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ON ALMOST KENMOTSU MANIFOLDS

WITH NULLITY DISTRIBUTIONS

UDAY CHAND DE, JAE-BOK JUN AND KRISHANU MANDAL

Abstract. The object of this paper is to characterize the curvature conditions R ·P = 0

and P ·S = 0 with its characteristic vector field ξ belonging to the (k,µ)′-nullity distribu-

tion and (k,µ)-nullity distribution respectively, where P is the Weyl projective curvature

tensor. As a consequence of the main results we obtain several corollaries.

1. Introduction

In the present time the study of nullity distributions has become very interesting topic in

Differential Geometry. Gray [7] and Tanno [12] introduced the notion of k-nullity distribution

(k ∈R) in the study of Riemannian manifolds (M , g ), which is defined for any p ∈ M and k ∈R

as follows:

Np (k)= {Z ∈ Tp M : R(X ,Y )Z = k[g (Y , Z )X − g (X , Z )Y ]}, (1.1)

for any X ,Y ∈ Tp M , where Tp M denotes the tangent vector space of M at any point p ∈ M

and R denotes the Riemannian curvature tensor of type (1,3).

Next Blair, Koufogiorgos and Papantoniou [3] introduced the (k ,µ)-nullity distribution

which is a generalized notion of the k-nullity distribution on a contact metric manifold

(M 2n+1,φ,ξ,η, g ) and defined for any p ∈ M 2n+1 and k ,µ∈R as follows:

Np (k ,µ)= {Z ∈ Tp M 2n+1 : R(X ,Y )Z = k[g (Y , Z )X − g (X , Z )Y ]

+µ[g (Y , Z )hX − g (X , Z )hY ]}, (1.2)

where h = 1
2 ξφ and denotes the Lie differentiation.

In [5], Dileo and Pastore introduced the notion of (k ,µ)′-nullity distribution, another

generalized notion of the k-nullity distribution, on an almost Kenmotsu manifold (M 2n+1,

φ,ξ,η, g ), which is defined for any p ∈ M 2n+1 and k ,µ∈R as follows:

Np (k ,µ)′ = {Z ∈ Tp M 2n+1 : R(X ,Y )Z = k[g (Y , Z )X − g (X , Z )Y ]
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+µ[g (Y , Z )h′X − g (X , Z )h′Y ]}, (1.3)

where h′ =h ◦φ.

Also, Kenmotsu [9] introduced a new type of almost contact metric manifolds named

Kenmotsu manifolds nowadays. A differentiable (2n +1)-dimensional manifold M is said to

have a (φ,ξ,η)-structure or an almost contact structure, if it admits a (1,1) tensor field φ, a

characteristic vector field ξ and a 1-form η satisfying [1, 2]

φ2 =−I +η⊗ξ, η(ξ) = 1, (1.4)

where I denote the identity endomorphism. Here we include also φξ = 0 and η ◦φ= 0; both

can be derived from (1.4).

If a manifold M with a (φ,ξ,η)-structure admits a Riemannian metric g such that

g (φX ,φY ) = g (X ,Y )−η(X )η(Y ),

for any vector fields X and Y of Tp M 2n+1, then M is said to have an almost contact metric

structure (φ,ξ,η, g ). The fundamental 2-formΦ is defined byΦ(X ,Y ) = g (X ,φY ) for any vec-

tor fields X ,Y of Tp M 2n+1. The condition for an almost contact metric manifold being normal

is equivalent to vanishing of the (1,2)-type torsion tensor Nφ, defined by Nφ = [φ,φ]+2dη⊗ξ,

where [φ,φ] is the Nijenhuis torsion of φ [1]. A normal almost Kenmotsu manifold is a Ken-

motsu manifold such that dη= 0 and dΦ= 2η∧Φ. Also Kenmotsu manifolds can be charac-

terized by (∇X φ)Y = g (φX ,Y )ξ−η(Y )φX for any vector fields X ,Y . It is well known [9] that a

Kenmotsu manifold M 2n+1 is locally a warped product I × f N 2n , where N 2n is a Kähler man-

ifold, I is an open interval with coordinate t and the warping function f , defined by f = ce t

for some positive constant c . Let us denote the distribution orthogonal to ξ by D and defined

by D =K er (η)= Im(φ). In an almost Kenmotsu manifold, since η is closed, D is an integrable

distribution.

A Riemannian manifold (M 2n+1, g ) is called locally symmetric if its curvature tensor R is

parallel, that is, ∇R = 0, where ∇ is the Levi-Civita connection. The notion of semisymmetric

manifold, a proper generalization of locally symmetric manifold, is defined by R(X ,Y ) ·R = 0,

where R(X ,Y ) is considered as a field of linear operators, acting on R . A complete intrinsic

classification of these manifolds was given by Szabó in [11]. In a recent paper [8] Jun, De and

Pathak studied Weyl semisymmetric Kenmotsu manifolds.

Let M be a (2n +1)-dimensional Riemannian manifold. If there exists a one-to-one cor-

respondence between each coordinate neighborhood of M and a domain in Euclidean space

such that any geodesic of the Riemannian manifold corresponds to a straight line in the Eu-

clidean space, then M is said to be locally projectively flat. For n ≥ 1, M is locally projectively
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flat if and only if the well-known Weyl projective curvature tensor P vanishes. Here P is de-

fined by [10]

P(X ,Y )Z =R(X ,Y )Z −
1

2n
[S(Y , Z )X −S(X , Z )Y ], (1.5)

for all X ,Y , Z ∈ Tp M , where R is the curvature tensor and S is the Ricci tensor of type (0,2)

of M . In fact, M is Weyl projectively flat if and only if the manifold is of constant curvature

[17]. Thus the Weyl projective curvature tensor is the measure of the failure of a Riemannian

manifold to be of constant curvature. A Riemannian manifold is said to be Weyl projective

semisymmetric if the curvature tensor P satisfies R(X ,Y ) ·P = 0.

In [4], Dileo and Pastore studied locally symmetric almost Kenmotsu manifolds. We re-

fer the reader to ([4],[5],[6]) for more related results on (k ,µ)′-nullity distribution and (k ,µ)-

nullity distribution on almost Kenmotsu manifolds. In recent papers ([13],[14],[15],[16]) Wang

and Liu studied almost Kenmotsu manifolds with nullity distributions. In [14], Wang and Liu

studied ξ-Riemannian semisymmetric almost Kenmotsu manifolds with ξ belonging to the

(k ,µ)′-nullity distribution and (k ,µ)-nullity distribution.

Motivated by the above studies we study Weyl projective semisymmetric (R ·P = 0) and

the curvature condition P ·S = 0 in an almost Kenmotsu manifolds with nullity distributions.

The paper is organized as follows:

Section 2 focuses on almost Kenmotsu manifolds with ξ belonging to the (k ,µ)′-nullity dis-

tribution and ξ belonging to the (k ,µ)-nullity distribution. In sections 3 and 4 we study Weyl

projective semisymmetric almost Kenmotsu manifolds and almost Kenmotsu manifolds sat-

isfying the curvature condition P · S = 0 with characteristic vector field ξ belonging to the

(k ,µ)′-nullity distribution and (k ,µ)-nullity distribution respectively. As a consequence of the

main results we obtain several corollaries.

2. Almost Kenmotsu manifolds

Let M 2n+1 be an almost Kenmotsu manifold. We denote by h = 1
2 ξφ and l = R(·,ξ)ξ on

M 2n+1. The tensor fields l and h are symmetric operators and satisfy the following relations

[4]

hξ= 0, lξ= 0, t r (h)= 0, t r (hφ)= 0, hφ+φh = 0. (2.1)

Moreover, we have the following results [4, 5]

∇X ξ = −φ2 X −φhX (⇒∇ξξ= 0), (2.2)

φlφ− l = 2(h2 −φ2), (2.3)

R(X ,Y )ξ = η(X )(Y −φhY )−η(Y )(X −φhX )+ (∇Y φh)X − (∇Xφh)Y , (2.4)
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for any vector fields X ,Y . The (1,1)-type symmetric tensor field h′ = h ◦φ is anticommuting

with φ and h′ξ= 0. Also it is clear that

h = 0 ⇔ h′ = 0, h′2 = (k +1)φ2(⇔ h2 = (k +1)φ2), (2.5)

which holds on (k ,µ)′-almost Kenmotsu manifold.

3. ξ belongs to the (k ,µ)′-nullity distribution

This section is devoted to study of almost Kenmotsu manifolds with ξ belonging to the

(k ,µ)′-nullity distribution. Let X ∈ D be the eigen vector of h′ corresponding to the eigen

value λ. Then from (2.5) it is clear that λ2 = −(k +1), a constant. Therefore k ≤ −1 and λ =
±
p
−k −1. We denote by [λ]′ and [−λ]′ the corresponding eigenspaces related to the non-zero

eigen value λ and −λ of h′, respectively. Before presenting our main theorems we recall some

results:

Lemma 3.1 (Prop. 4.1 and Prop. 4.3 of [5]). Let (M 2n+1,φ,ξ,η, g ) be an almost Kenmotsu

manifold such that ξ belongs to the (k ,µ)′-nullity distribution and h′ 6= 0. Then k <−1, µ=−2

and Spec (h′) = {0,λ,−λ}, with 0 as simple eigen value and λ=
p
−k −1. The distributions [ξ]⊕

[λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic leaves. The distributions [λ]′ and [−λ]′

are integrable with totally umbilical leaves. Furthermore, the sectional curvature are given as

following:

(a) K (X ,ξ)= k −2λ if X ∈ [λ]′ and

K (X ,ξ)= k +2λ if X ∈ [−λ]′,

(b) K (X ,Y ) = k −2λ if X ,Y ∈ [λ]′;

K (X ,Y ) = k +2λ if X ,Y ∈ [−λ]′ and K (X ,Y ) =−(k +2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M 2n+1 has constant negative scalar curvature r = 2n(k −2n).

Lemma 3.2 (Lemma 3 of [15]). Let (M 2n+1,φ,ξ,η, g ) be an almost Kenmotsu manifold with ξ

belonging to the (k ,µ)′-nullity distribution and h′ 6= 0. If n > 1, then the Ricci operator Q of

M 2n+1 is given by

Q =−2ni d +2n(k +1)η⊗ξ−2nh′. (3.1)

Moreover, the scalar curvature of M 2n+1 is 2n(k −2n).

Lemma 3.3 (Proposition 4.2 of [5]). Let (M 2n+1,φ,ξ,η, g ) be an almost Kenmotsu manifold

such that h′ 6= 0 and ξ belongs to the (k ,−2)′-nullity distribution. Then for any Xλ,Yλ, Zλ ∈ [λ]′

and X−λ,Y−λ, Z−λ ∈ [−λ]′, the Riemannian curvature tensor satisfies:

R(Xλ,Yλ)Z−λ = 0,
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R(X−λ,Y−λ)Zλ = 0,

R(Xλ,Y−λ)Zλ = (k +2)g (Xλ, Zλ)Y−λ,

R(Xλ,Y−λ)Z−λ = −(k +2)g (Y−λ, Z−λ)Xλ,

R(Xλ,Yλ)Zλ = (k −2λ)[g (Yλ, Zλ)Xλ− g (Xλ, Zλ)Yλ],

R(X−λ,Y−λ)Z−λ = (k +2λ)[g (Y−λ, Z−λ)X−λ− g (X−λ, Z−λ)Y−λ].

From (1.3) we have

R(X ,Y )ξ= k[η(Y )X −η(X )Y ]+µ[η(Y )h′X −η(X )h′Y ], (3.2)

where k ,µ ∈R. Also we get from (3.2)

R(ξ, X )Y = k[g (X ,Y )ξ−η(Y )X ]+µ[g (h′X ,Y )ξ−η(Y )h′X ]. (3.3)

Contracting Y in (3.2) we have

S(X ,ξ)= 2nkη(X ). (3.4)

By applying the above results and Lemma 3.2 we obtain from (1.5)

P(ξ,Y )Z = (k +1)g (Y , Z )ξ− g (h′Y , Z )ξ+2η(Z )h′Y − (k +1)η(Y )η(Z )ξ (3.5)

for all vector fields Y , Z on M .

Using the above results we can present our main theorem as follows:

Theorem 3.1. Let (M 2n+1,φ,ξ,η, g )(n > 1) be an almost Kenmotsu manifold with ξ belong-

ing to the (k ,µ)′-nullity distribution and h′ 6= 0. If the manifold M 2n+1 is Weyl projective

semisymmetric then the manifold is locally isometric to the Riemannian product of an (n +1)-

dimensional manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

Proof. We suppose that the manifold M 2n+1 is Weyl projective semisymmetric, that is, R ·P =
0. Then (R(X ,Y ) ·P)(U ,V )W = 0 for all vector fields X ,Y ,U ,V ,W , which implies

R(X ,Y )P(U ,V )W −P(R(X ,Y )U ,V )W −P(U ,R(X ,Y )V )W −P(U ,V )R(X ,Y )W = 0. (3.6)

Setting X =U = ξ in (3.6) we have,

R(ξ,Y )P(ξ,V )W −P(R(ξ,Y )ξ,V )W −P(ξ,R(ξ,Y )V )W −P(ξ,V )R(ξ,Y )W = 0. (3.7)

Making use of (3.3) and (3.5) we get

R(ξ,Y )P(ξ,V )W = k[g (Y ,P(ξ,V )W )ξ−η(P(ξ,V )W )Y ]

−2[g (h′Y ,P(ξ,V )W )ξ−η(P(ξ,V )W )h′Y ]
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= k{(k +1)g (V ,W )η(Y )ξ− g (h′V ,W )η(Y )ξ+2η(W )g (Y ,h′V )ξ

−(k +1)η(V )η(W )η(Y )ξ− (k +1)g (V ,W )Y + g (h′V ,W )Y

+(k +1)η(V )η(W )Y }−2{2η(W )g (h′Y ,h′V )ξ

−(k +1)g (V ,W )h′Y + g (h′V ,W )h′Y + (k +1)η(V )η(W )h′Y } (3.8)

for any vector fields Y ,V ,W on M 2n+1.

With the help of (3.3) and (3.5) we obtain

P(R(ξ,Y )ξ,V )W = kη(Y )P(ξ,V )W −kP(Y ,V )W +2P(h′Y ,V )W

= k(k +1)g (V ,W )η(Y )ξ−k g (h′V ,W )η(Y )ξ+2kη(Y )η(W )h′V

−k(k +1)η(Y )η(V )η(W )ξ−kP(Y ,V )W +2P(h′Y ,V )W (3.9)

for any vector fields Y ,V ,W on M 2n+1.

Similarly, it follows from (3.3) and (3.5) that

P(ξ,R(ξ,Y )V )W = −kη(V )P(ξ,Y )W +2η(V )P(ξ,h′Y )W

= −k(k +1)g (Y ,W )η(V )ξ+k g (h′Y ,W )η(V )ξ−2kη(V )η(W )h′Y

+2(k +1)g (h′Y ,W )η(V )ξ+2(k +1)g (Y ,W )η(V )ξ

−4(k +1)η(V )η(W )Y + (k +1)(k +2)η(Y )η(V )η(W )ξ (3.10)

for any vector fields Y ,V ,W on M 2n+1.

Again using (3.3) and (3.5) we obtain

P(ξ,V )R(ξ,Y )W = k(k +1)g (Y ,W )η(V )ξ−k(k +1)g (Y ,V )η(W )ξ

+2(k +1)g (h′Y ,V )η(W )ξ+k g (h′V ,Y )η(W )ξ−2g (h′V ,h′Y )η(W )ξ

+2k g (Y ,W )h′V −2kη(Y )η(W )h′V −4g (h′Y ,W )h′V

−k(k +1)g (Y ,W )η(V )ξ+k(k +1)η(Y )η(W )η(V )ξ (3.11)

for any vector fields Y ,V ,W on M 2n+1.

Finally, using (3.8)–(3.11) we have from (3.7)

kP(Y ,V )W −2P(h′Y ,V )W +k g (h′V ,Y )η(W )ξ+2(k +1)g (V ,W )h′Y

−k(k +1)g (V ,W )Y +k g (h′V ,W )Y + (k2 +5k +4)η(V )η(W )Y

−2g (h′Y ,h′V )η(W )ξ−2(k +1)2η(Y )η(V )η(W )ξ

−2g (h′V ,W )h′Y −2η(V )η(W )h′Y + (k2 −k −2)g (Y ,W )η(V )ξ

−(3k +2)g (h′Y ,W )η(V )ξ+k(k +1)g (Y ,V )η(W )ξ
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−2(k +1)g (h′Y ,V )η(W )ξ−2k g (Y ,W )h′V +4g (h′Y ,W )h′V = 0 (3.12)

for any vector fields Y ,V ,W on M 2n+1. Letting Y ,W ∈ [λ]′ and V ∈ [−λ]′ and applying Lemma

3.3 we have

P(Y ,V )W = (k +1−λ)g (Y ,W )V and P(h′Y ,V )W = (λ+1)(k +1)g (Y ,W )V. (3.13)

By using (3.13) and noticing Y ,W ∈ [λ]′ and V ∈ [−λ]′ it follows from (3.12) that

[k(k +1−λ)−2(λ+1)(k +1)+2λk −4λ2]g (Y ,W )V = 0. (3.14)

Using the relationship λ=±
p
−k −1 in (3.14) we get

λ(λ+1)2(λ−1) = 0. (3.15)

If λ = 0, then k = −1 and consequently from (2.5) h′ = 0, which contradicts our hypothesis

h′ 6= 0. Then it follows from (3.15) that λ2 = 1 and hence k =−2. Without losing generality we

may choose λ= 1. Then we can write from Lemma 3.3

R(Xλ,Yλ)Zλ = −4[g (Yλ, Zλ)Xλ− g (Xλ, Zλ)Yλ],

R(X−λ,Y−λ)Z−λ = 0

for any Xλ,Yλ, Zλ ∈ [λ]′ and X−λ,Y−λ, Z−λ ∈ [−λ]′. Also it follows from Lemma 3.1 that K (X ,ξ)

= −4 for any X ∈ [λ]′ and K (X ,ξ) = 0 for any X ∈ [−λ]′. Again from Lemma 3.1 we see that

K (X ,Y ) = −4 for any X ,Y ∈ [λ]′; K (X ,Y ) = 0 for any X ,Y ∈ [−λ]′ and K (X ,Y ) = 0 for any

X ∈ [λ]′,Y ∈ [−λ]′. As is shown in [5] that the distribution [ξ] ⊕ [λ]′ is integrable with to-

tally geodesic leaves and the distribution [−λ]′ is integrable with totally umbilical leaves by

H =−(1−λ)ξ, where H is the mean curvature vector field for the leaves of [−λ]′ immersed in

M 2n+1. Here λ = 1, then two orthogonal distributions [ξ]⊕ [λ]′ and [−λ]′ are both integrable

with totally geodesic leaves immersed in M 2n+1. Then we can say that M 2n+1 is locally iso-

metric to H
n+1(−4)×R

n . This completes the proof of our theorem. ���

Since R ·R = 0 implies R ·P = 0, we have the following:

Corollary 3.1. A semisymmetric almost Kenmotsu manifold M 2n+1(n > 1) with ξ belonging

to the (k ,µ)′-nullity distribution and h′ 6= 0 is locally isometric to the Riemannian product of

an (n +1)-dimensional manifold of constant sectional curvature −4 and a flat n-dimensional

manifold.

The above corollary have been proved by Wang and Liu [14].
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Next we consider an almost Kenmotsu manifold with ξ belonging to the (k ,µ)′-nullity

distribution and h′ 6= 0 satisfying the curvature condition P ·S = 0. Then (P(X ,Y ) ·S)(U ,V ) = 0

for all vector fields X ,Y ,U ,V , which implies

S(P(X ,Y )U ,V )+S(U ,P(X ,Y )V ) = 0 (3.16)

for any vector fields X ,Y ,U ,V on M 2n+1.

Putting X =U = ξ in (3.16) we have,

S(P(ξ,Y )ξ,V )+S(ξ,P(ξ,Y )V ) = 0. (3.17)

Making use of (3.4) and (3.5) the above equation implies

S(h′Y ,V )+nk(k +1)g (Y ,V )−nk g (h′Y ,V )−nk(k +1)η(Y )η(V ) = 0 (3.18)

for any vector fields Y ,V on M 2n+1.

Substituting Y = h′Y in (3.18) and using (2.5) we obtain

(k +1){−S(Y ,V )+nkη(Y )η(V )+nk g (h′Y ,V )+nk g (Y ,V )} = 0 (3.19)

for any vector fields Y ,V on M 2n+1.

Again from Lemma 3.2 we have

S(Y ,V ) =−2ng (Y ,V )+2n(k +1)η(Y )η(V )−2ng (h′Y ,V ) (3.20)

for any vector fields Y ,V on M 2n+1.

Making use of (3.20) we obtain from (3.19)

(k +1)(k +2){g (Y ,V )+ g (h′Y ,V )−η(Y )η(V )} = 0. (3.21)

Letting Y ,V ∈ [λ]′ in (3.21) implies that

(k +1)(k +2)(1+λ)g (Y ,V )= 0. (3.22)

Using the relation λ=±
p
−k −1 in (3.22) we have

λ2(λ+1)2(λ−1) = 0. (3.23)

Suppose λ= 0, then k =−1 and hence it follows from (2.5) that h′ = 0, which contradicts our

hypothesis h′ 6= 0. Then from (3.23) we have λ2 = 1 and hence k = −2. Without losing the

generality, we may choose λ= 1. Then we can write from Lemma 3.3

R(Xλ,Yλ)Zλ = −4[g (Yλ, Zλ)Xλ− g (Xλ, Zλ)Yλ],
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R(X−λ,Y−λ)Z−λ = 0

for any Xλ,Yλ, Zλ ∈ [λ]′ and X−λ,Y−λ, Z−λ ∈ [−λ]′. Also it follows from Lemma 3.1 that K (X ,ξ)

= −4 for any X ∈ [λ]′ and K (X ,ξ) = 0 for any X ∈ [−λ]′. Again from Lemma 3.1 we see that

K (X ,Y ) = −4 for any X ,Y ∈ [λ]′; K (X ,Y ) = 0 for any X ,Y ∈ [−λ]′ and K (X ,Y ) = 0 for any

X ∈ [λ]′,Y ∈ [−λ]′. As is shown in [5] that the distribution [ξ] ⊕ [λ]′ is integrable with to-

tally geodesic leaves and the distribution [−λ]′ is integrable with totally umbilical leaves by

H =−(1−λ)ξ, where H is the mean curvature vector field for the leaves of [−λ]′ immersed in

M 2n+1. Here λ = 1, then two orthogonal distributions [ξ]⊕ [λ]′ and [−λ]′ are both integrable

with totally geodesic leaves immersed in M 2n+1. Then we can say that M 2n+1 is locally iso-

metric to H
n+1(−4)×R

n . By the above discussions we can state the following:

Theorem 3.2. Let (M 2n+1,φ,ξ,η, g )(n > 1) be an almost Kenmotsu manifold with ξ belong-

ing to the (k ,µ)′-nullity distribution and h′ 6= 0. If the manifold satisfies the curvature condi-

tion P ·S = 0, then the manifold is locally isometric to the Riemannian product of an (n +1)-

dimensional manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

4. ξ belongs to the (k ,µ)-nullity distribution

In this section we deal with almost Kenmotsu manifolds of which ξ belonging to the

(k ,µ)-nullity distribution.

From (1.2) we obtain

R(X ,Y )ξ= k[η(Y )X −η(X )Y ]+µ[η(Y )hX −η(X )hY ], (4.1)

where k ,µ ∈R. Before proving our main results in this section we state the following:

Lemma 4.1 (Theorem 4.1 of [5]). Let M be an almost Kenmotsu manifold of dimension 2n+1.

Suppose that the characteristic vector field ξ belonging to the (k ,µ)-nullity distribution. Then

k = −1, h = 0 and M is locally a warped product of an open interval and an almost Kähler

manifold.

In view of Lemma 4.1 it follows from (4.1) that

R(X ,Y )ξ = η(X )Y −η(Y )X , (4.2)

R(ξ, X )Y = −g (X ,Y )ξ+η(Y )X , (4.3)

S(X ,ξ) = −2nη(X ) (4.4)

for any vector fields X ,Y on M 2n+1.
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Applying (4.3) and (4.4) in (1.5) we have the following

P(ξ,Y )Z =−g (Y , Z )ξ−
1

2n
S(Y , Z )ξ (4.5)

for any vector fields Y , Z on M 2n+1. We can state our main theorem as follows:

Theorem 4.1. An almost Kenmotsu manifold (M 2n+1,φ,ξ,η, g ) with ξ belonging to the (k ,µ)-

nullity distribution is Weyl projective semisymmetric if and only if the manifold is of constant

curvature −1.

Proof. Let M 2n+1 be a Weyl projective semisymmetric almost Kenmotsu manifold with ξ be-

longing to the (k ,µ)-nullity distribution. Therefore (R(X ,Y )·P)(U ,V )W = 0 for all vector fields

X ,Y ,U ,V ,W , which implies

R(X ,Y )P(U ,V )W −P(R(X ,Y )U ,V )W −P(U ,R(X ,Y )V )W −P(U ,V )R(X ,Y )W = 0. (4.6)

Substituting X =U = ξ in (4.6) we obtain

R(ξ,Y )P(ξ,V )W −P(R(ξ,Y )ξ,V )W −P(ξ,R(ξ,Y )V )W −P(ξ,V )R(ξ,Y )W = 0. (4.7)

Making use of (4.3) and (4.5) we have

R(ξ,Y )P(ξ,V )W = g (V ,W )η(Y )ξ+
1

2n
S(V ,W )η(Y )ξ

−g (V ,W )Y −
1

2n
S(V ,W )Y (4.8)

for any vector field Y ,V ,W on M 2n+1.

Similarly using (4.3) and (4.5) we obtain

P(R(ξ,Y )ξ,V )W = P(Y ,V )W + g (V ,W )η(Y )ξ+
1

2n
S(V ,W )η(Y )ξ (4.9)

for any vector field Y ,V ,W on M 2n+1.

Again, it follows from (4.3) and (4.5) that

P(ξ,R(ξ,Y )V )W = −g (Y ,W )η(V )ξ−
1

2n
S(Y ,W )η(V )ξ (4.10)

for any vector field Y ,V ,W on M 2n+1.

Finally, using (4.3) and (4.5) we have

P(ξ,V )R(ξ,Y )W = −g (V ,Y )η(W )ξ−
1

2n
S(V ,Y )η(W )ξ (4.11)

for any vector field Y ,V ,W on M 2n+1.
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Substituting (4.8)–(4.11) into (4.7) gives

P(Y ,V )W = −g (V ,W )Y −
1

2n
S(V ,W )Y + g (Y ,W )η(V )ξ+

1

2n
S(Y ,W )η(V )ξ

+g (V ,Y )η(W )ξ+
1

2n
S(V ,Y )η(W )ξ (4.12)

for any vector field Y ,V ,W on M 2n+1.

In view of (1.5) and (4.12) we obtain

R(Y ,V )W = −g (V ,W )Y + g (Y ,W )η(V )ξ+
1

2n
S(Y ,W )η(V )ξ

+g (V ,Y )η(W )ξ+
1

2n
S(V ,Y )η(W )ξ−

1

2n
S(Y ,W )V. (4.13)

Contracting Y in (4.13) it follows that

S(V ,W ) =−2ng (V ,W ) (4.14)

for any vector field V ,W on M 2n+1.

Taking account of (4.14) we have from (4.13)

R(Y ,V )W =−[g (V ,W )Y − g (Y ,W )V ], (4.15)

that is, the manifold is of constant curvature −1.

Conversely, if the manifold is of constant curvature −1 then obviously Weyl projective

semisymmetry follows. This completes the proof. ���

Since R ·R = 0 implies R ·P = 0, we have the following:

Corollary 4.1. An almost Kenmotsu manifold (M 2n+1,φ,ξ,η, g ) with ξ belonging to the (k ,µ)-

nullity distribution is semisymmetric if and only if the manifold is of constant curvature −1.

The above corollary have been proved by Wang and Liu [14].

Let M 2n+1 be an almost Kenmotsu manifold with ξ belonging to the (k ,µ)-nullity distri-

bution satisfying the curvature condition P ·S = 0. Then (P(X ,Y ) ·S)(U ,V ) = 0 for all vector

fields X ,Y ,U ,V , which implies

S(P(X ,Y )U ,V )+S(U ,P(X ,Y )V ) = 0 (4.16)

for any vector fields X ,Y ,U ,V on M 2n+1.

Setting X =U = ξ in (4.16) we have,

S(P(ξ,Y )ξ,V )+S(ξ,P(ξ,Y )V )= 0. (4.17)
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Using (4.4) and (4.5) we obtain from (4.17)

η(P(ξ,Y )V ) = 0. (4.18)

In view of (4.5) and (4.18) it follows that

S(Y ,V ) =−2ng (Y ,V ), (4.19)

which implies that the manifold is an Einstein manifold.

Conversely, let the manifold be an Einstein manifold of the form (4.19). Then it is obvious

that P ·S = 0. This leads to the following:

Theorem 4.2. An almost Kenmotsu manifold M 2n+1 with ξ belonging to the (k ,µ)-nullity dis-

tribution satisfies the curvature condition P · S = 0 if and only if the manifold is an Einstein

one.
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