PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES

MOHAMMAD H. M. RASHID

Abstract

Let $M_{C}=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right) \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$ be be an upper triangulate Banach space operator. The relationship between the spectra of M_{C} and M_{0}, and their various distinguished parts, has been studied by a large number of authors in the recent past. This paper brings forth the important role played by SVEP, the single-valued extension property, in the study of some of these relations. In this work, we prove necessary and sufficient conditions of implication of the type M_{0} satisfies property $(w) \Leftrightarrow M_{C}$ satisfies property (w) to hold. Moreover, we explore certain conditions on $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$ so that the direct sum $T \oplus S$ obeys property (w), where \mathscr{H} and \mathscr{K} are Hilbert spaces.

1. Introduction

Throughout this paper, \mathbb{X} and \mathbb{Y} are Banach spaces and $\mathscr{L}(\mathbb{X}, \mathbb{Y})$ denotes the space of all bounded linear operators from \mathbb{X} to \mathbb{Y}. For $\mathbb{X}=\mathbb{Y}$ we write $\mathscr{L}(\mathbb{X}, \mathbb{Y})=\mathscr{L}(\mathbb{X})$. For $T \in \mathscr{L}(\mathbb{X})$, let $T^{*}, \operatorname{ker}(T), \Re(T), \sigma(T), \sigma_{d}(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote the adjoint, the null space, the range, the spectrum, the surjective spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dimker}(T)$ and $\beta(T)=\operatorname{codim} \Re(T)$.

For A, B and $C \in \mathscr{L}(\mathbb{X})$, let M_{C} denote the upper triangular operator matrix $M_{C}=\left(\begin{array}{ll}A & C \\ 0 & B\end{array}\right)$. A study of the spectrum, the Browder and Weyl spectra, and the Browder and Weyl theorems for the operator M_{C}, and the related diagonal operator $M_{0}=A \oplus B$, has been carried by a number of authors in the recent past (see $[6,10,11,20]$ for further references). Of particular interest here is the relationship between the spectral, the Fredholm, the Browder and the Weyl properties.

Let $a:=a(T)$ be the ascent of an operator T; i.e., the smallest nonnegative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, let $d:=d(T)$ be descent of an operator T; i.e., the smallest nonnegative integer s such that

[^0]$\Re\left(T^{s}\right)=\Re\left(T^{s+1}\right)$, and if such integer does not exist we put $d(T)=\infty$. It is well known that if $a(T)$ and $d(T)$ are both finite then $a(T)=d(T)$ [17, Proposition 38.3].

In this paper, we introduce most of our notation and terminology in Section 2, Section 3 is devoted to proving a number of complementary results, sections 3 and 4 are devoted to proving our main results. In Section 3, we explore certain conditions on T and S so that the direct sum $T \oplus S$ obeys property (w). We consider property (w) for the operators M_{0} and M_{C} in Section 4 . Here we prove a necessary and sufficient for the equivalence M_{0} satisfies property $(w) \Leftrightarrow M_{C}$ satisfies property (w) for operators M_{C} such that $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$, which is then applied to deduce a number of known results. For operators M_{0} and M_{C} such that $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)$, we prove a sufficient condition for the implications M_{0} property $(w) \Rightarrow M_{C}$ satisfies property (w) and M_{C} satisfies property $(w) \Rightarrow M_{0}$ satisfies property (w).

2. Notation and terminology

Let $\Phi_{+}(\mathbb{X}):=\{T \in \mathscr{L}(\mathbb{X}): \alpha(T)<\infty$ and $T(\mathbb{X})$ is closed $\}$ be the class of all upper semiFredholm operators, and let $\Phi_{-}(\mathbb{X}):=\{T \in \mathscr{L}(\mathbb{X}): \beta(T)<\infty\}$ be the class of all lower semiFredholm operators. The class of all semi-Fredholm operators is defined by $\Phi_{ \pm}(\mathbb{X}):=\Phi_{+}(\mathbb{X}) \cup$ $\Phi_{-}(\mathbb{X})$, while the class of all Fredholm operators is defined by $\left.\Phi(\mathbb{X})\right):=\Phi_{+}(\mathbb{X}) \cap \Phi_{-}(\mathbb{X})$. If $T \in$ $\Phi_{ \pm}(\mathbb{X})$, the index of T is defined by

$$
\operatorname{ind}(T):=\alpha(T)-\beta(T) .
$$

Recall that a bounded operator T is said bounded below if it injective and has closed range. Evidently, if T is bounded below then $T \in \Phi_{+}(\mathbb{X})$ and $\operatorname{ind}(T) \leq 0$. Define

$$
W_{+}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): \operatorname{ind}(T) \leq 0\right\},
$$

and

$$
W_{-}(\mathbb{X}):=\left\{T \in \Phi_{-}(\mathbb{X}): \operatorname{ind}(T) \geq 0\right\} .
$$

The set of Weyl operators is defined by

$$
W(\mathbb{X}):=W_{+}(\mathbb{X}) \cap W_{-}(\mathbb{X})=\{T \in \Phi(\mathbb{X}): \operatorname{ind}(T)=0\} .
$$

The classes of operators defined above generate the following spectra. Denote by

$$
\sigma_{a}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not bounded below }\}
$$

the approximate point spectrum, and by

$$
\sigma_{d}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not surjective }\}
$$

the surjectivity spectrum of $T \in \mathscr{L}(\mathbb{X})$. The Weyl spectrum is defined by

$$
\sigma_{w}(T):=\{\lambda \in \mathbb{C}: T-\lambda \notin W(\mathbb{X})\}
$$

the Weyl essential approximate point spectrum is defined by

$$
\sigma_{a w}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin W_{+}(\mathbb{X})\right\},
$$

while the Weyl essential surjectivity spectrum is defined by

$$
\sigma_{l w}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin W_{-}(\mathbb{X})\right\},
$$

Obviously, $\sigma_{w}(T)=\sigma_{a w}(T) \cup \sigma_{l w}(T)$ and from basic Fredholm theory we have

$$
\sigma_{a w}(T)=\sigma_{w s}\left(T^{*}\right) \quad \sigma_{w s}(T)=\sigma_{a w}\left(T^{*}\right)
$$

Note that $\sigma_{a w}(T)$ is the intersection of all approximate point spectra $\sigma_{a}(T+K)$ of compact perturbations K of T, while $\sigma_{l w}(T)$ is the intersection of all surjectivity spectra $\sigma_{s}(T+K)$ of compact perturbations K of T, see, for instance, [1, Theorem 3.65].

The class of all upper semi-Browder operators is defined by

$$
B_{+}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): a(T)<\infty\right\},
$$

while the class of all lower semi-Browder operators is defined by

$$
B_{-}(\mathbb{X}):=\left\{T \in \Phi_{+}(\mathbb{X}): d(T)<\infty\right\} .
$$

The class of all Browder operators is defined by

$$
B(\mathbb{X}):=B_{+}(\mathbb{X}) \cap B_{-}(\mathbb{X})=\{T \in \Phi(\mathbb{X}): a(T), d(T)<\infty\} .
$$

We have

$$
B(\mathbb{X}) \subseteq W(\mathbb{X}), \quad B_{+}(\mathbb{X}) \subseteq W_{+}(\mathbb{X}), \quad B_{-}(\mathbb{X}) \subseteq W_{-}(\mathbb{X})
$$

see [1, Theorem 3.4]. The Browder spectrum of $T \in \mathscr{L}(\mathbb{X})$ is defined by

$$
\sigma_{b}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \notin B(\mathbb{X})\},
$$

the upper Browder spectrum is defined by

$$
\sigma_{u b}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin B_{+}(\mathbb{X})\right\},
$$

and analogously the lower Browder spectrum is defined by

$$
\sigma_{l b}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin B_{-}(\mathbb{X})\right\} .
$$

Clearly, $\sigma_{b}(T)=\sigma_{u b}(T) \cup \sigma_{l b}(T)$ and $\sigma_{w}(T) \subseteq \sigma_{b}(T)$.
Let write $K^{i s o}$ for the set of all isolated points of $K \subseteq \mathbb{C}$. For a bounded operator $T \in \mathscr{L}(\mathbb{X})$ set $\pi_{0}(T):=\sigma(T) \backslash \sigma_{b}(T)=\{\lambda \in \sigma(T): T-\lambda I \in \mathscr{L}(\mathbb{X})\}$. Note that every $\lambda \in \pi_{0}(T)$ is a pole of the resolvent and hence an isolated point of $\sigma(T)$, see [17, Proposition 50.2]. Moreover, $\pi_{0}(T)=$ $\pi_{0}\left(T^{*}\right)$. Define

$$
E_{0}(T):=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda I)<\infty\} .
$$

Obviously,

$$
\pi_{0}(T) \subseteq E_{0}(T) \quad \text { for every } T \in \mathscr{L}(\mathbb{X})
$$

For a bounded operator $T \in \mathscr{L}(\mathbb{X})$ let us define

$$
E_{0}^{a}(T):=\left\{\lambda \in i \operatorname{so\sigma }_{a}(T): 0<\alpha(T-\lambda I)<\infty\right\}
$$

and

$$
\pi_{0}^{a}(T):=\sigma_{a}(T) \backslash \sigma_{u b}(T)=\left\{\lambda \in \sigma_{a}(T): T-\lambda I \in B_{+}(\mathbb{X})\right\} .
$$

Hence we have

$$
\pi_{0}(T) \subseteq \pi_{0}^{a}(T) \subseteq E_{0}^{a}(T) \text { and } E_{0}(T) \subseteq E_{0}^{a}(T)
$$

Following Harte and W.Y. Lee [16], we shall say that T satisfies Browder's theorem if $\sigma_{w}(T)=\sigma_{b}(T)$, while, $T \in \mathscr{L}(\mathbb{X})$ is said to satisfy a-Browder's theorem if $\sigma_{a w}(T)=\sigma_{u b}(T)$. Let $\Delta(T)=\sigma(T) \backslash \sigma_{w}(T)$ and $\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{a w}(T)$. Following Coburn [8], we say that Weyl's theorem holds for $T \in \mathscr{L}(\mathbb{X})$ if $\Delta(T)=E_{0}(T)$. According to Rakoc̃ević [21], an operator $T \in \mathscr{L}(\mathbb{X})$ is said to satisfy a-Weyl's theorem if $\Delta_{a}(T)=E_{0}^{a}(T)$. We can write

$$
\Delta_{a}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \in W_{+}(\mathbb{X}) \text { and } \alpha(T-\lambda I)>0\right\} .
$$

It is known (see [21]) that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem too, but the converse does not hold in general.

Recall that an operator $T \in \mathscr{L}(\mathbb{X})$ is said to satisfy property (w) if $\Delta_{a}(T)=E_{0}(T)$. In [22] the author introduce the property (w) which is a variant of Weyl's theorem.

An operator $T \in \mathscr{L}(\mathbb{X})$ has the single-valued extension property at $\lambda_{0} \in \mathbb{C}$, SVEP at λ_{0}, if for every open disc $U_{\lambda_{0}}$ centered at λ_{0} the only analytic function $f: U_{\lambda_{0}} \longrightarrow \mathbb{X}$ which satisfies ($T-\lambda I$) $f(\lambda)=0$ for all $\lambda \in U_{\lambda_{0}}$ is the function $f \equiv 0$. Trivially, every operator T has SVEP on the resolvent set $\rho(T)=\mathbb{C} \backslash \sigma(T)$; also T has SVEP at points $\lambda \in \sigma^{i s o}(T)$. Let $S(T)$ denote the set of $\lambda \in \mathbb{C}$ where T does not have SVEP: we say that T has SVEP if $S(T)=\varnothing$. SVEP plays an important role in determining the relationship between the Browder and Weyl spectra, and the Browder and Weyl theorems. Thus $\sigma_{b}(T)=\sigma_{w}(T) \cup S(T)=\sigma_{w}(T) \cup S\left(T^{*}\right)$, and if T^{*} has SVEP then $\sigma_{b}(T)=\sigma_{w}(T)=\sigma_{a b}(T)=\sigma_{a w}(T)$ [1, Page 141-142]; T satisfies Browder's theorem (resp., a-Browder's theorem) if and only if T has SVEP at $\lambda \notin \sigma_{w}(T)$ (resp., $\lambda \notin \sigma_{a w}(T)$) [12, Lemma 2.18]; and if T^{*} has SVEP, then $T \in \mathscr{W}$ if and only if $T \in a W$.

In the following, the diagonal operator M_{0} and the upper operator M_{C} will defined as in the introduction, and $T \in \mathscr{L}(q)$ shall denote a general Banach space operator. It is known that if either $S\left(A^{*}\right)=\varnothing$ or $S(B)=\varnothing$, then $\sigma\left(M_{C}\right)=\sigma\left(M_{0}\right)=\sigma(A) \cup \sigma(B)$; if $S(A) \cup S(B)=\varnothing$, then M_{C} has SVEP, $\sigma_{b}\left(M_{c}\right)=\sigma_{w}\left(M_{C}\right)=\sigma_{w}\left(M_{0}\right)=\sigma_{b}\left(M_{0}\right)$, and $M_{C} \in a B$. Browders theorem, much less Weyls theorem, does not transfer from individual operators to direct sums: for example, the forward unilateral shift and the backward unilateral shift on a Hilbert space satisfy Browder's theorem, but their direct sum does not. However, if $\left(S(A) \cap S\left(B^{*}\right)\right) \cup S\left(A^{*}\right)=\varnothing$, then : M_{0} satisfies Browder's theorem (resp., a-Browder's theorem) implies M_{C} satisfies Browder's theorem (resp., a-Browder's theorem); if points $\lambda \in \sigma^{i s o}(A)$ are eigenvalues of $A \in \mathscr{W}$, then $M_{0} \in \mathscr{W}$ implies $M_{C} \in \mathscr{W}$ [11, Proposition 4.1 and Theorem 4.2].
It is known that from $[6,7,9,10,11]$ that
(i) $\sigma_{x}\left(M_{0}\right)=\sigma_{x}(A) \cup \sigma_{x}(B)=\sigma_{x}\left(M_{C}\right) \cup\left\{\sigma_{x}(A) \cap \sigma_{x}(B)\right\}$, where $\sigma_{x}=\sigma, \sigma_{b}$ or σ_{e};
(ii) $\sigma_{w}\left(M_{0}\right) \subseteq \sigma_{w}(A) \cup \sigma_{w}(B)=\sigma_{w}\left(M_{C}\right) \cup\left\{\sigma_{w}(A) \cap \sigma_{w}(B)\right\}$;
(iii) if $\sigma_{w}\left(M_{C}\right)=\sigma_{w}(A) \cup \sigma_{w}(B)$, then $\sigma\left(M_{C}\right)=\sigma\left(M_{0}\right)$ and
(iv) $\sigma_{a w}\left(M_{0}\right) \subseteq \sigma_{a w}(A) \cup \sigma_{a w}(B)=\sigma_{a w}\left(M_{C}\right) \cup\left\{S(A) \cup S\left(A^{*}\right)\right\}$.

Remark 2.1. Let $S P(T)$ be the spectral picture of T, it is known that: if either $S P(A)$ or $S P(B)$ has no pseudo holes, then $\sigma^{a c c}\left(M_{0}\right) \subseteq \sigma_{w}\left(M_{0}\right) \Rightarrow \sigma^{a c c}\left(M_{C}\right) \subseteq \sigma_{w}\left(M_{C}\right)$ [20, Theorem 2.3]; if additionally A is an isoloid (the isolated points of $\sigma(A)$ are eigenvalues of A) and A satisfies Weyl's theorem, then $M_{0} \in \mathscr{W} \Rightarrow M_{C} \in \mathscr{W}$ [20, Theorem 2.4]. If $\left\{S(A) \cap S\left(B^{*}\right)\right\} \cup S\left(A^{*}\right)=\varnothing$, then $\sigma^{a c c}\left(M_{0}\right) \subseteq \sigma_{w}\left(M_{0}\right) \Rightarrow \sigma^{a c c}\left(M_{C}\right) \subseteq \sigma_{w}\left(M_{C}\right)$ [11, Proposition 4.1]. Again, if $\sigma_{a}\left(A^{*}\right)$ has empty interior, A is an a-isoloid (isolated points of $\sigma_{a}(A)$ are eigenvalues of A) and $A \in a \mathscr{W}$, then $M_{0} \in a \mathscr{W} \Rightarrow M_{C} \in a \mathscr{W}$ [7, Theorem 3.3].

3. Property (w) for direct sum

Let \mathscr{H} and \mathscr{K} be infinite-dimensional Hilbert spaces. In this section we show that if T and S are two operators on \mathscr{H} and \mathscr{K} respectively and at least one of them satisfies property (w) then their direct sum $T \oplus S$ obeys property (w) under certain conditions. We have also explored various conditions on T and S so that $T \oplus S$ satisfies property (w).

Theorem 3.1. Suppose that property (w) holds for $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$. If T and S are isoloid and $\sigma_{a w}(T \oplus S)=\sigma_{a w}(T) \cup \sigma_{a w}(S)$, then property (w) holds for $T \oplus S$.

Proof. We know that $\sigma_{a}(T \oplus S)=\sigma_{a}(T) \cup \sigma_{a}(S)$ for any pairs of operators. If T and S are a-isoloid, then

$$
E_{0}(T \oplus S)=\left[E_{0}(T) \cap \rho_{a}(S)\right] \cup\left[\rho_{a}(T) \cap E_{0}(S)\right] \cup\left[E_{0}(T) \cap E_{0}(S)\right],
$$

where $\rho_{a}()=.\mathbb{C} \backslash \sigma_{a}($.$) .$
If property (w) holds for T and S, then

$$
\begin{aligned}
{\left[\sigma_{a}(T) \cup \sigma_{a}(S)\right] } & \backslash \\
& {\left[\sigma_{a w}(T) \cup \sigma_{a w}(S)\right] } \\
& =\left[E_{0}(T) \cap \rho_{a}(S)\right] \cup\left[\rho_{a}(T) \cap E_{0}(S)\right] \cup\left[E_{0}(T) \cap E_{0}(S)\right]
\end{aligned}
$$

Thus, $E_{0}(T \oplus S)=\left[\sigma_{a}(T) \cup \sigma_{a}(S)\right] \backslash\left[\sigma_{a w}(T) \cup \sigma_{a w}(S)\right]$.
If $\sigma_{a w}(T \oplus S)=\sigma_{a w}(T) \cup \sigma_{a w}(S)$, then

$$
E_{0}(T \oplus S)=\sigma_{a}(T \oplus S) \backslash \sigma_{a w}(T \oplus S)
$$

Hence property (w) holds for $T \oplus S$.
The assumption A and B are isoloid is essential in Theorem 3.1.
Example 3.2. If $A, B: \ell^{2} \rightarrow \ell^{2}$ are defined by

$$
A\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{2}, x_{3}, \ldots\right) \text { and } B\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right),
$$

then we have that property (w) holds for A and $B ; \sigma_{a}(A)=\{0,1\}, \sigma_{a w}(A)=\{1\}, \sigma_{a}(B)=\sigma_{a w}(B)$ $=\{0\}, E_{0}(A)=\{0\}, E_{0}(B)=\varnothing ; \sigma_{a}(A \oplus B)=\{0,1\}=\sigma_{a w}(A \oplus B)$ and $E_{0}(A \oplus B)=\{0\}$. Then property (w) does not holds for $A \oplus B$.

Theorem 3.3. Suppose that $T \in \mathscr{L}(\mathscr{H})$ such that $\operatorname{iso}_{a}(T)=\varnothing, \sigma(T)=\sigma_{a}(T)$ and $S \in \mathscr{L}(\mathscr{K})$ satisfies property (w). If $\sigma_{a w}(T \oplus S)=\sigma_{a}(T) \cup \sigma_{a w}(S)$, then property (w) holds for $T \oplus S$.

Proof. We know that $\sigma_{a}(T \oplus S)=\sigma_{a}(T) \cup \sigma_{a}(S)$ for any pairs of operators. Then

$$
\begin{aligned}
\sigma_{a}(T \oplus S) \backslash \sigma_{a w}(T \oplus S) & =\left[\sigma_{a}(T) \cup \sigma_{a}(S)\right] \backslash\left[\sigma_{a}(T) \cup \sigma_{a w}(S)\right] \\
& =\sigma_{a}(S) \backslash\left[\sigma_{a}(T) \cup \sigma_{a w}(S)\right] \\
& =\left[\sigma_{a}(S) \backslash \sigma_{a w}(S)\right] \backslash \sigma_{a}(T) \\
& =E_{0}(S) \cap \rho_{a}(T)
\end{aligned}
$$

If $\sigma_{a}^{i s o}(T)=\varnothing$ it implies that $\sigma_{a}(T)=\sigma_{a}^{a c c}(T)$, where $\sigma_{a}^{a c c}(T)=\sigma_{a}(T) \backslash \sigma_{a}^{i s o}(T)$ is the set of all accumulation points of $\sigma_{a}(T)$. Thus we have

$$
\begin{aligned}
\sigma_{a}^{i s o}(T \oplus S) & =\left[\sigma_{a}^{i s o}(T) \cup \sigma_{a}^{i s o}(S)\right] \backslash\left[\left(\sigma_{a}^{i s o}(T) \cap \sigma_{a}^{a c c}(S)\right) \cup\left(\sigma_{a}^{a c c}(T) \cap \sigma_{a}^{i s o}(S)\right)\right] \\
& =\left[\sigma_{a}^{i s o}(T) \backslash \sigma_{a}^{a c c}(S)\right] \cup\left[\sigma_{a}^{i s o}(S) \backslash \sigma_{a}^{a c c}(T)\right] \\
& =\sigma_{a}^{i s o}(S) \backslash \sigma_{a}(T) \\
& =\sigma_{a}^{i s o}(S) \cap \rho_{a}(T) .
\end{aligned}
$$

We know that $\sigma_{p}(T \oplus S)=\sigma_{p}(T) \cup \sigma_{p}(S)$ and $\alpha(T \oplus S)=\alpha(T)+\alpha(S)$ for any pairs of operators, so that

$$
\sigma_{P F}(T \oplus S)=\left\{\lambda \in \sigma_{P F}(T) \cup \sigma_{P F}(S): \alpha(T-\lambda I)+\alpha(S-\lambda I)<\infty\right\} .
$$

Therefore,

$$
\begin{aligned}
E_{0}(T \oplus S) & =\sigma_{a}^{i s o}(T \oplus S) \cap \sigma_{P F}(T \oplus S) \\
& =\sigma_{a}^{i s o}(S) \cap \rho_{a}(T) \cap \sigma_{P F}(S) \\
& =E_{0}(S) \cap \rho_{a}(T) .
\end{aligned}
$$

Thus $\sigma_{a}(T \oplus S) \backslash \sigma_{a w}(T \oplus S)=E_{0}(T \oplus S)$. Hence $T \oplus S$ satisfies property (w).
Corollary 3.4. Suppose that $T \in \mathscr{L}(\mathscr{H})$ is such that $\sigma_{a}^{i s o}(T)=\varnothing$ and $S \in \mathscr{L}(\mathscr{K})$ satisfies prop$\operatorname{erty}(w)$ with $\sigma_{a}^{i s o}(S) \cap \sigma_{p}(S)=\varnothing$, and $\Delta_{a}(T \oplus S)=\varnothing$, then $T \oplus S$ satisfies property (w).

Proof. Since S satisfies property (w), therefore given condition $\sigma_{a}^{i s o}(S) \cap \sigma_{p}(S)=\varnothing$ implies that $\sigma_{a}(S)=\sigma_{a w}(S)$. Now $\Delta_{a}(T \oplus S)=\varnothing$ gives that $\sigma_{a w}(T \oplus S)=\sigma_{a}(T \oplus S)=\sigma_{a}(T) \cup \sigma_{a w}(S)$. Thus from Theorem 3.3, we have that $T \oplus S$ satisfies property (w).

Corollary 3.5. Suppose that $T \in \mathscr{L}(\mathscr{H})$ is such that $\sigma_{a}^{i s o}(T) \cup \Delta_{a}(T)=\varnothing$ and $S \in \mathscr{L}(\mathscr{K})$ satisfies property (w). If $\sigma_{a w}(T \oplus S)=\sigma_{a w}(T) \cup \sigma_{a w}(S)$, then $T \oplus S$ satisfies property (w).

Theorem 3.6. Let $T \in \mathscr{L}(\mathscr{H})$ be an a-isoloid operator that satisfies property (w). If $S \in \mathscr{L}(\mathscr{K})$ is a normal operator satisfies property (w). Then property (w) holds for $T \oplus S$.

Proof. If S is normal, then both S and S^{*} have SVEP, and $\operatorname{ind}(S-\lambda I)=0$ for every λ such that $S-\lambda I$ is a Fredholm. Observe that $\lambda \notin \sigma_{a w}(T \oplus S)$ if and only if $S-\lambda I \in W_{+}(\mathscr{K})$ and $T-\lambda I \in$ $W_{+}(\mathscr{H})$ and $\operatorname{ind}(T-\lambda I)+\operatorname{ind}(S-\lambda I)=i n d(T-\lambda I) \leq 0$ if and only if $\lambda \notin \Delta_{a}(T) \cap \Delta_{a}(S)$. Hence $\sigma_{a w}(T \oplus S)=\sigma_{a w}(T) \cup \sigma_{a w}(S)$. It is well known that the isolated points of the approximate point spectrum of a normal operator are simple poles of the resolvent of the operator implies that S is a-isoloid. So the result follows now from Theorem 3.1.
4. Property (w) for M_{C}

In the following, let

$$
\begin{aligned}
& \Phi_{+}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is upper semi-Fredholm }\}, \\
& \Phi_{+}^{-}(T)=\{\lambda \in \mathbb{C}: \operatorname{ind}(T-\lambda I) \leq 0\}, \\
& \Phi_{-}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is lower semi-Fredholm }\}, \\
& \Phi_{-}^{+}(T)=\{\lambda \in \mathbb{C}: \operatorname{ind}(T-\lambda I) \geq 0\},
\end{aligned}
$$

$$
\begin{aligned}
\Phi(T) & =\Phi_{+}(T) \cap \Phi_{-}(T), \quad \text { and } \\
\Phi^{0}(T) & =\{\lambda \in \Phi(T): \operatorname{ind}(T-\lambda I)=0\} .
\end{aligned}
$$

Then the upper semiFredholm spectrum $\sigma_{S F_{+}}(T)$, the lower semiFredholm spectrum $\sigma_{S F_{-}}(T)$, the (Fredholm) essential spectrum $\sigma_{e}(T)$ and the Weyl essential surjectivity spectrum $\sigma_{s w}(T)$ of T are the sets

$$
\begin{aligned}
\sigma_{S F_{+}}(T) & =\left\{\lambda \in \sigma(T): \lambda \notin \Phi_{+}(T)\right\}, \\
\sigma_{S F_{-}}(T) & =\left\{\lambda \in \sigma(T): \lambda \notin \Phi_{-}(T)\right\}, \\
\sigma_{e}(T) & =\{\lambda \in \sigma(T): \lambda \notin \Phi(T)\} \text { and } \\
\sigma_{s w}(T) & =\left\{\lambda \in \sigma(T): \lambda \notin \Phi_{-}^{+}(T)\right\} .
\end{aligned}
$$

It is easily verified, see [25, Exercise 7, Page 293], that

$$
\begin{aligned}
& a(A-\lambda I) \leq a\left(M_{C}-\lambda I\right) \leq a(A-\lambda I)+a(B-\lambda I) ; \\
& d(A-\lambda I) \leq d\left(M_{C}-\lambda I\right) \leq d(A-\lambda I)+d(B-\lambda I)
\end{aligned}
$$

for every $\lambda \in \mathbb{C}$.
Remark 4.1. The following implications hold [1, Theorem 3.4]: $a(T-\lambda I)<\infty \Rightarrow \alpha(T-\lambda I) \leq$ $\beta(T-\lambda I)) ; d(T-\lambda I)<\infty \Rightarrow \beta(T-\lambda I) \leq \alpha(T-\lambda I)$; if $\alpha(T-\lambda I)=\beta(T-\lambda I)$, then either of $a(T-\lambda I)<\infty$ and $d(T-\lambda I)<\infty \Rightarrow a(T-\lambda I)=d(T-\lambda I)<\infty$. If $\lambda \in \Phi_{+}^{-}(T)$, then T has SVEP at $\lambda \Leftrightarrow a(T-\lambda I)<\infty$ and T^{*} has SVEP at $\lambda \Leftrightarrow a(T-\lambda I)<\infty$ [1, Theorems 3.16, 3.17]. From this it follows that if both T and T^{*} have SVEP at $\lambda \in \Phi_{+}^{-}(T)$, then $\lambda \in \Phi^{0}(T)$ and $\lambda \in \pi_{0}(T)$. If $\lambda \in \pi_{0}(T)$ and either of $a(T-\lambda I)$ and $d(T-\lambda I)$ is finite (equivalently, either T or T^{*} has SVEP at λ), then $\lambda \in \pi_{0}(T)$. Again, if $\lambda \in \Phi_{+}^{-}(T)$ and T has SVEP at λ, then $\lambda \in \pi_{0}^{a}(T)$ [1, Theorem 3.23].

For an operator $S \in \mathscr{L}(\mathbb{X})$ and $\sigma_{x}(T)$ a subset of $\sigma(T)$, let

$$
S_{\sigma_{x}(T)}(S)=\left\{\lambda \in \sigma(T) \backslash \sigma_{x}(T): S \quad \text { does not have SVEP at } \lambda\right\} .
$$

Remark 4.2. From [6, 7, 14, 15]. The Following relations hold:

$$
\begin{align*}
\sigma\left(M_{0}\right) & =\sigma(A) \cup \sigma(B)=\sigma\left(M_{C}\right) \cup\{\sigma(A) \cap \sigma(B)\} \tag{i}\\
& =\sigma\left(M_{C}\right) \cup\left\{S_{\sigma_{a}(A)}\left(A^{*}\right) \cap S_{\sigma_{a}(B)}(B)\right\} .
\end{align*}
$$

$$
\begin{equation*}
\sigma_{b}\left(M_{0}\right)=\sigma_{b}(A) \cup \sigma_{b}(B)=\sigma_{b}\left(M_{C}\right) \cup\left\{\sigma_{b}(A) \cap \sigma_{b}(B)\right\} \tag{ii}
\end{equation*}
$$

$$
=\sigma_{b}\left(M_{C}\right) \cup\left\{S_{\sigma_{b}\left(M_{C}\right)}\left(A^{*}\right) \cap S_{\sigma_{b}\left(M_{C}\right)}(B)\right\} .
$$

$$
\begin{equation*}
\sigma_{w}(A) \cup \sigma_{w}(B) \subseteq \sigma_{w}\left(M_{C}\right) \cup\left\{S_{\sigma_{w}\left(M_{C}\right)}(P) \cup S_{\sigma_{w}\left(M_{C}\right)}(Q)\right\} \tag{iii}
\end{equation*}
$$

$$
\text { where } \quad(P, Q)=\left(A, A^{*}\right),\left(B, B^{*}\right),(A, B), \quad \text { or }\left(A^{*}, B^{*}\right) \text {. }
$$

Lemma 4.3. If either A^{*} or B has SVEP and $\lambda \in \sigma_{a}^{i s o}\left(M_{C}\right)$, then $\lambda \in \sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$.

Proof.The hypothesis A^{*} or B has SVEP implies that

$$
\sigma_{a}\left(M_{C}\right)=\sigma_{a}(A) \cup \sigma_{a}(B)
$$

Hence $\lambda \in\left(\sigma_{a}(A) \cup \sigma_{a}(B)\right)^{i s o} \subset \sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$.
Theorem 4.4. Let A and B have SVEP, and let $\operatorname{dim} \chi_{B}(\{\lambda\})<\infty$ for all $\lambda \in \sigma_{a}^{i s o}(B)$. If a-Weyl's theorem holds for M_{0}, then a-Weyl's theorem holds for M_{C} for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since A and B have SVEP, M_{C} has SVEP [18, Proposition 3.1], and so M_{C} obeys a Browder's theorem. Hence,

$$
\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right) \subseteq E_{0}^{a}\left(M_{C}\right) .
$$

Let $\lambda \in E_{0}^{a}\left(M_{C}\right)$. Then $\lambda \in \sigma_{a}^{i s o}\left(M_{C}\right)$. By Lemma 4.3, $\lambda \in \sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$. Hence $\lambda \in \sigma_{a}^{i s o}\left(M_{0}\right)$. Since $\operatorname{ker}(A-\lambda I) \oplus\{0\} \subset \operatorname{ker}\left(M_{C}-\lambda I\right)$, dimker $(A-\lambda I)<\infty$ in the case in which $\lambda \in \sigma_{a}^{i s o}(A) \cup$ $\rho_{a}(A)$. Again, if $\lambda \in \sigma_{a}^{i s o}(B)$, or $\lambda \in \rho_{a}(B)$, then the assumption that $\operatorname{dim} \chi_{B}(\{\lambda\})<\infty$ implies (by [19, Proposition 1.2.16]) that $\operatorname{dim} \operatorname{ker}(B-\lambda I)<\infty$, and hence that

$$
\operatorname{dim}(\operatorname{ker}(A-\lambda I) \oplus \operatorname{ker}(B-\lambda I))<\infty
$$

Evidently, the non-triviality of $\operatorname{ker}\left(M_{C}-\lambda I\right)$ implies that $\operatorname{ker}(A-\lambda I) \cup \operatorname{ker}(B-\lambda I) \neq\{0\}$, i.e., $0<\operatorname{dim}(\operatorname{ker}(A-\lambda I) \oplus \operatorname{ker}(B-\lambda I))$. Hence, $\lambda \in \sigma_{a}^{i s o}\left(M_{0}\right)$ and

$$
0<\operatorname{dim}(\operatorname{ker}(A-\lambda I) \oplus \operatorname{ker}(B-\lambda I))<\infty,
$$

i.e., $\lambda \in \pi_{0}^{a}\left(M_{0}\right)=\sigma_{a}\left(M_{0}\right) \backslash \sigma_{a w}\left(M_{0}\right)$. By [7, Theorem 3.1] this implies that $\lambda \notin \sigma_{a w}\left(M_{C}\right)$.

Recall that an operator $T \in \mathscr{L}(\mathbb{X})$ is said to be polaroid (resp., isoloid) at $\lambda \in \sigma^{i s o}(T)$ if $a(T-\lambda I)=d(T-\lambda I)<\infty$ (resp., λ is an eigenvalue of T). Trivially, T polaroid at λ implies T isoloid at λ. We say that T is a-polaroid if T is polaroid at $\lambda \in \sigma_{a}^{i s o}(T)$.

Lemma 4.5. Let $A \in \mathscr{L}(\mathbb{X})$ and $B \in \mathscr{L}(\mathbb{Y})$ have SVEP. If A and B are polaroid, then M_{C} is polaroid for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Suppose that $\lambda \in \sigma^{i s o}\left(M_{C}\right)$. If B has SVEP then $\sigma(B)$ coincides with the defect spectrum of B. It follows from [10, Theorem 2.3] that $\sigma\left(M_{C}\right)=\sigma(A) \cup \sigma(B)$. Therefore $\lambda \in(\sigma(A) \cup$ $\sigma(B))^{i s o}$. Suppose that $\lambda \in \sigma(A)$. Then $\lambda \in \sigma^{i s o}(A)$. Since A is isoloid, $\operatorname{ker}(A-\lambda I) \neq\{0\}$. Observe that $\operatorname{ker}(A-\lambda I) \oplus\{0\} \subseteq \operatorname{ker}\left(M_{C}-\lambda I\right)$, and hence $\operatorname{ker}\left(M_{C}-\lambda I\right) \neq\{0\}$. Since $\operatorname{ker}\left(M_{C}-\lambda I\right) \neq$ $\{0\}$ then $\operatorname{ker}\left(M_{0}-\lambda I\right) \neq\{0\}$; also, $\operatorname{dim}\left(\operatorname{ker}\left(M_{C}-\lambda I\right)\right)<\infty$ implies $\operatorname{dim}(\operatorname{ker}(A-\lambda I))<\infty$. We
claim that $\operatorname{dim}(\operatorname{ker}(B-\lambda I))<\infty$. For suppose to the contrary that $\operatorname{dim}(\operatorname{ker}(B-\lambda I))$ is infinite. Since

$$
\left.\left(M_{C}-\lambda I\right)(x \oplus y)=\{(A-\lambda I) x+C y) \oplus(B-\lambda I) y\right\},
$$

either $\operatorname{dim}(C(\operatorname{ker}(B-\lambda I))<\infty$ or $\operatorname{dim}(C(\operatorname{ker}(B-\lambda I))=\infty$. If $\operatorname{dim}(C(\operatorname{ker}(B-\lambda I))<\infty$, then $\operatorname{ker}(B-\lambda I)$ contains an orthonormal sequence $\left\{y_{j}\right\}$ such that $\left(M_{C}-\lambda I\right)\left(0 \oplus y_{j}\right)=0$ for all $j=1,2, \ldots$. But then $\operatorname{dim} \operatorname{ker}\left(M_{C}-\lambda I\right)=\infty$, a contradiction. Assume now that $\operatorname{dim}(C(\operatorname{ker}(B-$ $\lambda I))=\infty$. Since $\lambda \in \rho(A) \cup \sigma^{i s o}(A), A$ satisfies Browder's theorem, A is polaroid and $\alpha(A-$ $\lambda I)<\infty, \beta(A-\lambda I)<\infty$. Hence $\operatorname{dim}\{C(\operatorname{ker}(B-\lambda I)) \cap \Re(A-\lambda I)\}=\infty$ implies the existence of a sequence $\left\{x_{j}\right\}$ such that $(A-\lambda I) x_{j}=C y_{j}$ for all $j=1,2, \ldots$. But then $\left(M_{C}-\lambda I\right)\left(x_{j} \oplus-y_{j}\right)=0$ for all $j=1,2, \ldots$. Thus $\operatorname{dim} \operatorname{ker}\left(M_{C}-\lambda I\right)=\infty$, again a contradiction. Our claim having been proved, we conclude that $\lambda \in \pi\left(M_{0}\right)$. Thus $\pi\left(M_{C}\right) \subseteq \pi\left(M_{0}\right)$.

Remark 4.6. If $S\left(A^{*}\right) \cup S\left(B^{*}\right)=\varnothing$, then M_{C}^{*} has SVEP. Hence

$$
\sigma\left(M_{0}\right)=\sigma\left(M_{C}\right), \sigma_{a w}\left(M_{C}\right)=\sigma_{w}\left(M_{C}\right)=\sigma_{w}\left(M_{0}\right) \text { and } \pi_{0}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right) .
$$

Evidently, both M_{0} and M_{C} satisfy a-Browder's theorem. Since

$$
E_{0}\left(M_{0}\right)=\left(E_{0}(A) \cap \rho(B)\right) \cup\left(\rho(A) \cap E_{0}(B)\right) \cup\left(E_{0}(A) \cap E_{0}(B)\right)
$$

if M_{0} is polaroid at $\lambda \in E_{0}\left(M_{0}\right)$, then either A or B is polaroid at λ; in particular, A and B are polaroid at $\lambda \in E_{0}(A) \cap E_{0}(B)$. Conversely, if A is polaroid at $\lambda \in E_{0}(A)$ and B is polaroid at $\mu \in E_{0}(B)$, then M_{0} is polaroid at $v \in E_{0}\left(M_{0}\right)$.

Theorem 4.7. If $S\left(A^{*}\right) \cup S\left(B^{*}\right)=\varnothing, A$ is polaroid at $\lambda \in E_{0}^{a}\left(M_{C}\right)$ (or, A is isoloid and satisfies Weyl's theorem) and B is polaroid at $\mu \in E_{0}^{a}(B)$, then M_{C} satisfies property (w).

Proof. Since A^{*} and B^{*} have SVEP, both M_{0}^{*} and M_{C}^{*} have SVEP. Hence M_{C} (also, M_{0}) satisfies Browder's theorem, which implies that $\sigma\left(M_{C}\right) \backslash \sigma_{w}\left(M_{C}\right)=\pi_{0}\left(M_{C}\right) \subseteq E_{0}\left(M_{C}\right)$. Apparently, $\sigma\left(M_{0}\right)=\sigma\left(M_{C}\right)=\sigma_{a}\left(M_{C}\right), \sigma_{w}\left(M_{0}\right)=\sigma_{w}\left(M_{C}\right)=\sigma_{a w}\left(M_{C}\right), E_{0}\left(M_{C}\right)=E_{0}^{a}\left(M_{C}\right)$ and $\sigma^{i s o}\left(M_{C}\right)=$ $\sigma^{i s o}\left(M_{0}\right)$. Following (part of) the argument of the proof of the sufficiency part of Theorem 3.7 of [14], it follows that if $\lambda \in E_{0}\left(M_{C}\right)$, then $\lambda \in E_{0}(A) \cap E_{0}(B)$. By assumption, both A and B are polaroid at λ. Hence M_{0} is polaroid at λ, which implies that $\lambda \in \pi_{0}\left(M_{0}\right)$. Since M_{0} satisfies Browder's theorem, $\lambda \notin \sigma_{w}\left(M_{0}\right)=\sigma_{w}\left(M_{C}\right)$, which in view of the fact that M_{C} satisfies Browder's theorem implies that $\lambda \in \pi_{0}\left(M_{C}\right)$. Hence $\sigma\left(M_{C}\right) \backslash \sigma_{w}\left(M_{C}\right)=E_{0}\left(M_{C}\right)$ implies $\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=E_{0}^{a}\left(M_{C}\right)=E_{0}\left(M_{C}\right)$, i.e., M_{C} satisfies property (w).

Example 4.8. Let A, B and $C \in \mathscr{L}\left(\ell^{2}\right)$ be the operators

$$
A\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, 0, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right)
$$

$$
B\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{2}, 0, x_{4}, 0, \ldots\right)
$$

and

$$
C\left(x_{1}, x_{2}, \ldots\right)=\left(0,0, x_{2}, 0, x_{3}, \ldots\right) .
$$

Then A, A^{*}, B and B^{*} have SVEP, $\sigma(A)=\sigma_{a}(A)=\sigma_{w}(A)=\sigma_{a w}(A)=\{0\}, \pi_{0}=E_{0}(A)=\varnothing$, and A satisfies property (w). Since $\sigma_{a}\left(M_{0}\right)=\sigma_{a w}=\{0,1\}$ and $E_{0}\left(M_{0}\right)=\pi_{0}\left(M_{0}\right)=\varnothing, M_{0}$ satisfies property (w). However, since $\sigma_{a}\left(M_{C}\right)=\sigma_{a w}=\{0,1\}$ and $E_{0}\left(M_{C}\right)=\{0\}, M_{C}$ does not satisfy property (w). Observe that A is not polaroid on $E_{0}\left(M_{C}\right)$.

Remark 4.9. If the operators A and B have SVEP, then M_{0} and M_{C} have SVEP, $\sigma\left(M_{0}\right)=\sigma\left(M_{C}\right)=$ $\sigma\left(M_{C}^{*}\right)=\sigma_{a}\left(M_{C}^{*}\right), \sigma^{i s o}\left(M_{0}^{*}\right)=\sigma^{i s o}\left(M_{C}^{*}\right)=\sigma_{a}^{i s o}\left(M_{C}^{*}\right), E_{0}\left(M_{C}^{*}\right)=E_{0}^{a}\left(M_{C}^{*}\right)$ and $\sigma_{w}\left(M_{0}\right)=\sigma_{w}\left(M_{C}\right)$ $=\sigma_{w}\left(M_{C}^{*}\right)=\sigma_{a w}\left(M_{C}^{*}\right)$. Evidently, A^{*}, B^{*}, M_{0}^{*} and M_{C}^{*} satisfy Browder's theorem; in particular, $\pi_{0}\left(M_{0}^{*}\right)=\pi_{0}\left(M_{C}^{*}\right) \subseteq E_{0}\left(M_{C}^{*}\right)$.

Theorem 4.10. If the polaroid operators A and B have SVEP, then M_{C}^{*} satisfies property (w).
Proof. Since the polaroid hypothesis on A and B implies that A^{*} and B^{*} are polaroid, an argument similar to that in the proof of Theorem 4.7 to M_{C}^{*} implies that if $\lambda \in E_{0}\left(M_{C}^{*}\right)$, then $\lambda \in E_{0}\left(A^{*}\right) \cap E_{0}\left(B^{*}\right)$ implies $\lambda \in \pi_{0}\left(A^{*}\right) \cap \pi_{0}\left(B^{*}\right)$. So $\lambda \notin \sigma_{w}\left(M_{0}^{*}\right)=\sigma_{w}\left(M_{C}^{*}\right)$ implies M_{C}^{*} satisfies Weyl's theorem. Hence it follows from Remark 4.9 that $\sigma\left(M_{C}^{*}\right) \backslash \sigma_{w}\left(M_{C}^{*}\right)=E_{0}\left(M_{C}^{*}\right)=\sigma_{a}\left(M_{C}^{*}\right) \backslash$ $\sigma_{a w}\left(M_{C}^{*}\right)$. That is, M_{C}^{*} satisfies property (w).

Let $H(K)$ denote the space of functions holomorphic on an open neighborhood of $K \subset \mathbb{C}$.
Lemma 4.11. Let $A \in \mathscr{L}(\mathbb{X})$ and $B \in L B(\mathbb{Y})$ have SVEP. Then

$$
\sigma_{a w}\left(f\left(M_{C}\right)\right)=f\left(\sigma_{\text {aw }}\left(M_{C}\right)\right) \quad \text { for every } f \in H\left(\sigma\left(M_{C}\right)\right)
$$

Proof. Since A and B have SVEP, M_{C} also has SVEP. Then $f\left(M_{C}\right)$ has SVEP by Corollary 2.40 of [1]. Then it follows from [7, Theorem 3.1] that $f\left(M_{C}\right)$ satisfies a-Browder's theorem. That is, $\sigma_{a b}\left(f\left(M_{C}\right)\right)=\sigma_{a w}\left(f\left(M_{C}\right)\right)$. The proof is follows now from Theorem 3.71 of [1].

Theorem 4.12. If $A^{*} \in \mathscr{L}(\mathbb{X})$ and $B^{*} \in \mathscr{L}(\mathbb{Y})$ are each polaroid, and have the single valued extension property, then property (w) holds for $f\left(M_{C}\right)$ for arbitrary $f \in H\left(\sigma\left(M_{C}\right)\right)$ and for arbitrary bounded operators $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since M_{C} is polaroid by Lemma 4.5, then it is a-isoloid. Then

$$
f\left(\sigma_{a}\left(M_{C}\right) \backslash E_{0}\left(M_{C}\right)\right)=\sigma_{a}\left(f\left(M_{C}\right)\right) \backslash E_{0}\left(f\left(M_{C}\right)\right) \quad \text { for every } f \in H\left(\sigma\left(M_{C}\right)\right)
$$

It from From Theorem 4.10 and Lemma 4.11 that

$$
f\left(\sigma_{a}\left(M_{C}\right) \backslash E_{0}\left(M_{C}\right)\right)=\sigma_{a}\left(f\left(M_{C}\right)\right) \backslash E_{0}\left(f\left(M_{C}\right)\right)=\sigma_{a w}\left(f\left(M_{C}\right)\right)=f\left(\sigma_{a w}\left(M_{C}\right)\right)
$$

for every $f \in H\left(\sigma\left(M_{C}\right)\right)$.
An operator $T \in \mathscr{L}(\mathbb{X})$ is said to be a-isoloid if all isolated points of $\sigma_{a}(T)$ are eigenvalues of T, and $T \in \mathscr{L}(\mathbb{X})$ is called finite a-isoloid if every isolated point of $\sigma_{a}(T)$ is an eigenvalue of T of finite multiplicity. Note that finite- a-isoloid implies a-isoloid but the converse is not true.

Theorem 4.13. Suppose that $\sigma_{d}(A)$ has no interior points. If A is finite-a-isoloid and property (w) holds for A, then for every $B \in \mathscr{L}(\mathbb{Y})$ and $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$, property (w) holds for M_{0} implies property (w) holds for M_{C}.

Proof. It follows from Theorem 3.1 of [7] that M_{C} satisfies a-Browder's theorem, i.e.,

$$
\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right) \subseteq E_{0}^{a}\left(M_{C}\right)
$$

Conversely, suppose that $\lambda_{0} \in E_{0}^{a}\left(M_{C}\right)$. Then $M_{C}-\lambda I$ is bounded below if $\left|\lambda-\lambda_{0}\right|$ is sufficiently small and hence λ is not in $\sigma_{a}\left(M_{C}\right)$. Since $\sigma_{d}(A)$ has no interior points, by [7, Corollary 2.4], $\sigma_{a}\left(M_{C}\right)=\sigma_{a}(A) \cup \sigma_{a}(B)=\sigma_{a}\left(M_{0}\right)$. Then λ is not in $\sigma_{a}\left(M_{0}\right)$ if $\left|\lambda-\lambda_{0}\right|$ is sufficiently small, that is $\lambda_{0} \in \sigma_{a}^{i s o}\left(M_{0}\right)$. Without loss of generality, we suppose that $\lambda_{0} \in \sigma_{a}(A)$, then $\lambda_{0} \in \sigma_{a}^{i s o}(A)$. Since $\operatorname{ker}\left(A-\lambda_{0} I\right) \oplus\{0\} \subseteq \operatorname{ker}\left(M_{C}-\lambda_{0} I\right)$, we know that $\alpha\left(A-\lambda_{0} I\right)<\infty$. A is finite-a-isoloid, then $\lambda_{0} \in E_{0}(A)$. Since property (w) holds for A, it follows that $A-\lambda_{0} I \in \Phi_{+}(\mathbb{X})$ and $a(A-$ $\left.\lambda_{0} I\right)<\infty$. The condition $\sigma_{d}(A)$ has no interior points asserts that λ_{0} is not in $\sigma_{d}(A)$ or $\lambda_{0} \in$ $\partial \sigma_{d}(A)$. Then in any neighborhood U of λ_{0}, there exists $\lambda_{1} \in U$ such that $\Re\left(A-\lambda_{1} I\right)=\mathbb{X}$. By perturbation theory of upper semi-Fredholm operator $A-\lambda_{0} I$, we get that $A-\lambda I$ is invertible and $\operatorname{ind}\left(A-\lambda_{0} I\right)=\operatorname{ind}(A-\lambda I)=0$ if $\left|\lambda-\lambda_{0}\right|$ is sufficiently small, which means that $A-\lambda_{0} I$ is Weyl with finite ascent. [24, Theorem 4.5] asserts that $A-\lambda_{0} I$ is Browder. Using the same way in Theorem 2.4 in [20], we get that $0<\operatorname{dim}\left[\operatorname{ker}\left(A-\lambda_{0} I\right) \oplus \operatorname{ker}\left(B-\lambda_{0} I\right)\right]<\infty$, which implies that $\lambda_{0} \in E_{0}\left(M_{0}\right)$. Since property (w) theorem holds for M_{0}, it follows that $M_{0}-\lambda_{0} I \in \Phi_{+}^{-}(\mathbb{X} \oplus \mathbb{Y})$. Hence $M_{C}-\lambda_{0} I \in \Phi_{+}^{-}(\mathbb{X} \oplus \mathbb{Y})$, then $\lambda_{0} \in \sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)$. Now we have proved that $\sigma_{a}\left(M_{C}\right) \backslash$ $\sigma_{a w}\left(M_{C}\right)=E_{0}\left(M_{C}\right)$, which means that property (w) holds for M_{C} for every $C \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$.

Similar to the proof in Theorem 4.13, we can prove that:
Theorem 4.14. Suppose that $\sigma_{d}(A) \cap \sigma_{a b}(B)$ has no interior points. If $S P(A)$ has no pseudoholes $\left(\right.$ or $\left.\sigma_{e}(A)=\sigma_{a b}(A)\right)$, where $S P(A)$ denote the spectral picture of A and if A is finite-aisoloid operator for which property (w) holds, then for every $C \in \mathscr{L}(\mathbb{X}, \mathbb{Y})$, then property (w) holds for M_{0} implies property (w) holds for M_{C}.

Theorem 4.15. Let A and B have SVEP. If A is finite-a-isoloid, and if property (w) holds for both A and M_{0}, then property (w) holds for M_{C} for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Since A and B have SVEP, M_{C} also has SVEP and M_{C} obeys a-Browder's theorem, i.e. $\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right) \subseteq E_{0}^{a}\left(M_{C}\right)$.

Suppose now that $\lambda \in E_{0}^{a}\left(M_{C}\right)$. Then, it follows from Lemma 4.3 that $\lambda \in \sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$, then $\lambda \in \sigma_{a}^{i s o}\left(M_{0}\right)$, dimker $\left(M_{0}-\lambda I\right)>0$ and $\operatorname{dimker}(A-\lambda I)>0$. If $\lambda \in \sigma_{a}(A)$, then λ is an isolated point and (by the finite- a-isoloid hypothesis) $\lambda \in E_{0}(A)=\sigma_{a}(A) \backslash \sigma_{a w}(A)$. If $\lambda \notin \sigma_{a}(A)$, then again $\lambda \notin \sigma_{a w}(A)$. Hence, in either case, $\lambda \notin \sigma_{a w}(A), \Re(A-\lambda I)$ is closed and $0 \leq \alpha(A-$ $\lambda I)=\beta(A-\lambda I)<\infty$.

Next, we prove that dimker $(B-\lambda I)$ is finite. Suppose to the contrary that dimker $(B-\lambda I)$ is infinite. Then there exists an infinite sequence $\left\{u_{2}^{n}\right\}_{n=1}^{\infty}$ of linearly independent vectors in $\operatorname{ker}(B-\lambda I)$. Since $\operatorname{dim} \operatorname{ker}\left(M_{C}-\lambda I\right)<\infty$, there exists a natural number n_{0} such that $C u_{2}^{n} \neq 0$ for every natural number $n>n_{0}$. (For if not, then $\left(M_{C}-\lambda I\right)\left(0 \oplus u_{2}^{n}\right)=0$ for all n, and then $\operatorname{dim} \operatorname{ker}\left(M_{C}-\lambda I\right)=\infty$.) Without loss of generality we may assume that $C u_{2}^{n} \neq 0$ for all n. Since $\beta(A-\lambda I)<\infty$, there exists a natural number n_{1} such that $C u_{2}^{n} \in \Re(A-\lambda I)$ for every $n>n_{1}$, i.e. there exists a sequence $\left\{u_{1}^{n}\right\}_{n=1}^{\infty}$ in \mathbb{X} such that $(A-\lambda I)\left(-u_{1}^{n}\right)=C u_{2}^{n}$. Then $\left(M_{C}-\lambda I\right)\left(u_{1}^{n} \oplus u_{2}^{n}\right)=$ 0 for every $n>n_{1}$, i.e. $\operatorname{dim} \operatorname{ker}\left(M_{C}-\lambda I\right)=\infty$.

The conclusion that dim $\operatorname{ker}(B-\lambda I)<\infty$ implies that $0<\operatorname{dim} \operatorname{ker}\left(M_{0}-\lambda I\right)<\infty$ and $\lambda \in$ $\sigma_{a}^{i s o}\left(M_{C}\right)$. Moreover, since $\lambda \in E_{0}\left(M_{0}\right)=\sigma_{a}\left(M_{0}\right) \backslash \sigma_{a w}\left(M_{0}\right), \lambda \notin \sigma_{a w}\left(M_{C}\right)$. Hence property (w) holds for M_{C}.

Theorem 4.16. If the finite-a-isoloid operators A and B have SVEP, and if property (w) holds for both A and B, then property (w) holds for M_{C} for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. If the hypotheses of the theorem are satisfied then it follows from the argument of the proof of Theorem 4.15 that M_{C} obeys a-Browder's theorem, and if $\lambda \in E_{0}\left(M_{C}\right)$ then (by the finite- a-isoloid property of $A) \lambda \notin \sigma_{a w}(A), \lambda \in \sigma_{a}^{i s o}(B) \cup \rho_{a}(B)$ and dimker $(B-\lambda I)<\infty$. Since B is finite- a-isoloid operator for which property (w) holds, $\lambda \in E_{0}(B)=\sigma_{a}(B) \backslash \sigma_{a w}(B)$. Hence, $\lambda \notin \sigma_{a w}(A) \cup \sigma_{a w}(B)$ and so $\lambda \notin \sigma_{a w}\left(M_{C}\right)$.

We consider now necessary and(/or) sufficient conditions for the implications M_{0} satisfies property $(w) \Leftrightarrow M_{C}$ satisfies property (w). As one would expect, M_{0} satisfies property (w) does not imply M_{C} satisfies property (w). For example, if $A, B, C \in \mathscr{L}\left(\ell^{2} \oplus \ell^{2}\right)$ are the operators $A=U \otimes I, B=U^{*} \otimes I$ and C is the diagonal operator with entries $\left(0, I-U U^{*}, I-U U^{*}, \ldots\right)$, where $U \in \mathscr{L}\left(\ell^{2}\right)$ is the forward unilateral shift, then $\sigma_{a}\left(M_{0}\right)=\sigma_{a w}\left(M_{0}\right), \pi_{0}^{a}\left(M_{0}\right)=\varnothing=E_{0}\left(M_{0}\right)$ and M_{0} satisfies property (w); however, $\sigma\left(M_{C}\right)$ is the closed unit disc $\mathbf{D}, \sigma_{w}\left(M_{C}\right)$ is the boundary $\partial \mathbf{D}$ of $\mathbf{D}, \pi_{0}\left(M_{C}\right)=\varnothing$, and M_{C} does not satisfy Browder's theorem (much less property (w)). Conversely, M_{C} satisfies property (w) does not imply M_{0} satisfies property (w), as the example of the operator $\left(\begin{array}{cc}U & I-U U^{*} \\ 0 & U^{*}\end{array}\right)$ shows. Recall, however, that M_{0} satisfies a-Browder's theorem if and only if A and B have SVEP on $\Delta_{a}\left(M_{0}\right)$; hence, if M_{C} has SVEP on $\sigma_{a w}\left(M_{0}\right) \backslash \sigma_{a w}\left(M_{C}\right)$,
then, since M_{0} satisfies a-Browder's theorem implies M_{C} has SVEP on $\Delta_{a}\left(M_{C}\right), M_{C}$ satisfies a-Browder's theorem.

Theorem 4.17.

(a) If $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$, and either A^{*} or B has SVEP on $\Delta_{a}\left(M_{C}\right)$. Then the equivalence

$$
M_{0} \quad \text { satisfies property }(w) \Leftrightarrow M_{C} \quad \text { satisfies property }(w)
$$

holds if and only if $E_{0}\left(M_{0}\right)=E_{0}\left(M_{C}\right)$.
(b) If A and A^{*}, or A^{*} and B^{*}, have SVEP on $\Delta_{a}\left(M_{C}\right)$. Then the equivalence

$$
M_{0} \quad \text { satisfies property }(w) \Leftrightarrow M_{C} \quad \text { satisfies property }(w)
$$

holds if and only if $E_{0}\left(M_{0}\right)=E_{0}\left(M_{C}\right)$.
(c) If A and A^{*} have SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(A)$, or A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(A)$ and B^{*} has SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(B)$. Then the equivalence

$$
M_{0} \quad \text { satisfies property }(w) \Leftrightarrow M_{C} \quad \text { satisfies property }(w)
$$

holds if and only if $E_{0}\left(M_{0}\right)=E_{0}\left(M_{C}\right)$.

Proof.

(a) The hypothesis $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$ implies that $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup$ $\sigma_{a w}(B)$. If M_{0} satisfies property (w) then M_{0} satisfies a-Browder's theorem, so A and B have SVEP on $\Delta_{a}\left(M_{0}\right)$ implies that M_{C} has SVEP on $\Delta_{a}\left(M_{C}\right)$, and so M_{C} satisfies a Browder's theorem. Hence

$$
\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=\sigma_{a}\left(M_{0}\right) \backslash \sigma_{a w}\left(M_{0}\right)=E_{0}\left(M_{0}\right)=\pi_{0}^{a}\left(M_{0}\right)=\pi_{0}^{a}\left(M_{C}\right) \subseteq E_{0}\left(M_{C}\right)
$$

Assume now that M_{C} satisfies property (w), then M_{C} satisfies a-Browder's theorem $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$, and either A^{*} or B has SVEP on $\Delta_{a}\left(M_{C}\right)$. Since M_{C} satisfies a-Browder's theorem implies A has SVEP on $\Delta_{a}\left(M_{C}\right)$, if B has SVEP on $\Delta_{a}\left(M_{C}\right)$, then M_{0} has SVEP on $\Delta_{a}\left(M_{0}\right)=\Delta_{a}\left(M_{C}\right)$, and so M_{0} satisfies a-Browder's theorem. Assume now that A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right)$: we prove that $\sigma_{a}\left(M_{0}\right)=\sigma_{a}(A) \cup \sigma_{a}(B)=\sigma_{a}\left(M_{C}\right)$. If $\mu \notin$ $\sigma_{a}\left(M_{C}\right)$, then $M_{C}-\mu I$ and $A-\mu I$ are left invertible, $\mu \in \Delta_{a}\left(M_{C}\right)$. The left invertibility of $A-\mu I$ implies the right invertibility of $A^{*}-\mu I^{*}$; hence, since A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right), A^{*}-$ μI^{*} is invertible. But then the invertibility of $A-\mu I$, taken along with the left invertibility of $M_{C}-\mu I$, implies that $B-\mu I$ is left invertible. Hence $\mu \notin \sigma_{a}(A) \cup \sigma_{a}(B)$. Since $\sigma_{a}\left(M_{C}\right) \subseteq$ $\sigma_{a}(A) \cup \sigma_{a}(B)$ always, $\sigma_{a}\left(M_{C}\right)=\sigma_{a}(A) \cup \sigma_{a}(B)=\sigma_{a}\left(M_{0}\right)$. Assume now that M_{C} satisfies a-Browder's theorem. Then $\lambda \in \Delta_{a}\left(M_{C}\right)$ implies that $\lambda \in \sigma_{a}^{i s o}\left(M_{C}\right)=\sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$;
hence (A and B have SVEP on $\Delta_{a}\left(M_{0}\right)=\Delta_{a}\left(M_{C}\right)$ implies) M_{0} has SVEP on $\Delta_{a}\left(M_{0}\right)$, and so M_{0} satisfies a-Browder's theorem, and so

$$
\sigma_{a}\left(M_{0}\right) \backslash \sigma_{a w}\left(M_{0}\right)=\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=E_{0}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{0}\right) \subseteq E_{0}\left(M_{0}\right)
$$

Thus, the statements of the theorem are equivalent if and only if $E_{0}\left(M_{0}\right)=E_{0}\left(M_{C}\right)$.
(b) Let $\lambda \in \Delta_{a}\left(M_{C}\right)$. Then the hypothesis that A and A^{*} have SVEP on $\Delta_{a}\left(M_{C}\right)$ implies that $\lambda \in \Phi^{0}(A) \cap \Phi_{+}^{-}(B) \subseteq \Phi_{+}^{-}(A) \cup \Phi_{+}^{-}(B)$. Consequently, $\sigma_{a w}(A) \cup \sigma_{a w}(B) \subset \sigma_{a w}\left(M_{C}\right)$; hence $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$. Again, if A^{*} and B^{*} have SVEP on $\Delta_{a}\left(M_{C}\right)$, then $\lambda \in \Delta_{a}\left(M_{C}\right)$ $\Rightarrow \lambda \in \Phi_{+}(A), \operatorname{ind}(A-\lambda I)+\operatorname{ind}(B-\lambda I) \leq 0 \beta(A-\lambda I) \leq \alpha(A-\lambda I), \beta(B-\lambda I) \leq \alpha(B-\lambda I)$. Hence, in view of Proposition 3.3 of [15], $\lambda \in \Phi^{0}(A) \cap \Phi^{0}(B) \subseteq \Phi_{+}^{-}(A) \cup \Phi_{+}^{-}(B)$, which (once again) leads to the conclusion that $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$. Applying part (a), the proof follows.
(c) Let $\lambda \in \Delta_{a}\left(M_{C}\right)$. Then $\lambda \in \Phi_{+}(A)$ and $\operatorname{ind}(A-\lambda I)+\operatorname{ind}(B-\lambda I) \leq 0$. If A and A^{*} have SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(A)$, then $\lambda \in \Phi^{0}(A)$ (is isolated in $\sigma_{a}(A)$), and this forces $\lambda \in \Phi_{+}^{-}(B)$. Hence $\lambda \notin \sigma_{a w}(A) \cup \sigma_{a w}(B)$, which leads us to the equality $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$. Again, if A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(A)$, then $\lambda \in \Phi_{+}^{-}(A)$ and this implies $\lambda \in \Phi_{+}(B)$; thus, if B^{*} has SVEP on $\Delta_{a}\left(M_{C}\right) \backslash \sigma_{S F_{+}}(B)$, then $\lambda \in \Phi_{+}^{-}(B)$, which forces $\lambda \in \Phi^{0}(A) \cap \Phi^{0}(B)$ and $\lambda \in \sigma^{i s o}(A) \cup \sigma^{i s o}(B)$. Once again, we conclude that $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)$. The proof now follows from an application of part (b) (since both A and A^{*} have SVEP on $\Delta_{a}\left(M_{C}\right)$).

Theorem 4.18. (a). If $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)$, then M_{0} satisfies property (w) implies M_{C} satisfies property (w) if and only if $E_{0}\left(M_{C}\right) \subseteq E_{0}\left(M_{0}\right)$.
(b). If $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)$ and A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right)$, then then M_{C} satisfies property (w) implies M_{0} satisfies property (w) if and only if $E_{0}\left(M_{0}\right) \subseteq E_{0}\left(M_{C}\right)$.

Proof.

(a) Since M_{0} satisfies property (w) implies M_{0} satisfies a-Browder's theorem, A and B have SVEP on $\Delta_{a}\left(M_{C}\right) .\left(\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)\right)$. Hence M_{C} satisfies a-Browder's theorem by Theorem 4.12 of [15]. Thus $\lambda \in \pi_{0}^{a}\left(M_{C}\right)$ if and only if $\lambda \in \Delta_{a}\left(M_{C}\right)=$ $\Delta_{a}\left(M_{0}\right)=\pi_{0}^{a}\left(M_{0}\right)=E_{0}\left(M_{0}\right)$. It follows that

$$
\sigma_{a}\left(M_{C}\right) \backslash \sigma_{a w}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{0}\right)=E_{0}\left(M_{0}\right) \subseteq E_{0}\left(M_{C}\right),
$$

which proves that M_{C} satisfies property (w) if and only if $E_{0}\left(M_{C}\right) \subseteq E_{0}\left(M_{0}\right)$.
(b) The argument of th proof of Theorem 4.12 part(i) of [15] shows that if $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)$ and A^{*} has SVEP on $\Delta_{a}\left(M_{C}\right)$, then $\sigma_{a}\left(M_{C}\right)=\sigma_{a}\left(M_{0}\right)=\sigma_{a}(A) \cup \sigma_{a}(B)$. Thus, if M_{C} satisfies property (w), then M_{0} satisfies a-Browder's theorem, i.e., $\Delta_{a}\left(M_{0}\right)=\pi_{0}^{a}\left(M_{0}\right)$ and

$$
\Delta_{a}\left(M_{0}\right)=\Delta_{a}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{C}\right)=\pi_{0}^{a}\left(M_{0}\right)=E_{0}\left(M_{0}\right) \subseteq E_{0}\left(M_{C}\right)
$$

where the equality $\pi_{0}^{a}\left(M_{0}\right)=\pi_{0}^{a}\left(M_{C}\right)$ follows from the implications

$$
\lambda \in \pi_{0}^{a}\left(M_{C}\right) \Leftrightarrow \lambda \in \Delta_{a}\left(M_{C}\right)=\Delta_{a}\left(M_{0}\right) \Leftrightarrow \lambda \in \pi_{0}^{a}\left(M_{0}\right) .
$$

hence M_{0} satisfies property (w) if and only if $E_{0}\left(M_{C}\right) \subseteq E_{0}\left(M_{0}\right)$.
Theorem 4.19. If $\sigma_{a w}(A)=\sigma_{S F_{+}}(B)$, A is a-isoloid and property (w), then M_{0} satisfies property (w) implies M_{C} satisfies property (w).

Proof. Start by observing that if $\lambda \in \Phi_{+}^{-}\left(M_{C}\right)$ and $\operatorname{ind}(A-\lambda I)>0$, then $\lambda \in \Phi(A) \cap \Phi_{+}(B)$ and $\operatorname{ind}(A-\lambda I))+\operatorname{ind}(B-\lambda I)) \leq 0$; if, instead, $\operatorname{ind}(A-\lambda I) \leq 0$, then $\sigma_{a w}(A)=\sigma_{S F_{+}}(B)$ and $\lambda \in \Phi_{+}^{-}\left(M_{C}\right)$ imply that $\lambda \in \Phi_{+}^{-}(A) \cap \Phi_{+}(B)$ and $\operatorname{ind}(A-\lambda I)+\operatorname{ind}(B-\lambda I) \leq 0$. In either case, $\lambda \in \Phi_{+}^{-}\left(M_{C}\right)$ implies $\lambda \in \Phi_{+}^{-}\left(M_{0}\right)$; hence $\sigma_{a w}\left(M_{C}\right)=\sigma_{a w}\left(M_{0}\right)$. In view of Theorem 4.18, we are thus left to prove that $E_{0}\left(M_{C}\right) \subseteq E_{0}\left(M_{0}\right)$. If $\lambda \in E_{0}\left(M_{C}\right)$, then $\lambda \in \sigma_{a}^{i s o}(A) \cup \sigma_{a}^{i s o}(B)$, and so $\lambda \in$ $E_{0}(A)=\Delta_{a}(A)=\sigma_{a}(B) \backslash \sigma_{S F_{+}}(B)$ (since A is a-isoloid, A satisfies property (w) and $\sigma_{a w}(A)=$ $\sigma_{S F_{+}}(B)$. But then, since M_{0} satisfies a-Browder's theorem implies B has SVEP at $\lambda, \lambda \in \pi_{0}^{a}(B)$. Hence $\lambda \in \pi_{0}^{a}\left(M_{0}\right)=E_{0}\left(M_{0}\right)$.

Remark 4.20. If A^{*} has SVEP, then $\lambda \in \Delta_{a}\left(M_{C}\right)$ implies $\lambda \in \Phi(A) \cap \Phi_{+}^{-}(B)$, ind $\left.(A-\lambda I)\right) \geq 0$ and $\operatorname{ind}(A-\lambda I)+\operatorname{ind}(B-\lambda I) \leq 0$; this in turn implies that $\lambda \notin \sigma_{a w}(A) \cup \sigma_{a w}(B)$. Thus, if A^{*} has SVEP and M_{0} satisfies a-Browder's theorem, then $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}(A) \cup \sigma_{a w}(B)=\sigma_{a w}\left(M_{C}\right)$.

Theorem 4.21. If $\sigma_{a}\left(A^{*}\right)$ has empty interior, A is a-isoloid and property (w), then M_{0} satisfies property (w) implies M_{C} satisfies property (w).

Proof. Evidently, A^{*} has SVEP, M_{0} satisfies a-Browder's theorem and $\sigma_{a w}\left(M_{0}\right)=\sigma_{a w}\left(M_{C}\right)$. Now argue as in the (latter part of the) proof of Theorem 4.19.

For an operator $T \in \mathscr{L}(\mathbb{X})$ such that T^{*} has SVEP, T satisfies Weyl's theorem if and only if T property (w) [3, Theorem 2.16]. Thus, if A^{*} and B^{*} have SVEP, then $M_{X}^{*}=M_{0}^{*}$ or M_{C}^{*} has SVEP, and the (two way) implication M_{X} satisfies Weyl's theorem if and only if M_{X} satisfies property (w). The following theorem, proves more.

Theorem 4.22. If $S_{\sigma_{S F_{+}}(A)}\left(A^{*}\right) \cup S_{\sigma F_{+}(B)}\left(B^{*}\right)=\varnothing$, then M_{C} satisfies Weyl's theorem if and only M_{C} satisfies a-Weyl's theorem if and only if M_{C} satisfies property (w).

Proof. The implication M_{C} satisfies a-Weyl's theorem or M_{C} satisfies property (w) implies M_{C} satisfies Weyl's theorem being clear, we prove the reverse implication. For this, it would suffice to prove that $\sigma\left(M_{C}\right)=\sigma_{a}\left(M_{C}\right)$ (which would then imply $E_{0}\left(M_{C}\right)=E_{0}^{a}\left(M_{C}\right)$ and $\sigma_{w}\left(M_{C}\right)=$ $\sigma_{a w}\left(M_{C}\right)$).

Evidently, $\sigma_{a}\left(M_{C}\right) \subseteq \sigma\left(M_{C}\right)$. Let $\lambda \notin \sigma_{a}\left(M_{C}\right)$. Then $M_{C}-\lambda I$ and $A-\lambda I$ are left invertible.

The left invertibility of $A-\lambda I$ implies $\lambda \in \Phi_{+}(A)$. Since A^{*} has SVEP at points $\lambda \in \Phi_{+}(A)$, it follows that $A-\lambda I$ is invertible. But then $B-\lambda I$ is left invertible, which (because B^{*} has SVEP at points $\lambda \in \Phi_{+}(B)$ implies that $B-\lambda I$ is invertible. Thus, $\lambda \notin \sigma(A) \cup \sigma(B)$, i.e., $\sigma\left(M_{C}\right) \subseteq \sigma(A) \cup$ $\sigma(B) \subseteq \sigma_{a}\left(M_{C}\right)$. Next, we prove that $\sigma_{w}\left(M_{C}\right) \subseteq \sigma_{a w}\left(M_{C}\right)$: this would then imply the equality $\sigma_{w}\left(M_{C}\right)=\sigma_{a w}\left(M_{C}\right)$. Let $\lambda \notin \sigma_{a w}\left(M_{C}\right)$; then $\lambda \in \Phi_{+}(A)$ (and ind $\left.(A-\lambda I)+i n d(B-\lambda I) \leq 0\right)$. Since A^{*} has SVEP at points $\lambda \in \Phi_{+}(A)$, it follows that $\operatorname{ind}(A-\lambda I) \geq 0$) implies $\lambda \in \Phi(A)$ (with $\operatorname{ind}(A-\lambda I) \geq 0$). Since this forces $\lambda \in \Phi_{+}(B)$, it follows (from the hypothesis B^{*} has SVEP on the set of $\left.\lambda \in \Phi_{+}(B)\right)$ that $\lambda \in \Phi(B)$ and $\operatorname{ind}(B-\lambda I) \geq 0$. Since $\operatorname{ind}(A-\lambda I)+\operatorname{ind}(B-\lambda I) \leq 0$, we conclude that $\lambda \in \Phi^{0}(A) \cap \Phi^{0}(B)$. Hence $\sigma_{w}\left(M_{C}\right) \subseteq \sigma_{w}(A) \cup \sigma_{w}(B) \subseteq \sigma_{a w}\left(M_{C}\right)$, and the proof is achieved.

Two important T-invariant subspaces of T are defined as follows. The quasinilpotent part $H_{0}(T-\lambda I)$ and the analytic core $K(T-\lambda I)$ of $T-\lambda I$ are defined by

$$
H_{0}(T-\lambda I):=\left\{x \in \mathbb{X}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and

$$
\begin{aligned}
K(T-\lambda I)= & \left\{x \in \mathbb{X}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathbb{X} \text { and } \quad \delta>0 \quad\right. \text { for which } \\
& \left.x=x_{0},(T-\lambda I) x_{n+1}=x_{n} \text { and } \quad\left\|x_{n}\right\| \leq \delta^{n}\|x\| \text { for all } \quad n=1,2, \ldots\right\} .
\end{aligned}
$$

Note that $(T-\lambda I) K(T-\lambda I)=K(T-\lambda I) \quad[1$, Chapter 1], Moreover (see [2]),

$$
H_{0}(T-\lambda I) \text { is closed } \Longrightarrow T \text { has SVEP at } \lambda
$$

Lemma 4.23. ([4]) Suppose that for a bounded linear operator $T \in \mathscr{L}(\mathbb{X})$ there exists $\lambda_{0} \in \mathbb{C}$ such that $K\left(T-\lambda_{0} I\right)=\{0\}$ and $\operatorname{ker}\left(T-\lambda_{0} I\right)=\{0\}$. Then $\sigma_{p}(T)=\varnothing$.

Proof. Since $\operatorname{ker}(T-\lambda I) \subseteq \operatorname{ker}\left(T-\lambda_{0} I\right)$ for all $\lambda \neq \lambda_{0}$, so that $\operatorname{ker}(T-\lambda I)=\{0\}$ for all $\lambda \in \mathbb{C}$.
Theorem 4.24. Suppose that there exists $\lambda_{0} \in \mathbb{C}$ such that

$$
K\left(A-\lambda_{0} I\right)=\{0\}, \operatorname{ker}\left(A-\lambda_{0} I\right)=\{0\}, K\left(B-\lambda_{0} I\right)=\{0\} \quad \text { and } \operatorname{ker}\left(B-\lambda_{0} I\right)=\{0\} .
$$

Then property (w) holds for $f\left(M_{C}\right)$ for all $f \in H\left(\sigma\left(f\left(M_{C}\right)\right)\right.$.
Proof. It follows from Lemma 4.23 that $\sigma_{p}(A)=\sigma_{p}(B)=\varnothing$, so A and B have SVEP and hence M_{C} has SVEP. We show that also $\sigma_{p}\left(f\left(M_{C}\right)\right)=\varnothing$. Let $\left.\mu \in \sigma\left(f\left(M_{C}\right)\right)\right)$ and write $f(\lambda)-\mu=$ $p(\lambda) g(\lambda)$, where g is analytic on an open neighborhood U containing $\sigma\left(M_{C}\right)$ and without zeros in $\sigma\left(M_{C}\right), p$ a polynomial of the form $p(\lambda)=\prod_{k=1}^{n}\left(\lambda-\lambda_{k}\right)^{v_{k}}$, with distinct roots $\lambda_{1}, \ldots, \lambda_{n}$ lying in $\sigma\left(M_{C}\right)$. Then

$$
f\left(M_{C}\right)-\mu I=\prod_{k=1}^{n}\left(M_{C}-\lambda_{k} I\right)^{v_{k}} g\left(M_{C}\right) .
$$

Since $g\left(M_{C}\right)$ is invertible, $\sigma_{p}\left(M_{C}\right) \subseteq \sigma_{p}(A) \cup \sigma_{p}(B)=\varnothing$ implies that $\operatorname{ker}\left(f\left(M_{C}\right)-\mu I\right)=\{0\}$ for all $\mu \in \mathbb{C}$. Since M_{C} has SVEP then $f\left(M_{C}\right)$ has SVEP, see Theorem 2.40 of [1], so that $f\left(M_{C}\right) \in a B$ [5]. To prove that property (w) holds for $f\left(M_{C}\right)$, by Theorem 2.7 of [3] it then suffices to prove that

$$
\pi_{0}^{a}\left(f\left(M_{C}\right)\right)=E_{0}\left(f\left(M_{C}\right)\right)
$$

Obviously, the condition $\sigma_{p}\left(f\left(M_{C}\right)\right)=\varnothing$ entails that

$$
E_{0}\left(f\left(M_{C}\right)\right)=E_{0}^{a}\left(f\left(M_{C}\right)\right)=\varnothing .
$$

On the other hand, the inclusion $\pi_{0}^{a}\left(f\left(M_{C}\right)\right) \subseteq E_{0}^{a}\left(f\left(M_{C}\right)\right)$ holds for every operator $M_{C} \in$ $\mathscr{L}(\mathbb{X}, \mathbb{Y})$, so also $\pi_{0}^{a}\left(f\left(M_{C}\right)\right)$ is empty. Hence, the result follows.

Recall that an operator $T \in \mathscr{L}(\mathbb{X})$ is an a-polaroid if $\sigma_{a}^{i s o}(T) \subseteq \pi(T)$. Since $\pi_{0}(T) \subseteq E_{0}^{a}(T)$, then if T is a-polaroid then $\pi_{0}(T)=E_{0}^{a}(T)$.

Theorem 4.25. Let A and B be a-polaroid with the SVEP. Then M_{C} obeys property (w) for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. A and B are a-polaroid hence $\pi_{0}(A)=E_{0}^{a}(A)$ and $\pi_{0}(B)=E_{0}^{a}(B)$. Since A and B have the SVEP, we have by by [3] that A and B satisfy property (w). Therefore,

$$
E_{0}\left(M_{0}\right)=\Delta_{a}\left(M_{0}\right)=\Delta_{a}\left(M_{C}\right) .
$$

Hence it is enough to show that $E_{0}\left(M_{0}\right)=E_{0}\left(M_{C}\right)$. Let $\lambda \in E_{0}\left(M_{C}\right)$. Then $\lambda \in \sigma_{p}\left(M_{C}\right) \subseteq \sigma_{p}(A) \cup$ $\sigma_{p}(B)$. Hence $\lambda \in \sigma_{p}\left(M_{0}\right)$. Since $\lambda \in \sigma^{i s o}\left(M_{C}\right)=\sigma^{i s o}\left(M_{0}\right)$ we have $\lambda \in E_{0}\left(M_{0}\right)$. Now let $\lambda \in$ $E_{0}\left(M_{0}\right)$. If $\lambda \in \sigma_{a}(A)$ then $\lambda \in \sigma_{a}^{i s o}(A)$. Since A is a-isoloid, we have $\lambda \in \sigma_{p}(A) \subseteq \sigma_{p}\left(M_{C}\right)$. Hence $\lambda \in E_{0}\left(M_{C}\right)$. If $\lambda \sigma_{a}(B) \backslash \sigma_{a}(A)$, then $\lambda \in \sigma_{p}(B)$. Since A is invertible, we conclude that $\lambda \in \sigma_{p}\left(M_{C}\right)$. Thus $\lambda \in E_{0}\left(M_{C}\right)$. So the proof of the theorem is achieved.

Theorem 4.26. Let A be an a-isoloid. Assume that A and B (or A^{*} and B^{*}) have the SVEP. If A and M_{0} satisfy property (w) then M_{C} satisfies property (w) for every $C \in \mathscr{L}(\mathbb{Y}, \mathbb{X})$.

Proof. Let $\lambda \in \Delta_{a}\left(M_{C}\right)$. Then $\sigma_{a}\left(M_{C}\right)=\sigma_{a}\left(M_{0}\right)$ and hence $\Delta_{a}\left(M_{C}\right)=\Delta_{a}\left(M_{0}\right)=E_{0}\left(M_{0}\right)$ since M_{0} satisfies property (w). Thus $\lambda \in \sigma_{a}^{i s o}\left(M_{0}\right)=\sigma_{a}^{i s o}\left(M_{C}\right)$. If $\lambda \in \sigma_{a}^{i s o}(A)$, since A is a-isoloid then $\lambda \in \sigma_{p}(A)$. Hence $\lambda \in \sigma_{p}\left(M_{C}\right)$. Then $\lambda \in E_{0}\left(M_{C}\right)$. Now assume that $\lambda \in \sigma_{a}^{i s o}(B) \backslash \sigma_{a}^{i s o}(A)$. If $\lambda \notin \sigma_{a}(A)$ then it is not difficult to see that $\lambda \in \sigma_{p}\left(M_{C}\right)$. Also if $\lambda \in \sigma_{p}(A)$ then $\lambda \in \sigma_{p}\left(M_{C}\right)$, so assume that $\lambda \in \sigma_{p}(B) \backslash \sigma_{p}(A)$. Then $\lambda \notin E_{0}(A)$. Since A satisfies property (w), then $\lambda \in$ $\sigma_{a w}(A)$. This is impossible. Therefore, $\lambda \in E_{0}\left(M_{C}\right)$. Conversely, assume that $\lambda \in E_{0}\left(M_{C}\right)$. Then $\lambda \in \sigma_{a}^{i s o}\left(M_{C}\right)=\sigma_{a}^{i s o}\left(M_{0}\right)$. On the other hand, $\lambda \in \sigma_{p}\left(M_{C}\right) \subseteq \sigma_{p}(A) \cup \sigma_{p}(B)$. Hence $\lambda \in \sigma_{p}\left(M_{0}\right)$. Thus

$$
\lambda \in E_{0}\left(M_{0}\right)=\Delta_{a}\left(M_{0}\right)=\Delta_{a}\left(M_{C}\right) .
$$

Acknowledgement

I am grateful to the referee for his valuable comments and helpful suggestions.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] P. Aiena, M. L. Colasantce and M. Gonzealez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130 (2002), 2701-2710
[3] P. Aiena and P. Peña, Variations on Weyls theorem, J. Math. Anal. Appl., 324 (1)(2006), 566-579.
[4] P. Aiena, Maria T. Biondi and F. Villafañe, Property (w) and perturbations III, J. Math. Anal. Appl., 353 (2009), 205-214.
[5] P. Aiena, C. Carpintero and E. Rosas, Some characterization of operators satisfying a-Browder theorem, J. Math. Anal. Appl., 311 (2005), 530-544.
[6] X. Cao and B. Meng, Essential approximate point spectra and Weyls theorem for operator matrices, J. Math. Anal. Appl., 304 (2005), 759-771.
[7] X. Cao, M. Guo and B. Meng, Weyl's theorem for upper triangular operator matrices, Linear Alg. Appl., 402 (2005), 61-73.
[8] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J., 13(1966), 285-288.
[9] D. S. Djordjević, Operators obeying a-Weyls theorem, Publ. Math. Debrecen, 55 (3) (1999), 283-298.
[10] S. V. Djordjević and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc., 131 (2003), 2543-2547.
[11] S. V. Djordjević and H. Zguitti, Essential point spectra of operator matrices through local spectral theory, J. Math. Anal. Appl., 338 (2008), 285-291.
[12] B. P. Duggal, Hereditarily normaloid operators, Extracta Math., 20 (2005), 203-217.
[13] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyls theorem, J. Math. Anal. Appl., 340(2008), 366373.
[14] B. P. Duggal, Upper triangular operator matrices, SVEP and Browder, Weyl Theorems, Integral Equations and Operator Theory, 63 (2009), 17-28.
[15] B. P. Duggal, Browder and Weyl spectra of upper triangular operator matrices, Filomat, 24 (2) (2010), 111-130.
[16] R. Harte, W. Y. Lee, Another note on Weyls theorem, Trans. Amer. Math. Soc., 349 (1997), 2115-2124.
[17] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
[18] M. Houimdi and H. Zguitti, Proporties spectrales locales d'une matrice carree des operateurs, Acta Math. Vietnam., 25 (2000), 137-144.
[19] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, Oxford. Clarendon, 2000.
[20] W. Y. Lee, Weyls theorem for operator matrices, Integr. Equat. Op. Th., 32 (1998), 319-331.
[21] V. Rakoc̃ević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 10(1986), 915-919.
[22] V. Rakoc̃ević, On a class of operators, Math. Vesnik, 37 (1985), 423-426.
[23] V. Rakoc̃ević, Semi-Browder operators and perturbations, Studia Math., 122(1997), 131-137.
[24] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann., 163 (1966), 18-49.
[25] A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, John Wiley and Sons, 1980.

Department of Mathematics \& Statistics, Faculty of Science, P.O.Box(7), Mu'tah University, Al-Karak-Jordan.
E-mail: malik_okasha@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47A55, 47A53.
 Key words and phrases. Weyl's theorem, Weyl spectrum, polaroid operators, property (w), matrix theory.

