moreover, since $\lambda \in E_0(M_0) = \sigma_a(M_0) \setminus \sigma_{aw}(M_0)$, $\lambda \notin \sigma_{aw}(M_C)$. Hence property (*w*) holds for M_C .

Theorem 4.16. If the finite-a-isoloid operators A and B have SVEP, and if property (w) holds for both A and B, then property (w) holds for M_C for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. If the hypotheses of the theorem are satisfied then it follows from the argument of the proof of Theorem 4.15 that M_C obeys *a*-Browder's theorem, and if $\lambda \in E_0(M_C)$ then (by the finite-*a*-isoloid property of *A*) $\lambda \notin \sigma_{aw}(A)$, $\lambda \in \sigma_a^{iso}(B) \cup \rho_a(B)$ and dim ker $(B - \lambda I) < \infty$. Since *B* is finite-*a*-isoloid operator for which property (*w*) holds, $\lambda \in E_0(B) = \sigma_a(B) \setminus \sigma_{aw}(B)$. Hence, $\lambda \notin \sigma_{aw}(A) \cup \sigma_{aw}(B)$ and so $\lambda \notin \sigma_{aw}(M_C)$.

We consider now necessary and(/or) sufficient conditions for the implications M_0 satisfies property (w) $\Leftrightarrow M_C$ satisfies property (w). As one would expect, M_0 satisfies property (w) does not imply M_C satisfies property (w). For example, if $A, B, C \in \mathscr{L}(\ell^2 \oplus \ell^2)$ are the operators $A = U \otimes I, B = U^* \otimes I$ and C is the diagonal operator with entries $(0, I - UU^*, I - UU^*, \ldots)$, where $U \in \mathscr{L}(\ell^2)$ is the forward unilateral shift, then $\sigma_a(M_0) = \sigma_{aw}(M_0), \pi_0^a(M_0) = \emptyset = E_0(M_0)$ and M_0 satisfies property (w); however, $\sigma(M_C)$ is the closed unit disc **D**, $\sigma_w(M_C)$ is the boundary ∂ **D** of **D**, $\pi_0(M_C) = \emptyset$, and M_C does not satisfy Browder's theorem (much less property (w)). Conversely, M_C satisfies property (w) does not imply M_0 satisfies property (w), as the example of the operator $\begin{pmatrix} U & I - UU^* \\ 0 & U^* \end{pmatrix}$ shows. Recall, however, that M_0 satisfies a-Browder's theorem if and only if A and B have SVEP on $\Delta_a(M_0)$; hence, if M_C has SVEP on $\sigma_{aw}(M_0) \setminus \sigma_{aw}(M_C)$.

then, since M_0 satisfies *a*-Browder's theorem implies M_C has SVEP on $\Delta_a(M_C)$, M_C satisfies *a*-Browder's theorem.

Theorem 4.17.

- (a) If $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$, and either A^* or B has SVEP on $\Delta_a(M_C)$. Then the equivalence
 - M_0 satisfies property $(w) \Leftrightarrow M_C$ satisfies property (w)

holds if and only if $E_0(M_0) = E_0(M_C)$.

(b) If A and A^* , or A^* and B^* , have SVEP on $\Delta_a(M_C)$. Then the equivalence

 M_0 satisfies property (w) $\Leftrightarrow M_C$ satisfies property (w)

holds if and only if $E_0(M_0) = E_0(M_C)$.

(c) If A and A^{*} have SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(A)$, or A^{*} has SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(A)$ and B^{*} has SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(B)$. Then the equivalence

 M_0 satisfies property $(w) \Leftrightarrow M_C$ satisfies property (w)

holds if and only if $E_0(M_0) = E_0(M_C)$.

Proof.

(a) The hypothesis $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$ implies that $\sigma_{aw}(M_0) = \sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. If M_0 satisfies property (*w*) then M_0 satisfies *a*-Browder's theorem, so *A* and *B* have SVEP on $\Delta_a(M_0)$ implies that M_C has SVEP on $\Delta_a(M_C)$, and so M_C satisfies *a*-Browder's theorem. Hence

$$\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \sigma_a(M_0) \setminus \sigma_{aw}(M_0) = E_0(M_0) = \pi_0^a(M_0) = \pi_0^a(M_C) \subseteq E_0(M_C)$$

Assume now that M_C satisfies property (w), then M_C satisfies *a*-Browder's theorem $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$, and either A^* or *B* has SVEP on $\Delta_a(M_C)$. Since M_C satisfies *a*-Browder's theorem implies *A* has SVEP on $\Delta_a(M_C)$, if *B* has SVEP on $\Delta_a(M_C)$, then M_0 has SVEP on $\Delta_a(M_0) = \Delta_a(M_C)$, and so M_0 satisfies *a*-Browder's theorem. Assume now that A^* has SVEP on $\Delta_a(M_C)$: we prove that $\sigma_a(M_0) = \sigma_a(A) \cup \sigma_a(B) = \sigma_a(M_C)$. If $\mu \notin \sigma_a(M_C)$, then $M_C - \mu I$ and $A - \mu I$ are left invertible, $\mu \in \Delta_a(M_C)$. The left invertibility of $A - \mu I$ implies the right invertibility of $A^* - \mu I^*$; hence, since A^* has SVEP on $\Delta_a(M_C)$, $A^* - \mu I^*$ is invertible. But then the invertibile. Hence $\mu \notin \sigma_a(A) \cup \sigma_a(B)$. Since $\sigma_a(M_C) \subseteq \sigma_a(A) \cup \sigma_a(B)$ always, $\sigma_a(M_C) = \sigma_a(A) \cup \sigma_a(B) = \sigma_a(M_0)$. Assume now that M_C satisfies *a*-Browder's theorem. Then $\lambda \in \Delta_a(M_C)$ implies that $\lambda \in \sigma_a^{iso}(M_C) = \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$;

hence (*A* and *B* have SVEP on $\Delta_a(M_0) = \Delta_a(M_C)$ implies) M_0 has SVEP on $\Delta_a(M_0)$, and so M_0 satisfies *a*-Browder's theorem, and so

$$\sigma_a(M_0) \setminus \sigma_{aw}(M_0) = \sigma_a(M_C) \setminus \sigma_{aw}(M_C) = E_0(M_C) = \pi_0^a(M_C) = \pi_0^a(M_0) \subseteq E_0(M_0).$$

Thus, the statements of the theorem are equivalent if and only if $E_0(M_0) = E_0(M_C)$.

- (b) Let $\lambda \in \Delta_a(M_C)$. Then the hypothesis that A and A^* have SVEP on $\Delta_a(M_C)$ implies that $\lambda \in \Phi^0(A) \cap \Phi^-_+(B) \subseteq \Phi^-_+(A) \cup \Phi^-_+(B)$. Consequently, $\sigma_{aw}(A) \cup \sigma_{aw}(B) \subset \sigma_{aw}(M_C)$; hence $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. Again, if A^* and B^* have SVEP on $\Delta_a(M_C)$, then $\lambda \in \Delta_a(M_C)$ $\Rightarrow \lambda \in \Phi_+(A)$, $ind(A - \lambda I) + ind(B - \lambda I) \leq 0$ $\beta(A - \lambda I) \leq \alpha(A - \lambda I)$, $\beta(B - \lambda I) \leq \alpha(B - \lambda I)$. Hence, in view of Proposition 3.3 of [15], $\lambda \in \Phi^0(A) \cap \Phi^0(B) \subseteq \Phi^-_+(A) \cup \Phi^-_+(B)$, which (once again) leads to the conclusion that $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. Applying part (a), the proof follows.
- (c) Let $\lambda \in \Delta_a(M_C)$. Then $\lambda \in \Phi_+(A)$ and $ind(A \lambda I) + ind(B \lambda I) \leq 0$. If *A* and *A*^{*} have SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(A)$, then $\lambda \in \Phi^0(A)$ (is isolated in $\sigma_a(A)$), and this forces $\lambda \in \Phi_+^-(B)$. Hence $\lambda \notin \sigma_{aw}(A) \cup \sigma_{aw}(B)$, which leads us to the equality $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. Again, if *A*^{*} has SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(A)$, then $\lambda \in \Phi_+^-(A)$ and this implies $\lambda \in \Phi_+(B)$; thus, if *B*^{*} has SVEP on $\Delta_a(M_C) \setminus \sigma_{SF_+}(B)$, then $\lambda \in \Phi_+^-(B)$, which forces $\lambda \in \Phi^0(A) \cap \Phi^0(B)$ and $\lambda \in \sigma^{iso}(A) \cup \sigma^{iso}(B)$. Once again, we conclude that $\sigma_{aw}(M_C) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. The proof now follows from an application of part (b) (since both *A* and *A*^{*} have SVEP on $\Delta_a(M_C)$).

Theorem 4.18. (a). If $\sigma_{aw}(M_0) = \sigma_{aw}(M_C)$, then M_0 satisfies property (w) implies M_C satisfies property (w) if and only if $E_0(M_C) \subseteq E_0(M_0)$.

(b). If $\sigma_{aw}(M_0) = \sigma_{aw}(M_C)$ and A^* has SVEP on $\Delta_a(M_C)$, then then M_C satisfies property (w) implies M_0 satisfies property (w) if and only if $E_0(M_0) \subseteq E_0(M_C)$.

Proof.

(a) Since M_0 satisfies property (w) implies M_0 satisfies *a*-Browder's theorem, *A* and *B* have SVEP on $\Delta_a(M_C)$. $(\sigma_{aw}(M_C) = \sigma_{aw}(M_0) = \sigma_{aw}(A) \cup \sigma_{aw}(B))$. Hence M_C satisfies *a*-Browder's theorem by Theorem 4.12 of [15]. Thus $\lambda \in \pi_0^a(M_C)$ if and only if $\lambda \in \Delta_a(M_C) = \Delta_a(M_0) = \pi_0^a(M_0) = E_0(M_0)$. It follows that

$$\sigma_a(M_C) \setminus \sigma_{aw}(M_C) = \pi_0^a(M_C) = \pi_0^a(M_0) = E_0(M_0) \subseteq E_0(M_C),$$

which proves that M_C satisfies property (*w*) if and only if $E_0(M_C) \subseteq E_0(M_0)$.

(b) The argument of th proof of Theorem 4.12 part(i) of [15] shows that if $\sigma_{aw}(M_0) = \sigma_{aw}(M_C)$ and A^* has SVEP on $\Delta_a(M_C)$, then $\sigma_a(M_C) = \sigma_a(M_0) = \sigma_a(A) \cup \sigma_a(B)$. Thus, if M_C satisfies property (*w*), then M_0 satisfies *a*-Browder's theorem, i.e., $\Delta_a(M_0) = \pi_0^a(M_0)$ and

$$\Delta_a(M_0) = \Delta_a(M_C) = \pi_0^a(M_C) = \pi_0^a(M_0) = E_0(M_0) \subseteq E_0(M_C),$$

MOHAMMAD H. M. RASHID

where the equality $\pi_0^a(M_0) = \pi_0^a(M_C)$ follows from the implications

$$\lambda \in \pi_0^a(M_C) \Leftrightarrow \lambda \in \Delta_a(M_C) = \Delta_a(M_0) \Leftrightarrow \lambda \in \pi_0^a(M_0).$$

hence M_0 satisfies property (*w*) if and only if $E_0(M_C) \subseteq E_0(M_0)$.

Theorem 4.19. If $\sigma_{aw}(A) = \sigma_{SF_+}(B)$, A is a-isoloid and property (w), then M_0 satisfies property (w) implies M_C satisfies property (w).

Proof. Start by observing that if $\lambda \in \Phi_+^-(M_C)$ and $ind(A - \lambda I) > 0$, then $\lambda \in \Phi(A) \cap \Phi_+(B)$ and $ind(A - \lambda I)) + ind(B - \lambda I)) \leq 0$; if, instead, $ind(A - \lambda I) \leq 0$, then $\sigma_{aw}(A) = \sigma_{SF_+}(B)$ and $\lambda \in \Phi_+^-(M_C)$ imply that $\lambda \in \Phi_+^-(A) \cap \Phi_+(B)$ and $ind(A - \lambda I) + ind(B - \lambda I) \leq 0$. In either case, $\lambda \in \Phi_+^-(M_C)$ implies $\lambda \in \Phi_+^-(M_0)$; hence $\sigma_{aw}(M_C) = \sigma_{aw}(M_0)$. In view of Theorem 4.18, we are thus left to prove that $E_0(M_C) \subseteq E_0(M_0)$. If $\lambda \in E_0(M_C)$, then $\lambda \in \sigma_a^{iso}(A) \cup \sigma_a^{iso}(B)$, and so $\lambda \in$ $E_0(A) = \Delta_a(A) = \sigma_a(B) \setminus \sigma_{SF_+}(B)$ (since *A* is *a*-isoloid, *A* satisfies property (*w*) and $\sigma_{aw}(A) =$ $\sigma_{SF_+}(B)$. But then, since M_0 satisfies *a*-Browder's theorem implies *B* has SVEP at $\lambda, \lambda \in \pi_0^a(B)$. Hence $\lambda \in \pi_0^a(M_0) = E_0(M_0)$.

Remark 4.20. If A^* has SVEP, then $\lambda \in \Delta_a(M_C)$ implies $\lambda \in \Phi(A) \cap \Phi^-_+(B)$, $ind(A - \lambda I) \ge 0$ and $ind(A - \lambda I) + ind(B - \lambda I) \le 0$; this in turn implies that $\lambda \notin \sigma_{aw}(A) \cup \sigma_{aw}(B)$. Thus, if A^* has SVEP and M_0 satisfies *a*-Browder's theorem, then $\sigma_{aw}(M_0) = \sigma_{aw}(A) \cup \sigma_{aw}(B) = \sigma_{aw}(M_C)$.

Theorem 4.21. If $\sigma_a(A^*)$ has empty interior, A is a-isoloid and property (w), then M_0 satisfies property (w) implies M_C satisfies property (w).

Proof. Evidently, A^* has SVEP, M_0 satisfies *a*-Browder's theorem and $\sigma_{aw}(M_0) = \sigma_{aw}(M_C)$. Now argue as in the (latter part of the) proof of Theorem 4.19.

For an operator $T \in \mathscr{L}(\mathbb{X})$ such that T^* has SVEP, T satisfies Weyl's theorem if and only if T property (w) [3, Theorem 2.16]. Thus, if A^* and B^* have SVEP, then $M_X^* = M_0^*$ or M_C^* has SVEP, and the (two way) implication M_X satisfies Weyl's theorem if and only if M_X satisfies property (w). The following theorem, proves more.

Theorem 4.22. If $S_{\sigma_{SF_+}(A)}(A^*) \cup S_{\sigma_{SF_+}(B)}(B^*) = \emptyset$, then M_C satisfies Weyl's theorem if and only M_C satisfies a-Weyl's theorem if and only if M_C satisfies property (w).

Proof. The implication M_C satisfies *a*-Weyl's theorem or M_C satisfies property (*w*) implies M_C satisfies Weyl's theorem being clear, we prove the reverse implication. For this, it would suffice to prove that $\sigma(M_C) = \sigma_a(M_C)$ (which would then imply $E_0(M_C) = E_0^a(M_C)$ and $\sigma_w(M_C) = \sigma_{aw}(M_C)$).

Evidently, $\sigma_a(M_C) \subseteq \sigma(M_C)$. Let $\lambda \notin \sigma_a(M_C)$. Then $M_C - \lambda I$ and $A - \lambda I$ are left invertible.

The left invertibility of $A - \lambda I$ implies $\lambda \in \Phi_+(A)$. Since A^* has SVEP at points $\lambda \in \Phi_+(A)$, it follows that $A - \lambda I$ is invertible. But then $B - \lambda I$ is left invertible, which (because B^* has SVEP at points $\lambda \in \Phi_+(B)$ implies that $B - \lambda I$ is invertible. Thus, $\lambda \notin \sigma(A) \cup \sigma(B)$, i.e., $\sigma(M_C) \subseteq \sigma(A) \cup \sigma(B) \subseteq \sigma_a(M_C)$. Next, we prove that $\sigma_w(M_C) \subseteq \sigma_{aw}(M_C)$: this would then imply the equality $\sigma_w(M_C) = \sigma_{aw}(M_C)$. Let $\lambda \notin \sigma_{aw}(M_C)$; then $\lambda \in \Phi_+(A)$ (and $ind(A - \lambda I) + ind(B - \lambda I) \leq 0$). Since A^* has SVEP at points $\lambda \in \Phi_+(A)$, it follows that $ind(A - \lambda I) \geq 0$ implies $\lambda \in \Phi(A)$ (with $ind(A - \lambda I) \geq 0$). Since this forces $\lambda \in \Phi_+(B)$, it follows (from the hypothesis B^* has SVEP on the set of $\lambda \in \Phi_+(B)$) that $\lambda \in \Phi(B)$ and $ind(B - \lambda I) \geq 0$. Since $ind(A - \lambda I) + ind(B - \lambda I) \leq 0$, we conclude that $\lambda \in \Phi^0(A) \cap \Phi^0(B)$. Hence $\sigma_w(M_C) \subseteq \sigma_w(A) \cup \sigma_w(B) \subseteq \sigma_{aw}(M_C)$, and the proof is achieved.

Two important *T*-invariant subspaces of *T* are defined as follows. The *quasinilpotent* part $H_0(T - \lambda I)$ and the *analytic core* $K(T - \lambda I)$ of $T - \lambda I$ are defined by

$$H_0(T - \lambda I) := \{ x \in \mathbb{X} : \lim_{n \to \infty} \| (T - \lambda I)^n x \|^{\frac{1}{n}} = 0 \}.$$

and

$$K(T - \lambda I) = \{x \in \mathbb{X} : \text{there exists a sequence } \{x_n\} \subset \mathbb{X} \text{ and } \delta > 0 \text{ for which}$$
$$x = x_0, (T - \lambda I)x_{n+1} = x_n \text{ and } ||x_n|| \le \delta^n ||x|| \text{ for all } n = 1, 2, \ldots\}.$$

Note that $(T - \lambda I)K(T - \lambda I) = K(T - \lambda I)$ [1, Chapter 1], Moreover (see [2]),

 $H_0(T - \lambda I)$ is closed $\Longrightarrow T$ has SVEP at λ .

Lemma 4.23. ([4]) Suppose that for a bounded linear operator $T \in \mathscr{L}(\mathbb{X})$ there exists $\lambda_0 \in \mathbb{C}$ such that $K(T - \lambda_0 I) = \{0\}$ and $\ker(T - \lambda_0 I) = \{0\}$. Then $\sigma_p(T) = \emptyset$.

Proof. Since $\ker(T - \lambda I) \subseteq \ker(T - \lambda_0 I)$ for all $\lambda \neq \lambda_0$, so that $\ker(T - \lambda I) = \{0\}$ for all $\lambda \in \mathbb{C}$.

Theorem 4.24. Suppose that there exists $\lambda_0 \in \mathbb{C}$ such that

$$K(A - \lambda_0 I) = \{0\}, \ker(A - \lambda_0 I) = \{0\}, K(B - \lambda_0 I) = \{0\}$$
 and $\ker(B - \lambda_0 I) = \{0\}$.

Then property (*w*) *holds for* $f(M_C)$ *for all* $f \in H(\sigma(f(M_C)))$.

Proof. It follows from Lemma 4.23 that $\sigma_p(A) = \sigma_p(B) = \emptyset$, so *A* and *B* have SVEP and hence M_C has SVEP. We show that also $\sigma_p(f(M_C)) = \emptyset$. Let $\mu \in \sigma(f(M_C))$ and write $f(\lambda) - \mu = p(\lambda)g(\lambda)$, where *g* is analytic on an open neighborhood *U* containing $\sigma(M_C)$ and without zeros in $\sigma(M_C)$, *p* a polynomial of the form $p(\lambda) = \prod_{k=1}^n (\lambda - \lambda_k)^{\nu_k}$, with distinct roots $\lambda_1, \ldots, \lambda_n$ lying in $\sigma(M_C)$. Then

$$f(M_C) - \mu I = \prod_{k=1}^n (M_C - \lambda_k I)^{\nu_k} g(M_C).$$

Since $g(M_C)$ is invertible, $\sigma_p(M_C) \subseteq \sigma_p(A) \cup \sigma_p(B) = \emptyset$ implies that ker $(f(M_C) - \mu I) = \{0\}$ for all $\mu \in \mathbb{C}$. Since M_C has SVEP then $f(M_C)$ has SVEP, see Theorem 2.40 of [1], so that $f(M_C) \in aB$ [5]. To prove that property (*w*) holds for $f(M_C)$, by Theorem 2.7 of [3] it then suffices to prove that

$$\pi_0^a(f(M_C)) = E_0(f(M_C)).$$

Obviously, the condition $\sigma_p(f(M_C)) = \emptyset$ entails that

$$E_0(f(M_C)) = E_0^a(f(M_C)) = \emptyset.$$

On the other hand, the inclusion $\pi_0^a(f(M_C)) \subseteq E_0^a(f(M_C))$ holds for every operator $M_C \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$, so also $\pi_0^a(f(M_C))$ is empty. Hence, the result follows.

Recall that an operator $T \in \mathscr{L}(\mathbb{X})$ is an *a*-polaroid if $\sigma_a^{iso}(T) \subseteq \pi(T)$. Since $\pi_0(T) \subseteq E_0^a(T)$, then if *T* is *a*-polaroid then $\pi_0(T) = E_0^a(T)$.

Theorem 4.25. Let A and B be a-polaroid with the SVEP. Then M_C obeys property (w) for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. *A* and *B* are *a*-polaroid hence $\pi_0(A) = E_0^a(A)$ and $\pi_0(B) = E_0^a(B)$. Since *A* and *B* have the SVEP, we have by by [3] that *A* and *B* satisfy property (*w*). Therefore,

$$E_0(M_0) = \Delta_a(M_0) = \Delta_a(M_C).$$

Hence it is enough to show that $E_0(M_0) = E_0(M_C)$. Let $\lambda \in E_0(M_C)$. Then $\lambda \in \sigma_p(M_C) \subseteq \sigma_p(A) \cup \sigma_p(B)$. Hence $\lambda \in \sigma_p(M_0)$. Since $\lambda \in \sigma^{iso}(M_C) = \sigma^{iso}(M_0)$ we have $\lambda \in E_0(M_0)$. Now let $\lambda \in E_0(M_0)$. If $\lambda \in \sigma_a(A)$ then $\lambda \in \sigma_a^{iso}(A)$. Since A is a-isoloid, we have $\lambda \in \sigma_p(A) \subseteq \sigma_p(M_C)$. Hence $\lambda \in E_0(M_C)$. If $\lambda \sigma_a(B) \setminus \sigma_a(A)$, then $\lambda \in \sigma_p(B)$. Since A is invertible, we conclude that $\lambda \in \sigma_p(M_C)$. Thus $\lambda \in E_0(M_C)$. So the proof of the theorem is achieved.

Theorem 4.26. Let A be an a-isoloid. Assume that A and B (or A^* and B^*) have the SVEP. If A and M_0 satisfy property (w) then M_C satisfies property (w) for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Let $\lambda \in \Delta_a(M_C)$. Then $\sigma_a(M_C) = \sigma_a(M_0)$ and hence $\Delta_a(M_C) = \Delta_a(M_0) = E_0(M_0)$ since M_0 satisfies property (*w*). Thus $\lambda \in \sigma_a^{iso}(M_0) = \sigma_a^{iso}(M_C)$. If $\lambda \in \sigma_a^{iso}(A)$, since A is a-isoloid then $\lambda \in \sigma_p(A)$. Hence $\lambda \in \sigma_p(M_C)$. Then $\lambda \in E_0(M_C)$. Now assume that $\lambda \in \sigma_a^{iso}(B) \setminus \sigma_a^{iso}(A)$. If $\lambda \notin \sigma_a(A)$ then it is not difficult to see that $\lambda \in \sigma_p(M_C)$. Also if $\lambda \in \sigma_p(A)$ then $\lambda \in \sigma_p(M_C)$, so assume that $\lambda \in \sigma_p(B) \setminus \sigma_p(A)$. Then $\lambda \notin E_0(A)$. Since A satisfies property (*w*), then $\lambda \in \sigma_aw(A)$. This is impossible. Therefore, $\lambda \in E_0(M_C)$. Conversely, assume that $\lambda \in E_0(M_C)$. Then $\lambda \notin \sigma_a^{iso}(M_C) = \sigma_a^{iso}(M_0)$. On the other hand, $\lambda \in \sigma_p(M_C) \subseteq \sigma_p(A) \cup \sigma_p(B)$. Hence $\lambda \in \sigma_p(M_0)$. Thus

$$\lambda \in E_0(M_0) = \Delta_a(M_0) = \Delta_a(M_C).$$

Acknowledgement

I am grateful to the referee for his valuable comments and helpful suggestions.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- P. Aiena, M. L. Colasantce and M. Gonzealez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130 (2002), 2701–2710
- [3] P. Aiena and P. Peña, Variations on Weyls theorem, J. Math. Anal. Appl., 324 (1)(2006), 566–579.
- [4] P. Aiena, Maria T. Biondi and F. Villafañe, *Property (w) and perturbations III*, J. Math. Anal. Appl., **353** (2009), 205–214.
- [5] P. Aiena, C. Carpintero and E. Rosas, Some characterization of operators satisfying a-Browder theorem, J. Math. Anal. Appl., 311 (2005), 530–544.
- [6] X. Cao and B. Meng, *Essential approximate point spectra and Weyls theorem for operator matrices*, J. Math. Anal. Appl., **304** (2005), 759–771.
- [7] X. Cao, M. Guo and B. Meng, *Weyl's theorem for upper triangular operator matrices*, Linear Alg. Appl., **402** (2005), 61–73.
- [8] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J., 13(1966), 285–288.
- [9] D. S. Djordjević, *Operators obeying a-Weyls theorem*, Publ. Math. Debrecen, **55** (3) (1999), 283–298.
- [10] S. V. Djordjević and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc., 131 (2003), 2543–2547.
- [11] S. V. Djordjević and H. Zguitti, Essential point spectra of operator matrices through local spectral theory, J. Math. Anal. Appl., 338 (2008), 285–291.
- [12] B. P. Duggal, *Hereditarily normaloid operators*, Extracta Math., **20** (2005), 203–217.
- [13] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, J. Math. Anal. Appl., 340(2008), 366– 373.
- [14] B. P. Duggal, *Upper triangular operator matrices*, SVEP and Browder, Weyl Theorems, Integral Equations and Operator Theory, **63** (2009), 17–28.
- [15] B. P. Duggal, Browder and Weyl spectra of upper triangular operator matrices, Filomat, 24 (2) (2010), 111–130.
- [16] R. Harte, W. Y. Lee, Another note on Weyls theorem, Trans. Amer. Math. Soc., 349 (1997), 2115–2124.
- [17] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
- [18] M. Houimdi and H. Zguitti, *Proporties spectrales locales d'une matrice carree des operateurs*, Acta Math. Vietnam., **25** (2000), 137–144.
- [19] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Oxford. Clarendon, 2000.
- [20] W. Y. Lee, Weyls theorem for operator matrices, Integr. Equat. Op. Th., 32 (1998), 319–331.
- [21] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 10(1986), 915–919.
- [22] V. Rakočević, On a class of operators, Math. Vesnik, 37 (1985), 423-426.
- [23] V. Rakočević, Semi-Browder operators and perturbations, Studia Math., 122(1997), 131–137.
- [24] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann., 163 (1966), 18–49.
- [25] A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, John Wiley and Sons, 1980.

Department of Mathematics & Statistics, Faculty of Science, P.O.Box(7), Mu'tah University, Al-Karak-Jordan.

E-mail: malik_okasha@yahoo.com