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BOUNDARY VALUES OF ANALYTIC FUNCTIONS WITHOUT

DISTRIBUTIONAL POINT VALUES

RICARDO ESTRADA

Abstract. We give a method to construct distributions that are boundary values of analytic

functions which have non-tangential limits at points where the distributional point value does

not exist.

1. Introduction.

Let f ∈ D′(R) be a distribution that is the boundary value of an analytic function

defined in the upper-half plane, f(x) = F (x+ i0), distributionally. Then it is well-known

that if the distributional point value f(x0) = L exists in the sense of  Lojasiewicz [7],

then F (x0 + iy) → L as y → 0+ [10, 11].

The purpose of this note is to show how one can construct a counterexample to the

reciprocal result. Namely, we will show that there are functions F, analytic in the upper-

half plane, with distributional boundary values f(x) = F (x + i0), f ∈ D′(R), for which

the limit limy→0+ F (x0 +iy) exists, but the distributional value f(x0) does not. Actually,

counterexamples where even the non-tangential limit of F (z) as z → x0 exists can be

constructed.

Our construction is based on the Baire theorem, and so we start by giving a useful

variant of this result in Section 2. Next, in Section 3 we show the existence of series
∑∞

n=0 an that are Abel but not Cesàro summable and satisfy the additional condition

an = O(nβ), n → ∞, for some β > −1. The existence of such series is used in Section 4

to prove the existence of the announced counterexamples.

2. A variant of the Baire Theorem

Our construction is based on the well-known Baire theorem [5]. The theorem of Baire

says that a complete metric space is of the second category. Sets of the second category

are those that are not of the first category, i.e., countable unions of nowhere dense sets.

A nowhere dense set is one whose closure has empty interior.
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Our argument uses a variant of the Baire theorem, that although really useful, does
not seem to be stated explicitly in the texts; thus, it is convenient to start the article by
considering this result.

If E is a closed proper linear subspace of a topological vector space F, then it is
nowhere dense, since the only linear subspace with non-empty interior is F itself. Thus
is {En}∞n=1 is a sequence of proper closed linear subspaces of a Fréchet space F, then
⋃∞

n=1 En 6= F. In the present situation we need to conclude that
⋃∞

n=1 En 6= F, where
the En’s are proper linear subspaces of F, but not closed (in fact, each of them is dense
in F !).

That
⋃∞

n=1 En may be equal to F, where F is any infinite dimensional Fréchet space,
can be seen from the following construction. Let {xa}a∈A be an algebraic (or Hamel)
basis of F over the field (R or C). Since A is infinite, there is an increasing sequence of
sets {An}∞n=1 whose union is A, An ր A. Let En be the linear subspace spanned (alge-
braically) by {xa}a∈An

. Then the En are proper linear subspaces of F and
⋃∞

n=1 En = F.
As we show in the Theorem 2, however, the conclusion

⋃∞
n=1 En 6= F can be obtained

under additional hypothesis on the En’s.

Theorem 1. Let E and F be Fréchet spaces. Suppose E ⊂ F and the inclusion is

continuous. If E 6= F then E is of the first category in F.

Proof. Denote as TE and TF→E the topologies of E as a Fréchet space and as a
subspace of F, respectively. We are assuming that the identity map Id : (E, TE) →
(E, TF→E) is continuous.

If Id is also open, then the two topologies coincide. It then follows that (E, TF→E)
is complete and, consequently, that E is a closed subspace of F. Since E 6= F it follows
that E is nowhere dense in F and thus of the first category.

Let us now consider the situation when Id is not open. Let dE and dF be invariant
metrics for E and F, respectively. Consider the “balls”

BE,r(0) = {x ∈ E : dE (x, 0) ≤ r} . (2.1)

Let Wr be the closure of BE,r(0) in F. Then either (i) Wr is a neighborhood of zero in
F for each r > 0, or (ii) there exists r0 > 0 such that the origin is not in the interior of
Wr for r ≤ r0.

If (ii) holds, then the interior of Wr is empty if r ≤ r0/2, since if x ∈ int (Wr) then
0 ∈ int (W2r) . Therefore BE,r(0) is nowhere dense in F for r ≤ r0/2 and consequently
E =

⋃∞
n=1 nBE,r(0) is of the first category in F.

Let us show that (i) cannot hold, since it would imply that E = F. Indeed, when (i)
holds, then ∀r > 0 ∃ρ = ρ (r) > 0 such that BF,ρ(0) ⊂ Wr . Fix r = r0 and ρ = ρ(r).
Let y ∈ BF,ρ(0). Let rn ց 0 be a decreasing sequence such that

∑∞
n=1 rn < ∞, and let

ρn = ρ (rn) , chosen in such a way that ρn ց 0. Then a sequence {xn}
∞
n=1 of E can be

constructed recursively by requiring that

dF



y,

n
∑

j=1

xj



 < ρn, (2.2)
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dE (xn, 0) < rn−1. (2.3)

Then (2.3) implies that the partial sums of the series
∑∞

n=1 xn form a Cauchy sequence
in E and, since E is complete,

∑∞
n=1 xn converges in E to some x ∈ E. But this yields

that
∑∞

n=1 xn = x in the topology of F too, while (2.2) gives that
∑∞

n=1 xn = y in F.
We conclude that y = x ∈ E. Thus BF,ρ(0) ⊂ E and so F =

⋃∞
n=1 nBF,ρ(0) ⊂ E.

Using the Theorem 2.1 we immediately obtain our variant of the Baire theorem.

Theorem 2. Let F be a Fréchet space. Let {En}
∞
n=1 be a sequence of Fréchet spaces

such that En ⊂ F, inclusions being continuous. If En 6= F ∀n then
⋃∞

n=1 En 6= F.

It is worth remarking that local convexity is not used in these results, so that they
hold for complete metrizable topological vector spaces, not just Fréchet spaces.

3. Series that are Abel but not Cesàro Summable

Let
∑∞

n=0 an be a possibly divergent series. We say that the series is Abel summable
to S, and write

∞
∑

n=0

an = S (A) , (3.1)

if the series
∑∞

n=0 anrn converges for 0 ≤ r < 1 and

lim
r→1

∞
∑

n=0

anrn = S . (3.2)

Notice that to each Abel summable series there corresponds an analytic function F (z) =
∑∞

n=0 anzn which is defined in the unit disc ∆ = {z ∈ C : |z| < 1} and that has a radial
limit at z = 1, and conversely. The space of Abel summable series FAbel has a natural
structure of a Fréchet space, corresponding to the intersection topology of the Fréchet
space H (∆) of analytic functions in ∆ [9], and the Banach space C[0, 1], with its usual
supremum norm.

On the other hand, the Cesàro summability of the series
∑∞

n=0 an is defined as follows
[3, 4]. Set

A0
n = a0 + · · · + an , (3.3)

Aκ
n = Aκ−1

0 + · · · + Aκ−1
n . (3.4)

Then the series is (C, κ) summable to S, written as

∞
∑

n=0

an = S (C, κ) , (3.5)

if

lim
n→∞

Aκ
n

nκ
=

s

κ!
. (3.6)



56 RICARDO ESTRADA

The notation
∑∞

n=0 an = S (C) means that (3.5) holds for some κ. The formula

Aκ
n =

n
∑

q=0

(

q + κ

κ

)

an−q , (3.7)

that makes sense for any κ ∈ R, κ > −1, allows us to define the Cesàro summability

of non-integral order. Since when κ1 > κ2, then (C, κ1) summability implies (C, κ2)

summability, for our present purposes one may consider only summability of intergral

order.

Convergence implies (C, κ) summability of any order, while Cesàro summability, in

turn, implies Abel summability.

It is very simple to construct series that are Abel but not Cesàro summable. Indeed,

if
∑∞

n=0 an is the series obtained by setting x = 1 in the Taylor series
∑∞

n=0 anxn =

e(1+x)−1

, then
∑∞

n=0 an = e1/2 (A), but the series is not (C) summable since the terms

are not of the order O
(

nβ
)

for any β ∈ R. Similarly, the series
∑∞

n=0 (−1)
n

ec
√

n, where

c > 0, is also (A) but not (C) summable [3, 4].

The counterexample of Section 4, however, requires the construction of a series
∑∞

n=0 an that is Abel but not Cesàro summable and whose terms satisfy a bound of the

type an = O
(

nβ
)

, n → ∞, for some β ∈ R. That this is not possible if β = −1 follows

from Littlewood’s tauberian theorem [6], since if
∑∞

n=0 an = S (A) and an = O
(

n−1
)

,

n → ∞, then
∑∞

n=0 an actually converges to S. Nevertheless, such examples exist for any

β > −1.

Theorem 3. Let β > −1. Then there exists a series
∑∞

n=0 an with an = O
(

nβ
)

, n →
∞, that is Abel but not Cesàro summable.

Proof. Let Fβ be the Banach space of series
∑

an of complex terms that satisfy

an = O
(

nβ
)

, n → ∞, with the norm

‖{an}‖Fβ
= max

{

|a0| , sup
n≥1

n−β |an|

}

. (3.8)

Let FAbel be the Fréchet space of (A) summable series, introduced before, and let F =

Fβ ∩ FAbel, with the intersection topology; interestingly, F is not only a Fréchet space

but actually a Banach space.

For any κ > 1, let E(C,κ) be the space of series that are (C, κ) summable, with the

seminorms

‖{an}‖E(C,κ)
= sup

n≥1
n−κ |Aκ

n| Γ (κ + 1) , (3.9)

where the Cesàro means of order κ are given by (3.7). Let Eκ = E(C,κ) ∩ Fβ with

the intersection topology. Since Eκ is a is Banach space, and the inclusion Eκ → F is

continuous, if we show that Eκ 6= F∀κ, it will follow that Eκ is of the first category in F

and, consequently, that
⋃

κ>−1 Eκ 6= F, which is precisely what we are required to show.
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But to show that Eκ 6= F for any κ, since the Eκ are increasing with κ, it is enough to

show that Eκ1 6= Eκ2 if κ1 6= κ2. But [4, Section 6.12] the series

∞
∑

n=1

nb+iceAina

, (3.10)

where 0 < a < 1, b > −1, is (C, κ) summable if and only if

(κ + 1) a − b > 1 . (3.11)

If κ1 < κ2, by choosing the parameters a and b, 0 < a < 1, b > −1 in a way that

b ≤ β , b < κ2 ,
b + 1

κ1 + 1
> α >

b + 1

κ2 + 1
, (3.12)

we obtain that the series (3.10) belongs to Eκ1 \ Eκ2 .

Notice that the same procedure produces series that are (A) but not (C) summable

and satisfy other extra conditions. For instance, we may ask {an} ∈ lp for 1 < p < ∞.

4. Distributions without Point Values

Let f ∈ D′ (R) be a distribution. Then [3, 7] f has a distributional point value in the

sense of  Lojasiewicz at x = x0, written as

f (x0) = L distributionally, (4.1)

if

lim
ε→0

f (x0 + εx) = L , (4.2)

in the topology of D′ (R) , that is, if

lim
ε→0

〈f (x0 + εx) , φ(x)〉 = L

∫ ∞

−∞
φ(x) dx , ∀φ ∈ D′ (R) . (4.3)

It can be shown that f (x0) = L distributionally if and only if there exist N ∈ N and a

primitive of order N of f, F (N) = f, that is continuous in a neighborhood of x = x0 and

satisfies

lim
x→x0

F (x)

(x − x0)
N

=
L

N !
. (4.4)

Let now f ∈ D′ (R) be a periodic distribution of period 2π, with Fourier series ex-

pansion

f (θ) =

∞
∑

n=−∞
aneinθ . (4.5)
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Then [1] f (θ0) = L distributionally if and only if certain Cesàro averages of the Fourier

series for θ = θ0 converge to L, namely, if and only if

lim
x→∞

∑

−x≤n≤ax

aneinθ = L (C) ∀a > 0. (4.6)

In particular [1, 10], if the Fourier series of f is of the power series type, f (θ) =
∑∞

n=0 aneinθ, then

f (θ0) = L distributionally ⇔
∞
∑

n=0

aneinθ0 = L (C) . (4.7)

Let now F (z) be an analytic function defined in the unit disc ∆ = {z ∈ C : |z| < 1}.
Let

F (z) =

∞
∑

n=0

anzn , (4.8)

be its Taylor series at z = 0. Then F has distributional boundary limits at S = {ξ ∈ C :

|ξ| = 1}, that is,

f (ξ) = lim
r→1−

F (rξ) , (4.9)

exists in D′ (S) if and only if one of the following two equivalent conditions is satisfied

[2]:

1. ∃M > 0, α ∈ R such that |F (z)| ≤ M (1 − |z|)−α ∀z ∈ ∆;

2. ∃β ∈ R such that an = O
(

nβ
)

as n → ∞.

Combining these results with those of the previous section, we immediately obtain.

Theorem 4. There exists an analytic function defined in |z| < 1, that has distri-

butional boundary values at |z| = 1, f (ξ) = limr→1− F (rξ) , where f ∈ D′ (S) , such

that

(a) limr→1− F (r) exists

(b) f
(

eiθ
)

does not have a distributional value at θ = 0.

Proof. Let
∑∞

n=0 an be a series that is Abel but not Cesàro summable and that

satisfies an = O
(

nβ
)

, n → ∞ for some β ∈ R. Then F (z) =
∑∞

n=0 anzn satisfies all the

required conditions.

Observe that we may ask the boundary function f to belong, for instance, to smaller

spaces such as H2. Notice also that we may construct a function F as in Theorem 4 for

which not only the radial limit but the non-tangential limit exists as z = 1.

Using a conformal map we see that a corresponding result holds at any point of any

smooth closed contour. In particular, there exists an analytic function G(z) defined in the

upper half-plane Imz > 0 that has distributional boundary values in R, g(x) = G(x+ i0),

g ∈ D′(R), such that
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(a) limy→0 G(x0 + iy) exists (or more generally lim z→x0
N.T.

G(z) exists.)

(b) g(x) does not have a distributional point value at x = x0.

It is interesting to observe that another application of the Baire theorem argument
allows us to construct a function f ∈ H2 such that the distributional point values f(x)

do not exists for x ∈ X, where X is a dense Gδ subset of S. On the other hand, it is
well-known [8] that if f ∈ H2 is the boundary value of the analytic function F (z) then

limr→1 F (rξ) exists almost everywhere, that is, for all ξ ∈ Y where Y is a subset of
full measure of S. However, this does not provide the counterexample of Theorem 4,

since even though X and Y are very big subsets of S, in their own way, it could be that
X ∩ Y = ∅.

To construct such f ∈ H2 and such dense Gδ set X we proceed as follows. If f ∈ H2,

let f(θ) =
∑∞

n=0 aneinθ be its Fourier series expansion. Define

αθ,k(f) = sup
n∈N

|Aκ
n(θ)| , (4.10)

where

Aκ
n (θ) =

n
∑

q=0

(

q + κ

q

)

an−qe
i(n−q)θ , (4.11)

are the (C, κ) means of the Fourier series at θ. Fix θ. Use of the series (3.10) shows that for
each κ there exists f ∈ H2 with αφ,κ (f) = ∞. Employing the Banach-Steinhaus theorem,
we obtain that there exists a dense Gδ subset Bθ of H2 such that αθ,κ (f) = ∞ ∀κ if

f ∈ Bθ. Let {θn}
∞
n=1 be a dense countable subset of [0, 2π] and let B =

⋂∞
n=1 Bθn

. Then
B is also a dense Gδ subset of H2, and αθn,κ (f) = ∞ ∀n, κ and ∀f ∈ B. But observe that

for each fixed f and κ then αθ,κ (f) is an upper semicontinuous function of θ. Therefore
X = {θ : αθ,κ(f) = ∞ for some κ} is a dense Gδ subset of [0, 2π].

References

[1] Estrada, R., Characterization of the Fourier series of distributions having a value at a point,

Proc. Amer. Math. Soc. 124(1996), 1205-1212.

[2] Estrada, R. and Kanwal, R. P., Distributional boundary values of analytic and harmonic

functions, J. Math. Anal. Appl. 89(1982), 262-289.

[3] Estrada, R. and Kanwal, R. P., A Distributional Approach to Asymptotics. Theory and

Applications, Second Edition, Birkhäuser, Boston, 2002.
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