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ON GLOBAL DOMINATING- y-COLORING OF GRAPHS

MALAIRAJ RAJESWARI AND ISMAIL SAHUL HAMID

Abstract. Let G be a graph. Among all y-colorings of G, a coloring with the maximum
number of color classes that are global dominating sets in G is called a global dominating-
x-coloring of G. The number of color classes that are global dominating sets in a global
dominating- y-coloring of G is defined to be the global dominating - y- color number of
G, denoted by gd, (G). This concept was introduced in [5]. This paper extends the study
of this notion.

1. Introduction

By a graph G = (V, E), we mean a connected, finite, non-trivial, undirected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and m respectively.
For graph theoretic terminology we refer to Chartand and Lesniak [3].

A subset D of vertices is said to be a dominating set of G if every vertex in V either
belongs to D or is adjacent to a vertex in D. The domination number y(G) is the minimum
cardinality of a dominating set of G . A subset D of vertices is said to be a global dominating
set of G if D is a dominating set of both G and G ; that is, every vertex outside D has a neigh-
bour as well as a non-neighbour in D. The global domination number y¢(G) is the minimum
cardinality of a global dominating set of G.

A proper coloring of a graph G is an assignment of colors to the vertices of G in such a
way that no two adjacent vertices receive the same color. Since all colorings in this paper are
proper colorings, we simply call a proper coloring a coloring. A coloring in which k colors
are used is a k-coloring. The chromatic number of G, denoted by y(G), is the minimum
integer k for which G admits a k-coloring. In a given coloring of the vertices of a graph G,
a set consisting of all those vertices assigned the same color is called a color class. If € is a
coloring of G with the color classes Uy, Us, ..., U, then we write € = {Uy, Uy, ..., U;}. Among
all y-coloringsof G, let € be chosen to have a color class U that dominates as many vertices
of G as possible. If there is a vertex in G not dominated by U, then deleting such a vertex from
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its color class and adding it to the color class U produces a new minimum vertex-coloring
that contains a color class which dominates more vertices than U, a contradiction. Hence the
color class U dominates G. Thus we have the following observation first observed in [1].

Observation 1.1. Every graph G contains a x-coloring with the property that at least one

color class is a dominating set in G.

Motivated by Observation 1.1, Arumugam et al. [1] defined the dominating -y- color
number, which they called dom-color number, as follows. Among all y-colorings of G, a
coloring with the maximum number of color classes that are dominating sets in G is called
a dominating-y-coloring of G. The number of color classes that are dominating sets in a
dominating- y-coloring of G is defined to be the dominating -y - color number of G, denoted
by d, (G). This parameter has been further studied in [2] and [4].

In [5], the notion of dominating- y-coloring was extended to the notion of global domi-
nating sets in the name of global dominating- y-coloring. Among all y-colorings of G, a color-
ing with the maximum number of color classes that are global dominating sets in G is called
a global dominating-y -coloring of G. The number of color classes that are global dominating
sets in a global dominating- y-coloring of G is defined to be the global dominating -x - color
number of G and is denoted by gdy(G). Certainly, for any graph G, we have dy(G) = gdy(G). In
this paper, we discuss the parameter gd, for unicyclic graph and also prove some realization

theorems associated with some relations among gd,, d, and y.

We need the following theorems.
Theorem 1.2 ([2]). For any graph G, we have dy(G) < 6(G) + 1.

Theorem 1.3 ([5]). For any graph G, we have gd,(G) < 6(G) + 1.

Theorem 1.4 ([5]). IfG is a graph of order n = 2, then gdy(G) = %,

the minimum cardinality of any color class in any x -coloring of G.

where s(G) denotes

Theorem 1.5 ([5]). IfG is a graph with A(G) = n—1, then gd,(G) = 0.

2. gdy for unicyclic graphs

Throughout the paper, by a unicyclic graph, we mean a connected unicyclic graph that
is not a cycle. Now, in view of Theorem 1.3, for a graph with minimum degree 1, the value
of global dominating y - color number is at most 2. In particular, for a unicyclic graph G,
8dy(G) < 2. So, the family of unicyclic graphs can be classified into three classes namely
graphs with gd, = 0; graphs with gd, =1 and graphs with gd, = 2. This section determines
these classes of graphs. For this purpose, we describe the following families.
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(i) Let % be the class of all connected unicyclic graphs obtained from a cycle of length 4 by
attaching at least one pendant edge at exactly two adjacent vertices of the cycle. A graph
in this family is given in Figure 1(a).

(ii) Let%, be the collection of all connected unicyclic graphs obtained from a cycle of length
4 by attaching at least one pendant edge at each of two non adjacent vertices of the cycle.
A graph lying in this family is given in Figure 1(b).

(iii) Let %3 be the collection of all connected unicyclic graphs obtained from a cycle of length
4 by attaching at least one pendant edge at each of any three vertices of the cycle. A graph
lying in this family is given in Figure 1(c).

(iv) Let¥, be the collection of all connected unicyclic graphs with the cycle C = (vy, v2, V3, 14, 1)
that are constructed as follows. Attach r = 0 pendant edges at v;, s = 0 pendant edges
at v3. Also, attach ¢ = 1 pendant edges at vy, say x1, Xo,..., X; are the corresponding pen-
dant vertices adjacent to v,. Finally, for each i € {1,2,..., t}, attach ¢; pendant vertex at
the vertex x; with the condition that #; > 1 and ¢; = 0 for all j # 1. A graph lying in this
family is given in Figure 1(d).

(v) Let %5 be the family of connected unicyclic graphs obtained from a triangle by attaching
at least one pendant edge at exactly one vertex of the triangle.

@ \ (b) :5 © ; (d)

Figure 1: (a) A graph in ¢, (b) A graph in %,, (c) A graph in %3, (d) A graph in %;.

Theorem 2.1. Let G be a unicyclic graph with even cycle C. If C is of length at least 6, then
gdy(G)=2.

Proof. Certainly y(G) = 2. Let {V}, V»} be the y-coloring of G. Obviously, both V; and V, are
dominating sets of G. It is enough to verify that V; and V, are global dominating sets of G.
Since the length of the cycle C is at least 6, it follows that each of V; and V> contains at least
three vertices of G lying on C. However, every vertex of G has at most two neighbours on C
; this means that every vertex of V; has a non-neighbour in V, and every vertex of 1, has a

non-neighbour in V;. Thus V; and V; are global dominating sets of G. O
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Theorem 2.2. Let G be a unicyclic graph whose cycle is of length 4. Then gd, (G) = 0 if and only
lfG € 541 .

Proof. Let C = (vy, 12, v3, Vg, v1) and let {X, Y} be the y-coloring of G. Assume that vy, v3 € X
and v2, v4 € Y. Obviously, both X and Y are dominating sets of G. Now, suppose gd, (G) = 0.
Then both X and Y can not be global dominating sets. Therefore there exist vertices x € X
and y € Y such that x is adjacent to all the vertices of Y and y is adjacent to all the vertices of
X. Since G is unicyclic, each of x and y must lie on C, say x = v; and y = vy. Again, as G is
unicyclic, the vertex v, is not adjacent to any vertex of X other than v; and vs. Similarly, the
vertex vs is not adjacent to any vertex of Y other than v, and v4. Further, a vertex of X —{vy, v3}
can not be adjacent with any vertex of Y — {v,, v4} and similarly a vertex of Y — {v,, v4} can
not be adjacent with any vertex of X —{v;, v3} ; for otherwise a cycle distinct from C will get
formed. Thatis, v, is the only neighbour in Y for each vertex of X —{v;, v3} and v, is the only
neighbour in X for each vertex of Y — {v,, v4}. Thus the vertices of G outside C are pendant
and therefore G € ¢4;. The converse is an easy verification. O

Theorem 2.3. Let G be a unicyclic graph whose cycle is of length 4. Then gd, (G) = 1 if and only
ifGeul_,%;.

Proof. Let {V;,V,} be the y-coloring of G. Assume that V, is a global dominating set of G
and Vj is not. Also, assume that vy, v3 € V] and vs, v4 € V5. As Vj is not a global dominating
set, there is a vertex x € V, that is adjacent to all the vertices of V. As discussed in the proof
of Theorem 2.2, x must lie on C. But V5 is a global dominating set. Therefore, every vertex
of V1 has a non-neighbour in V, and so the set B = V, — {vy, 14} # ¢p. Since v, is adjacent
to every vertex of V1, every vertex in B is a pendant vertex of G. Now, let A be the set of
neighbours of v, in V; other than v; and vs. If A= ¢, then N(v;)NnB # ¢ and N(v3) N B # ¢
and [N(v1) UN(v3)InB = B. Thus G € 4.

Suppose A # ¢. Now, if the vertices in A are pendant, then N(v1) N B # ¢, N(v3)NB # ¢
and [N(v;) U N(v3)In B = B so that G € 4,. So, the remaining case is that A # ¢ and A has a
vertex u with deg u = 2. That is, u has a neighbour in B, say w. Note that the vertex w is a
non-neighbour of both v; and v3 as w is pendant. But however the vertices v, and v3 may
have neighbours in B and thus G € ¥3. Now, it is not difficult to see that if G € U?:z(gi' then
8dy(G) =1. O

Lemma 2.4. Ifgd,(G) =0, then dy(G) = 2.

Proof. Suppose gdy(G) = 0 and d,(G) = 1. Consider a x-coloring {V1, V,...,V,} of G such
that V; is a dominating set of G. As gdy(G) = 0, V1 can not be a global dominating set of

G. Therefore, there exists a vertex v such that v is adjacent to every vertex of V;. Assume
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without loss of generality that v € V,. Certainly, no V;(2 < i < y), is a dominating set and in
particular V, is not a dominating set. So, there are vertices in V — V, that are not dominated
by any vertex of V5 ; let S be the set of those vertices. Clearly S € V — V5. Also, as v is adjacent
to each vertex of 1, it follows that S< V — V4 and thus S V — (V; U V5). Now, if D is an
independent dominating set of the subgraph (S) 1nduced by S, then V2 uDisan 1ndependent
dominating set of G. Therefore {V1,V, U D, V5 — V Vi — V V }, where V Vi n D for
all i € {3,4,..., x} is a y-coloring of G in which both V; and V2 U D are dominating sets of G, a
contradiction to the assumption that dy (G) = 1. Od

Corollary 2.5. Ifd,(G) =1, then gd,(G) = 1.

Let us now concentrate on the unicyclic graphs with odd cycle.

Theorem 2.6. Let G be a unicyclic graph with odd cycle C. If all the vertices on C are support
vertices, then gdy (G) = 1.

Proof. Let C = (v1, v, ..., Uy, V1), where each v; is support. In view of Corollary 2.5, itis enough
to prove that d(G) = 1. As in Observation 1.1, d, (G) = 1. For the other inequality, we need to
prove that every y-coloring of G has exactly one color class that is a dominating set of G. On
the contrary, assume that G has a y-coloring {V;, V», V3} of G with V; and V, are dominating
sets of G. It is clear that if x is a support vertex of G, then a dominating set of G must contain
either x or all its pendant neighbours. Here V; and V; are assumed to be dominating sets and
therefore all the support vertices and the pendant vertices of G must be contained in V; u V5.
In particular, {vy, vy, ..., v,} is a subset of V; U Vy; this is possible only when 7 is even. But n is
odd and thus exactly one color class of any y-coloring of G can be a dominating set of G. This

completes the proof. O

Theorem 2.7. Let G be a unicyclic graph with odd cycle C. If the length of C is at least 7 with
the property that not all the vertices on C are supports, then gd, (G) =2

Proof. As we know gd,(G) < 2 and so in order to prove the theorem it is enough if we are
able to come up with a y-coloring of G where two color classes are global dominating sets.
Here we provide such a coloring as follows. Let C = (vy, vy, ..., Uy, v1). Assume that v; is not a
support vertex of G. Consider the y-coloring {V;, V»} of the tree G— v, v,,. Assume that vy € V;.
Then v, € V7. Now, take € = {V; — {v1}, V»,{r1}}. Then ¥ is a y-coloring of G. We prove that
V1 —{11} and V; are global dominating sets of G. Note that both V; and V, are dominating sets
of G — v, v,. Therefore, obviously V; is a dominating set of G as well. Further, the set V, — {1}
also serves as a dominating set of G as v is not a support. So, V] —{v1} and V; are dominating
sets of G. Also, as the length of C is at least 7, it follows that each of V] — {v;} and V> contains

at least three vertices of G lying on C. But every vertex of G can have at most two neighbours
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on C. So, every vertex of G will have a non-neighbour in each of V; —{v1} and V» and therefore
these two sets are global dominating sets of G. Thus € is a y-coloring of G where V; —{v,} and

V, are global dominating sets of G as desired. a

Theorem 2.8. Let G be a unicyclic graph whose cycle is of length 5. Then gd,(G) is either 1 or
2.

Proof. Let C = (vy, V2, V3, V4, Us, 17). Since G is a unicyclic graph, at least one of vy, v», v3, 14
and vs has degree at least 3. Let it be v;. Consider a neighbour u of v; outside C. Let T =
G — v1vs. Then {Vy, V5} be a y-coloring of G. Note that the vertices u, v» and v4 belong to the
same color class, say V;. Then vy, v3 and vs belong to V5. Certainly, {V;, Vo —{vs}, {vs}} is a x-
coloring of G. We now claim that V} is a global dominating set of G. Clearly V; is a dominating
set of G. Consider an arbitrary vertex x of G. If x € N[u], then v, is a non-neighbour of x. If
x ¢ Nlu], then u is a non-neighbour of x and so V; is a global dominating set of G. Hence
gd,(G)=1. O

By an extreme vertex in a unicyclic graph G ; we mean a vertex v on the cycle C of G with
the property that v is adjacent to a vertex outside C where degree is at least two. Let w be a
vertex of G with deg w = 3. A branch of G at w is a maximal subtree T of G containing an edge

outside C that is incident at w such that w is a pendant vertexin T.

Theorem 2.9. Let G be a unicyclic graph whose cycle C is of length exactly 3. Then gd,(G) =0
ifand only if G € %s.

Proof. Let C = (vq, V3, V3, V7). Assume gdy(G) =0. We first prove that G has no extreme vertex.
On the contrary, assume that G has an extreme vertex ; let it be v;. Choose a vertex x in
a branch of G at v; such that d(v,, x) = 3. Consider the y-coloring € = {V1, V5} of the tree
G — v v2. As the distance between v, and x in G is 3, the distance between them in G— v;vs
is 4 and therefore they both belong to the same color class in €, say V;. Therefore v3 € V;
and v; € V;. We now prove that there is a y-coloring of G in which at least one color class
is a global dominating set of G. If v; is not a support vertex, then consider the y-coloring
{V1—{v1}, V2,{v1}} of G. On the other hand, if v; is a support vertex, the consider the y-coloring
{(Vi —{nihuU, Vo —U,{v1}} of G, where U is the set of all pendant neighbours of v; (Note that
U is a subset of V5 in €). Also remain that both x and v, belong to V;. We now prove that
V1 — {1} and (V] —{v1}) U U are global dominating sets of G. Clearly both are dominating sets
of G. Now, choose an arbitrary vertex y in G. If y € N[v,], then x is a non-neighbour of y in V;.
If y ¢ Nlvz], then v, is a non-neighbour of y in V;. This proves the result and so gdy(G) =1, a
contradiction. Therefore G has no extreme vertex. That is, every vertex outside C is a pendant

vertex and every vertex on C is either a support vertex or it is of degree exactly two.
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Now, suppose exactly two vertices on C are support vertices, say v and vs. Then {Su
{v1}, {va}, {v3}}, where S is the set of all pendant vertices of G, is a y-coloring of G in which Su
{v1} is a global dominating set of G and so gd,(G) = 1, a contradiction. Suppose all the three
vertices on C are support vertices. Then by Theorem 2.6, gd,(G) = 1, again a contradiction.

Hence the result. The converse follows from Theorem 1.5. Oa

3. Realization Theorems

Theorem 3.1. For given integers k and | with 0 < | < k, there exists a uniquely - k - colorable
graph G with gdy(G) =1.

Figure 2 : A uniquely colorable graph with gd, =2 and y = 4.

Proof. For [ =0, take G = K. Assume [ = 1. Then the required graph G is obtained from the
complete k - partite graph with parts V;,V5,..., Vi where V; = {u;, v;}, for all i € {1,2,...,k}.
Introducing 2!/ new vertices x1, X2, ..., X1, y1,2,.-.,¥1- Foreach i € {1,2,...,1}, join the vertex
x; to each vertex of uj, where j # i and 1 < j < k ; and join the vertex y; to each vertex of
vj, where j # i and 1 < j < k. Let G be the resultant graph. For [ = 2 and k = 4, the graph
G is given in Figure 2. From the construction of G, it is clear that G is a uniquely - k - col-
orable graph and §(G) = [ - 1. One can easily verify that € = {V; U{x1, 1}, VaU{x2, y2},..., ViU
{x1, 1}, Vis1,..., Vk} is a y-coloring of G in which Vi U{x1, y1}, Vo U{x2, y2} ..., Viu{x;, yi} are
global dominating sets of G. Therefore gd, (G) = L. Since 6(G) = [ -1 and by Theorem 1.3, we
have gdy (G) < 1. Thus gd, (G) = L. Od

Theorem 3.2. For given integers a,b and c with0 < a < b < c, there exists a graph G for which
8dy(G) =a, dy(G) = b and x(G) = c except whena=0and b =1.

Proof. If a, b and c are integers with gd, (G) = a, dy(G) = b and x(G) = ¢, then by Lemma 2.4,
we have b = 2 when a = 0. Conversely, suppose a, b and c are integers with 0 < a < b < c and

b =2 when a = 0. We construct the required graph G as follows.

Casel. a=0.
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u

U1

Us U2

V4 U3

Figure3: A graph with gdy =0, d, =4 and y =5.

Then by assumption b = 2. Consider the complete graph K. on c¢ vertices with the vertex
set {vy, Vs,...,vc}. Introduce a vertex u and join it to each of the vertices v, vs, ..., vp by an
edge. For a =0, b =4 and ¢ =5, the graph G is illustrated in Figure 3. Clearly y(G) = c. Since
A(G) = n—1, it follows from Theorem 1.5 that gd, (G) = 0. Further, {{vy, u}, {va}, {v3}, ..., {vcl}
is a y-coloring of G where {vy, u}, {v2}, {vs},..., {vp} are dominating sets of G so that dy(G) = b.

The inequality dy (G) < b follows from Theorem 1.2 as §(G) = b— 1. Thus d, (G) = b.

Case2.a=1.

Here, consider a complete ¢ - partite graph H=Kj » 2 with parts V1, V5,..., V; where
N —

¢ times

Vi= {xi,y,-} forallie{1,2,...,c}. Introduce 2a new vertices; let thembe uy, us,..., u,, vy, vo,...,
vq. For each i € {1,2,...,a}, join the vertex u; to each vertex of the set {x;: j # i and 1 <
J < b}. Similarly, for each i € {1,2,..., a}, join the vertex v; to each vertex of the set {y; : j #
iand 1 < j < b}. Let G be the resultant graph. For a =2, b = 4 and ¢ = 5, the graph G is il-
lustrated in Figure 4. Clearly, x(G) = c¢. Now, consider the y-coloring € = {V; U {uy, v1}, Vo U
{up, 2}, ..., Vu Ulug, va}, Vai1, Varo, ..., Ve of G. Tt is easy to verify that foreach i € {1,2,...,a},
the set V; U{u;, v;} is a global dominating set of G and for each j € {a+1,a+2,..., b}, the set V;
is a dominating set of G. Hence d, (G) = b and gd, (G) = a. By Theorem 1.2, we have d, (G) < b
as 6(G) = b—1and thus dy (G) = b. We now need to verify that gd, (G) < a. Now, clearly the set
{u1,x1, y1, v1} is a global dominating set of G with minimum cardinality so that Yg(G) = 4. Also

$(G) = 2. Therefore by Theorem 1.4, we have gdy(G) = %C_ZC = a. Hence gdy(G) = a. a
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Figure 4 : A graph with gdy =2, dy, =4and y =5.
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