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TWIN SIGNED ROMAN DOMATIC NUMBERS IN DIGRAPHS

SEYED MAHMOUD SHEIKHOLESLAMI AND LUTZ VOLKMANN

Abstract. Let D be a finite simple digraph with vertex set V (D). A twin signed Roman

dominating function on the digraph D is a function f : V (D) → {−1,1,2} satisfying the

conditions that (i)
∑

x∈N− [v] f (x) ≥ 1 and
∑

x∈N+ [v] f (x) ≥ 1 for each v ∈V (D), where N−[v]

(resp. N+[v]) consists of v and all in-neighbors (resp. out-neighbors) of v , and (ii) every

vertex u for which f (u) = −1 has an in-neighbor v and an out-neighbor w for which

f (v) = f (w) = 2. A set { f1, f2, . . . , fd } of distinct twin signed Roman dominating functions

on D with the property that
∑d

i=1 fi (v) ≤ 1 for each v ∈ V (D), is called a twin signed Ro-

man dominating family (of functions) on D. The maximum number of functions in a

twin signed Roman dominating family on D is the twin signed Roman domatic number

of D, denoted by d∗
sR (D). In this paper, we initiate the study of the twin signed Roman

domatic number in digraphs and we present some sharp bounds on d∗
sR (D). In addition,

we determine the twin signed Roman domatic number of some classes of digraphs.

1. Introduction

Let D be a finite simple directed graph with vertex set V (D) and arc set A(D) (briefly V

and A). The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and the size

of the digraph D. A digraph without directed cycles of length 2 is an oriented graph. If uv

is an arc of D, then we also write u → v , and we say that v is an out-neighbor of u and u is

an in-neighbor of v . For every vertex v , we denote the set of in-neighbors and out-neighbors

of v by N−(v) = N−
D (v) and N+(v) = N+

D (v), respectively. Let N−
D [v ] = N−[v ] = N−(v)∪ {v}

and N+
D [v ] = N+[v ] = N+(v)∪ {v}. We write d+(v) = d+

D (v) for the outdegree of a vertex v

and d−(v) = d−
D (v) for its indegree. The minimum and maximum indegree and minimum

and maximum outdegree of D are denoted by δ−(D) = δ−, ∆−(D) = ∆
−, δ+(D) = δ+ and

∆
+(D) = ∆+, respectively. A digraph D is r -out-regular if δ+(D) = ∆+(D) = r . In addition, let

δ= δ(D) =min{δ+(D),δ−(D)} and ∆=∆(D) = max{∆+(D),∆−(D)} be the minimum and max-

imum degree of D, respectively. A digraph D is called regular or r -regular if δ(D) =∆(D) = r .

If X ⊆ V (D), then D[X ] is the subdigraph induced by X . If X ⊆ V (D) and v ∈ V (D), then
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A(X , v) is the set of arcs from X to v . We denote by A(X ,Y ) the set of arcs from a subset X to

a subset Y . We denote by D−1 the digraph obtained from D by reversing the arcs of D. For a

real-valued function f : V −→ R the weight of f is ω( f ) =
∑

v∈V f (v), and for S ⊆V , we define

f (S) =
∑

v∈S f (v), so ω( f ) = f (V ). Consult [7] for the notation and terminology which are not

defined here.

A signed Roman dominating function (abbreviated SRDF) on D is defined as a function

f : V −→ {−1,1,2} such that (i) f (N−[v ])=
∑

x∈N−[v] f (x) ≥ 1 for each vertex v ∈V and (ii) every

vertex u for which f (u)=−1 has an in-neighbor v for which f (v) = 2. The signed Roman dom-

ination number γsR (D) of D is the minimum weight of an SRDF on D. A γsR (D)-function is

a signed Roman dominating function on D of weight γsR (D). The signed Roman domination

number of a digraph was introduced by Sheikholeslami and Volkmann in [5] and has been

studied in [5, 6].

In [6], a set { f1, f2, . . . , fd } of distinct signed Roman dominating functions on D with the

property that
∑d

i=1 fi (v)≤ 1 for each v ∈V (D), is called a signed Roman dominating family (of

functions) on D. The maximum number of functions in a signed Roman dominating family

(SRD family) on D is the signed Roman domatic number of D, denoted by dsR (D).

In [2], a signed Roman dominating function of D is called a twin signed Roman domi-

nating function (briefly TSRDF) if it also is a signed Roman dominating function of D−1, i.e.,

f (N+[v ]) ≥ 1 for every v ∈ V and every vertex u for which f (u) = −1 has an out-neighbor v

for which f (v) = 2. The twin signed Roman domination number for a digraph D is γ∗sR (D) =
min{ω( f ) | f is an TSRDF of D}. A γ∗sR (D)-function is a twin signed Roman dominating func-

tion on D of weight γ∗sR (D). Since every TSRDF of D is an SRDF on both D and D−1 and since

the constant function 1 is an TSRDF of D, we have

max{γsR (D),γsR (D−1)} ≤γ∗sR (D) ≤ n. (1)

A set { f1, f2, . . . , fd } of distinct twin signed Roman dominating functions on D with the

property that
∑d

i=1 fi (v) ≤ 1 for each v ∈ V (D), is called a twin signed Roman dominating

family (of functions) on D. The maximum number of functions in a twin signed Roman dom-

inating family (TSRD family) on D is the twin signed Roman domatic number of D, denoted

by d∗
sR (D). The twin signed Roman domatic number is well-defined and

d∗
sR (D) ≥ 1 (2)

for all digraphs D, since the set consisting of the TSRDF with constant value 1 forms an TSRD

family on D. Since every TSRD family of D is an SRD family on both D and D−1, we have

d∗
sR (D) ≤ min{dsR (D),dsR (D−1)}. (3)
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In this paper, we initiate the study of the twin signed Roman domatic number in digraphs

and we present some sharp bounds on d∗
sR (D). In addition, we determine the twin signed

Roman domatic number of some classes of digraphs.

A signed Roman dominating function (SRDF) on a graph G = (V (G),E (G)) is defined in

[1] as a function f : V (G) −→ {−1,1,2} such that f (N [v ]) =
∑

x∈N [v] f (x) ≥ 1 for each vertex

v ∈ V , where N [v ] is the closed neighborhood of v , and every vertex u for which f (u) =−1 is

adjacent to a vertex v for which f (v)= 2. The weight of an SRDF f on G is ω( f ) =
∑

v∈V (G) f (v).

The signed Roman domination numberγsR(G) of G is the minimum weight of an SRDF on G . A

set { f1, f2, . . . , fd } of distinct SRDF on G with the property that
∑d

i=1 fi (v)≤ 1 for each v ∈V (G),

is called in [4] a signed Roman dominating family (of functions) on G . The maximum number

of functions in a signed Roman dominating family on G is the signed Roman domatic number

of G , denoted by dsR (G).

An orientation of a graph G is an assignment of orientations to its edges. The associated

digraph D(G) of a graph G is obtained by replacing each edge of G by a pair of two mutually

opposite oriented edges. The definitions imply the next observation immediately.

Observation 1. If G is a graph and D(G) its associated digraph, then γsR (G) = γ∗sR (D(G)) and

dsR (G) = d∗
sR (D(G)).

We make use of the following results in this paper.

Observation 2. ([1]) If Kn is the complete graph of order n ≥ 1, then γsR (Kn) = 1, unless n = 3

in which case γsR (Kn) = 2.

Observation 3. ([4]) If Kn is the complete graph of order n ≥ 1, then dsR (Kn) = n, unless n = 3

in which case dsR (Kn) = 1.

Observations 1, 2 and 3 lead to the next results immediately.

Observation 4. If K ∗
n is the complete digraph of order n ≥ 1, then γ∗sR (K ∗

n ) = 1, unless n = 3 in

which case γ∗sR (K ∗
n ) = 2.

Observation 5. If K ∗
n is the complete digraph of order n ≥ 1, then d∗

sR (K ∗
n ) =n, unless n = 3 in

which case d∗
sR (K ∗

n ) = 1.

If n ≥ 4 and { f1, f2, . . . , fn} is a signed Roman dominating family of functions on K ∗
n , then

we conclude from

n = n ·1≤
n
∑

i=1

ω( fi ) =
n
∑

i=1

∑

v∈V (K ∗
n )

fi (v) =
∑

v∈V (K ∗
n )

n
∑

i=1

fi (v) ≤
∑

v∈V (K ∗
n )

1 = n

that ω( fi ) = 1 and so fi is a γsR (K ∗
n )-function for each i . It follows that each fi assigns 2 to

some vertex of K ∗
n .
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Observation 6. ([3]) If Kp,p is the complete bipartite graph of order 2p , then γsR (Kp,p ) = 4

when p ≥ 3.

Using Observations 1 and 6, we obtain the next result.

Observation 7. If K ∗
p,p is the complete bipartite digraph of order 2p , then γ∗sR (K ∗

p,p ) = 4 when

p ≥ 3.

Observation 8. ([2]) If Cn is an oriented cycle of order n ≥ 2, then γ∗sR (Cn) = n/2 when n is

even and γ∗sR (Cn) = (n +3)/2 when n is odd.

Observation 9. ([6]) If D is a digraph, then dsR (D) ≤ δ−(D)+1.

Observation 10. ([6]) Let D be an r -out-regular digraph of order n such that r ≥ 1. If n 6≡
0 (mod(r +1)), then dsR (D) ≤ r .

Inequality (3) and Observation 10 imply the next corollary.

Corollary 11. Let D be an r -out-regular digraph of order n such that r ≥ 1. If n 6≡ 0 (mod(r +
1)), then d∗

sR (D) ≤ r .

2. Properties of the twin signed Roman domatic number

In this section we present basic properties of d∗
sR (D) and sharp bounds on the twin signed

Roman domatic number of digraphs. Using Observation 9 and (3), we obtain our first bound

on d∗
sR (D).

Proposition 12. If D is a digraph, then d∗
sR (D) ≤ δ(D)+1.

Observation 5 shows that Proposition 12 is sharp. Inequality (2) and Proposition 12 imply

the next corollary immediately.

Corollary 13. If D is a digraph with δ(D) = 0, then d∗
sR (D) = 1.

As we observed in (3), d∗
sR (D) ≤ dsR (D). Now, we show that the difference dsR (D)−d∗

sR (D)

can be arbitrarily large.

Theorem 14. For every positive integer k ≥ 3, there exists a digraph D such that

dsR (D)−d∗
sR (D) ≥ k .
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Proof. Let k ≥ 3 be an integer, and let D be the digraph obtained from two copies of K ∗
k+1

,

say G1,G2, by adding a new vertex x and adding arcs going from every vertex in V (G1)∪V (G2)

into x. Since d+(x) = 0, we deduce from Corollary 13 that d∗
sR (D) = 1.

Let { f1, f2, . . . , fk+1} be a signed Roman dominating family on the digraph G1, and let

{g1, g2, . . . , gk+1} be a signed Roman dominating family on G2. As we note after Observa-

tion 5, each fi assigns 2 to some vertex of G1 and each g j assigns 2 to some vertex of G2.

For 1 ≤ i ≤ k + 1, define hi : V (D) → {−1,1,2} by hi (x) = −1, hi (u) = fi (u) if u ∈ V (G1) and

hi (u)= gi (u) if u ∈V (G2). Clearly, {h1,h2, . . . ,hk+1} is a signed Roman dominating family of D

and hence dsR (D) ≥ k +1. Thus dsR (D)−d∗
sR (D) ≥ k , and the proof is complete. ���

Theorem 15. If D is a digraph of order n, then

γ∗sR (D) ·d∗
sR (D) ≤ n.

Moreover, ifγ∗sR (D)·d∗
sR (D) =n, then for each TSRD family { f1, f2, . . . , fd } on D with d = d∗

sR (D),

each function fi is a γ∗sR (D)-function and
∑d

i=1
fi (v) = 1 for each v ∈V (D).

Proof. Let { f1, f2, . . . , fd } be an TSRD family on D with d = d∗
sR (D) and let v ∈V (D). Then

d ·γ∗sR (D) =
d
∑

i=1

γ∗sR (D) ≤
d
∑

i=1

∑

v∈V (D)

fi (v) =
∑

v∈V (D)

d
∑

i=1

fi (v) ≤
∑

v∈V (D)

1 = n. (4)

If γ∗sR (D) ·d∗
sR (D) =n, then the two inequalities occuring in (4) become equalities. Hence

for the TSRD family { f1, f2, . . . , fd } on D and for each i ,
∑

v∈V (D) fi (v) = γ∗sR (D). Thus each

function fi is a γ∗sR (D)-function, and
∑d

i=1
fi (v)= 1 for each v ∈V (D). ���

Observations 4 and 5 demonstrate that Theorem 15 is sharp. In [6], we have shown that

dsR (K ∗
p,p ) = p

2 when p ≥ 4 is an even integer with p 6= 6. Analogously, one can prove that

d∗
sR (K ∗

p,p ) = p

2
when p ≥ 4 is an even integer with p 6= 6. Using this identity and Observation 7,

we have a further example which shows the sharpness of Theorem 15.

Applying Observation 8, Proposition 12 and Theorem 15, we obtain the twin signed Ro-

man domatic number for oriented cycles.

Corollary 16. Let Cn be an oriented cycle of length n ≥ 2. Then d∗
sR (Cn) = 1 when n is odd

and d∗
sR (Cn) = 2 when n is even.

Proof. First let n be odd. Using Observation 8 and Theorem 15, we deduce that

d∗
sR (Cn) ≤

n

γ∗sR (Cn )
=

2n

n +3
< 2

and thus d∗
sR (Cn) = 1.
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Now let n = 2p be even, and let Cn = u1v1u2v2 . . .up vp u1. Define the function fi : V (Cn )−→
{−1,1,2} by f1(ui ) =−1 and f1(vi ) = 2 and f2(ui ) = 2 and f2(vi ) =−1 for 1 ≤ i ≤ p . Then f1 and

f2 are TSRDF on Cn such that f1(x)+ f2(x) = 1 for each x ∈ V (Cn). Therefore d∗
sR (Cn) ≥ 2. It

follows from Proposition 12 hat d∗
sR (Cn )≤ 2 and so d∗

sR (Cn) = 2 when n is even. ���

According to Corollary 16, the oriented cycle Cn is another example which shows the

sharpness of Theorem 15, when n is even.

Theorem 17. If D is a digraph of order n, then

γ∗sR (D)+d∗
sR (D) ≤ n +1

with equality if and only if D = K ∗
n (n 6= 3) or γ∗sR (D) = n and d∗

sR (D) = 1.

Proof. It follows from Theorem 15 that

γ∗sR (D)+d∗
sR (D) ≤

n

d∗
sR

(G)
+d∗

sR (D). (5)

According to (2) and Proposition 12, we have 1 ≤ d∗
sR (G) ≤ n. Using these bounds, and the fact

that the function g (x) = x+n/x is decreasing for 1 ≤ x ≤
p

n and increasing for
p

n ≤ x ≤ n, we

observe that the maximum of g on the interval [1,n] is n+1. Therefore (5) leads to the desired

bound.

If D = K ∗
n (n 6= 3), then we deduce from Observations 4 and 5 that γ∗sR (D)+d∗

sR (D) = n+1.

Clearly, if γ∗sR (D) =n and d∗
sR (D) = 1, then γ∗sR (D)+d∗

sR (D) = n +1.

Conversely, assume that γ∗sR (D)+d∗
sR (D) = n + 1. Since the maximum of g on [1,n] is

achieved only at 1 and n, it follows from (5) that

n +1= γ∗sR (D)+d∗
sR (D) ≤

n

d∗
sR (G)

+d∗
sR (D) ≤ n +1,

which implies that γ∗sR (D) = n and d∗
sR (D) = 1 or γ∗sR (D) = 1 and d∗

sR (D) = n. If d∗
sR (D) = n and

γ∗sR (D) = 1, then Proposition 12 implies that δ(D) = n−1 and hence D is the complete digraph

K ∗
n . Since γ∗sR (D) = 1, we conclude from Observation 4 that n 6= 3 and so D = K ∗

n (n 6= 3). ���

If H is the disjoint union of oriented triangles, then it follows from Observation 8 and

Corollary 16 that γ∗sR (H ) =n and d∗
sR (H )= 1. Thus, in Theorem 17, γ∗sR (D) = n and d∗

sR (D) = 1

is possible.

The complement D of a digraph D is the digraph with vertex set V (D) such that for any

two distinct vertices u, v the arc (u, v) belongs to D if and only if (u, v) does not belong to D.

Theorem 18. For every digraph D of order n,

d∗
sR (D)+d∗

sR (D) ≤ n +1

with equality if and only if D = K ∗
n or D =K ∗

n and n 6= 3.
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Proof. Since δ(D) = n −1−∆(D), it follows from Proposition 12 that

d∗
sR (D)+d∗

sR (D) ≤ (δ(D)+1)+ (δ(D )+1)

= (δ(D)+1)+ (n −1−∆(D)+1) ≤ n +1,

and this is the desired inequality. If D is not regular, then∆(D)−δ(D) ≥ 1, and hence the above

inequality chain implies the better bound d∗
sR (D)+d∗

sR (D)≤ n.

If D = K ∗
n (n 6= 3), then we deduce from Observation 5 and Corollary 13 that d∗

sR (D)+
d∗

sR (D) = n +1.

Now assume that d∗
sR (D)+d∗

sR (D) = n +1. As seen above, this condition shows that D is

an r -regular digraph. Therefore D is (n − r −1)-regular. If r = 0 or r = n −1, then D = K ∗
n or

D = K ∗
n , and we obtain the desired result.

Next assume that 1≤ r ≤ n−2 and 1 ≤δ(D) ≤n−2. We assume, without loss of generality,

that r ≤ (n −1)/2. If n 6≡ 0 (mod(r +1)), then it follows from Corollary 11 and Proposition 12

that

n +1= d∗
sR (D)+d∗

sR (D) ≤ r + (n −1− r +1) =n,

a contradiction. Next assume that n ≡ 0 (mod(r +1)). Then n = p(r +1) with an integer p ≥ 2.

If n 6≡ 0 (mod(n − r )), then it follows from Corollary 11 and Proposition 12 that

n +1 = d∗
sR (D)+d∗

sR (D) ≤ (r +1)+ (n −1− r ) = n,

a contradiction. Therefore assume that n ≡ 0 (mod(n − r )). Then n = q(n − r ) with an integer

q ≥ 2. Since r ≤ (n −1)/2, this leads to the contradiction

n = q(n − r )≥ q

(

n −
n −1

2

)

=
q(n +1)

2
≥n +1,

and the proof is complete. ���

For some special cases we will improve Proposition 12.

Theorem 19. Let D be a digraph. If D has a vertex v with the property that d+(v) = 2 or

d−(v) = 2, then d∗
sR (D) = 1.

Proof. Assume, without loss of generality, that d+(v) = 2. Let u1 and u2 be the two out-

neighbors of v . Using Proposition 12, we observe that d∗
sR (D) ≤ 3. First we show that d∗

sR (D) ≤
2.

Suppose, to the contrary, that d∗
sR (D) = 3, and let { f , g ,h} be a TSRD family on D. Since

f (x)+ g (x)+h(x) ≤ 1 for each x ∈ V (D), we deduce that f (x) = −1 or g (x) = −1 or h(x) = −1

for each x ∈ V (D). In addition, if f (y) = 2 for a vertex y , then g (y) = h(y) =−1. Now assume,
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without loss of generality, that f (v)=−1. Then f (u1)= 2 or f (u2) = 2, say f (u1)= 2. If f (u2) =
−1, then f (N+[v ]) = 0, a contradiction. Next let f (u2) ≥ 1. Then, without loss of generality,

g (u2) =−1. Since g (u1) =−1, we obtain the contradiction g (N+[v ])≤ 0. Thus d∗
sR (D) ≤ 2.

Next we show that d∗
sR (D) = 1. Suppose, to the contrary, that d∗

sR (D) = 2, and let { f , g }

be a TSRD family on D. Since f (x)+ g (x) ≤ 1 for each x ∈ V (D), we deduce that f (x) = −1

or g (x) = −1 for each x ∈ V (D). Assume, without loss of generality, that f (v) = −1. Then

f (u1) = 2 or f (u2) = 2, say f (u1) = 2. If f (u2) = −1, then f (N+[v ]) = 0, a contradiction. Next

let f (u2) ≥ 1. Then g (u1) = g (u2) =−1, and we arrive at the contradiction g (N+[v ])≤ 0. ���

For r = 2, Theorem 19 yields to the following improvement of Corollary 11.

Corollary 20. If D is a 2-out-regular digraph, then d∗
sR (D) = 1.

Corollary 21. Let D be a digraph. If D has a vertex v with the property that d+(v)+d−(v) = 3,

then d∗
sR (D) = 1.

Proof. If δ(D) = 0, then Corollary 13 implies the desired result. Let now δ(D) ≥ 1. Since

d+(v)+d−(v) = 3, we observe that d+(v) = 2 or d−(v) = 2. Now we deduce from Theorem 19

that d∗
sR (D) = 1. ���

A fan and a wheel is a graph obtained from a path and a cycle by adding a new vertex and

edges joining it to all vertices of the path and cycle, respectively. Corollary 21 leads to the next

result immediately.

Corollary 22. If D is an orientation of a fan, a wheel or a cubic graph, then d∗
sR (D) = 1.
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