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ON OSTROWSKI AND GRUSS TYPE DISCRETE INEQUALITIES FOR
SECOND FORWARD DIFFERENCES

DAH-YAN HWANG* AND GOU-SHENG YANG

Abstract. The aim of the present article is to establish two new discrete Ostrowski and Griiss

type inequalities involving functions and their first second forward differences.

1. Introduction

In [10, p.468], Ostrowski proved the following interesting inequality.
Let f: [a,b] — R be continuous on [a, b] and differentiable on (a,b) whose derivative
is bounded on (a,b) i.e. ||f'[lcc := sUPse(qp) |f'(t)| < 00. Then
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for all x € [a, b].

In [1], P. Ceroue, S. S. Dragomir and J. Roumelioties proved the following Ostrowski
type inequality with twice differentiable mapping.

Let f : [a,b] — R be continuous and twice differentiable mapping on (a,b) whose
second derivate are bounded on (a,b), i.e. [|f"[loc := SupPie(ap) [f”(t)| < co. Then we
have the inequality:
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for all € [a, b].
Another celebrated inequality that gives estimation for the integral of a product in
terms of the product of integrals, is Griiss inequality [9, p.296].
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If f and g are two integrable functions on [a,b] and ¢, ®, v and T" are constants such
that
p< flz) <@, v<g(a)<T

for all € [a,b], then
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In [14], B. G. Pachpatte proved the following Griiss type inequality twice differentiable
mapping.

Let f, g : [a,b] — R be continuous on [a,b] and twice differentiable on (a,b), whose
second derivatives are bounded on (a,b), i.e.

< W (1.3)
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te(a,

te(a,b)
Then
1 b p 1 b p 1 b ; 1 b atb o
E/af(x)g(x) x—m/af(x) T ag(x) x—ml (x—T)(fg) (z)da
1 b

§72(b7a)2/a (£ lsolg@)] + 119" ool £ (z)|) B(z)da (1.4)
where B(z) = f; |K (x,t)]|dt.
for x € [a, b], in which

(t— o) ift € [a, ]

K(Iat) = b 2 9 .
( ;a) if t € (x,0]

In the past years, a large number of papers have appeared in the literature that deal
with various extensions and applications of inequalities (1.1), (1.2), (1.3) and (1.4), see
[2-14] and the reference given therein. Recently, in [15], B. G. Pachpatte established two
new discrete types of the inequality (1.1) and (1.3) involving functions and their first
order forward differences. The main purpose of the present note is to establish two new
discrete types of the inequality (1.2) and (1.4) involving functions and their first and
second forward differences.

2. Statement of Results

In what followings, R and N denote the set of real numbers and natural numbers,
respectively, and Ngp = {a,a+1,...,a+n = b} for a € R, n € N. For any function
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u(t), t € Ny, we define the operator A by Au(t) = u(t+ 1) —u(t) and A% by Au(t) =
Au(t + 1) — Au(t). We use the usual convention that empty sum is taken to be zero.
The first result reads as follows.

Theorem 1. Let f, g be real-valued functions defined on Ngpi1 for which Af(t),
Ag(t), A2f(t), A2g(t) exist and |A2f(t)] < A, |A2%g(t)| < B on Napi1. Then
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and
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r(t,s) = (b s)2 (2.4)
if s €t, b

forallt, s € Ny and A, B are nonnegative constants.
Theorem 2. Let f, g, Af, Ag, A2f, A%g, A and B be as in Theorem 1. Then
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3. Proof of Theorem 1

Using the summation by parts formula,

B—1 6—1
Z u(s)Av(s) = [u(B)v(B) — u(a)v(a)] — Z v(s+ 1)Au(s),
we have
B-1
u(s)A%v(s)
S=o /H )
= [u(B)Av(B) — u(a)Av(a Z Au(s)Av(s+1)

6-1
— u(B)Av(8) — u(@)A(a) — Au(B)(B +1) + Au(@)v(a+ 1)+ 3 v(s + 2)A%(s)

where o, B € Ny and u, v are real-valued functions defined on Ng 1.

Let u(s) = (S;a)Q, v(s) = f(s), B =t, a =a. Then u(a) =0, Au(s) = (s —a+ 1)

and A?u(s) = 1, so that for t € N, ;, we have

z_: (S_Qa) A2f(s)= (t—;) -Af(t)—(n—a+2) f(t+1)+ f(a+1) +Zf (s+2). (3.1)

Similarly, we have
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Adding (3.1), (3.2) and using (2.4), we get
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b—1 b—1
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for all t € Ngp.
Similarly, we hvae
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for all t € Ng .
Multiplying (3.3) by g(t + 1) and (3.4) by f(t + 1), t € Ngp, adding the resulting
identities and rewriting we get
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s=a

ft+1)

b—1
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From (3.5), we have
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which is the required inequality in (2.1).
The inequality (2.2) follows immediately from (3.3). The proof is complete.
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4. Proof of Theorem 2

From the hypotheses, as in the proof of Theorem 1, the identities (3.3), (3.4) and
(3.5) hold. Summing both sides of (3.5) over n from a to b — 1, and rewriting we get
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t=a - . -
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From (4.1) and using the properties of modulus, we observe that
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ﬁbg (157 ) tle-+ DA + 10+ Drg(o))
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This proves the inequality (2.5). The proof is complete.
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