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FRACTIONAL INTEGRAL OPERATORS INVOLVING THE PRODUCT
OF SRIVASTAVA POLYNOMIALS AND SRIVASTAVA-PANDA
MULTIVARIABLE H-FUNCTIONS OF GENERALIZED ARGUMENTS

V. B. L. CHAURASIA AND S. C. PANDEY

Abstract. The paper deals with two fractional integral formulae involving the product of a general class of polyno-
mials and multivariate H-function. The first involves the operator ¢ I”[f(z)] whereas second is associated with the
integral operator I Z I f(2)]. In our fractional integral formulae we have taken all the functions and polynomials with
ageneralized argument. The formulae, we have introduced here, are in compact form and basic in nature. A number
of known and new results have been obtained by proper choice of parameters. For the sake of illustration, we record

here some particular cases of our main results.

1. Introduction

In recent years several authors (see, for example) Chen et al. [13], Lin et al. [16], Soni et al.
[15], seee also Gaira et al. [12] have made significant contributions to the fractional calculus
operators involving various functions and polynomials. Here we are making an attempt to
develop extensions of these results.

We start by introducing following definitions:

Oldham and Spanier [8] considered the fractional integral of a function f(z) of complex
order v

1 “ v-1
E]; (z—0""" f(dt, Re(v)>0
as

a0l

The special case of fractional integral operator I, when ¢ = 0, will be denoted by I7. Thus
we write

I 1f(2)]= (1.1)

*1f(2)], Re(r)<0,0<Re(n)+qg<1, g=12.3,....

I = ol
and i
if (z- )" f(Hdt, Re(v)>0
L@ =4 0 (1.2)
" If@], Re)<0,0<Re(m)+q=1, q=123,....
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The above integral operator I7[f(2)] is called Riemann-Liouville fractional integral operator.
Also, Srivastava [3] introduced general calss of polynomials

[n/m] -n
S™xl= Y ( )’”"An,kx’“,

n=0,1,... (1.3)
= K

where m is an arbitrary positive integer and coefficients A, ; (n,k = 0) are arbitrary con-
stants, real or complex. On suitably specializing the coefficients A,, x, S}*[x] yields a number
of known polynomials as its special cases ([14], p.158-161).

The H-function of several complex variables [3] is defined in the following manner:

. o 21 (uj: I (r)]lp(f- Y] Pl ((r) YB)]lP(r)
Hlzy,.... 2] = Hyo ol v o
Z b7 aB 01,0281y i@ 8
= f f GLED  GrEIY . £ Al dEy, (L)
where w = v -1
MO N®
(1) (1) (t) (@) ¢
]]j[F(d =J 5)]]'[r(1 ¢ +y, ¢
$i&i) = o - Vie{l,...,r} (1.5)
[T r(i-a+sPe) 1 1 -yPen
MW +1 j=N®+1
N e 0y
HF 1-a; +Zaj i
j=1 i=1
andy(¢y,...,¢,) = - (1.6)
f1 oS ape) -0+ £ope)
j=N+1

The convergence conditions and other details of the above function are given by Srivastava,
Gupta and Goyal ([4], p.251, eq. (c.1), also see P252-253, eq. (c.5 and c.6)).
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2. Main results

2.A. Fractional integral formula 1

t

S
. m;j
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X
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- (8o Uy ky sKsiH] e r) bbby 1,Q° 0 i,Qr 0 I.Q(r)
Also, by the application of following formula in (2.1)
i (-1R o,N:M' ,N';..;M (") N
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We can write
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wolgr0 bk —mul ksipl pi),(bj;ﬁ},...,ﬂ}”)LQ:(d}.,6})1_0,;...;(d‘.”,65.”)1@(,]

Provided that
(i) Re(v) > 0; the quantities u,, uil),..., ugl), o Us, ui”,...,ugn, ,ul,,ugl),...,,ugt), ,ur,,u(,l), ...,,u(,t)
are all positive (some of them may however decrease to zero provided that the resulting
integral has a meaning),

r . .
(i) Re(p)+ Y p; min [Re(d/6")]+1>0.
=1 1=jsM® I

2.B. Fractional integral formula 2
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are all positive (some of them may however decrease to zero provided that the resulting
integral has a meaning),
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(ii) Re(p) + i Yi min

[Re(d? /6D +7 > 0.
i=1  1=jsM® J J

Proof. In order to prove (2.1), we first express a general class of polynomials in series
form given by (1.3) and multivariate H-function in terms of Mellin-Barnes type of contour
integrals and interchanging the order of summations, integration and taking the fractional
integral operator inside, which is permissible under the stated conditions. Now, using bino-
mial expansion along with the use of the known formula (1.1) and interpreting the multiple
Mellin-Barnes contour integral so obtained in terms of H-function, we easily arrive at the
desired formula (2.1).

Also, using the same method adopted in the proof of the result (2.1) and making use of the

formula [12, eq.(2.10)]

FA+n)

M = z", Re(l)>-n

" TA+n+7v)

we can prove the result (2.4).

3. Special cases

3.A. If we put ¢ = 2 and s = 2 in our integral formula (2.1), it reduces to the known result
recently obtained by Gaira and Dhami [12, p.2, eq.(2.1)].

3.B. On taking ¢ = 2 and s = 2 our integral formula (2.4) reduces to another known result
obtained by Gaira and Dhami [12, p.5, eq.(2.9)].

3.C. Letting r = 1 and s = 1 in our result (2.4), it leads to a known result given by Gupta and
Agarwal [9].

3.D. Particularly, when we substitute =1 and n; =0 (j =0,1,..., ) in our integral formula
(2.3), we arrive on the result obtained by Srivastava et al. [7].

3.E.Ifweput mj =n; =k; =0 (for j=2,3,...,5) and 7 = 1 in our integral formula (2.1), we can
derive another result obtained by Gupta et al. [9].
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