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GENERALIZED k-UNIFORMLY CONVEX HARMONIC FUNCTIONS
WITH NEGATIVE COEFFICIENTS

SHUHAI LI, HUO TANG, LINA MA AND AO EN

Abstract. In the present paper, we introduce some generalized k-uniformly convex har-
monic functions with negative coefficients. Sufficient coefficient conditions, distortion
bounds, extreme points, Hadamard product and partial sum for functions of these classes
are obtained.

1. Introduction and preliminaries

Let f; and f, be two analytic functions in the open unit disk U = {z € C : |z] < 1}. We say
that the function f; is subordinate to f; in U, and write fi(z) < f>(2) (z € U), if there exists a
Schwarz function w, which is analytic in U with w(0) =0 and |w(z)| <1 (z € U), such that
f1(2) = fo(w(2)) (z€ U) (see [1]).

A continuous function f = u+ iv is a complex valued harmonic function in a complex
domain D if both u and v are real harmonic in D. In any simply connected domain D c C,
we can write f = h+ g, where h and g are analytic in D. We call & the analytic part and g the
co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and
sense preserving in D is that |/ (z)| > |g'(z)| in D (see [2]; see also [3]—[6]).

Denote by H the class of harmonic functions f that are sense preserving in U and f of
the form

f=h+%g, (1.1)

where

hz)=z+ ) arz" and g2 =Y bpz" (bl <. (1.2)
k=2 k=1
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Let Sy denote the family of functions f = &+ g which harmonic, univalent and sense-
preserving in U for which f(0) = f,(0) -1 =0.

In [2] Clunie and Sheil-Small, investigated the class Sy as well as its geometric subclasses
and its properties. Since then, there have been several studies related to the class Sy and its
subclasses. Following Jahangiri [3, 4], Silverman [5], Silverman and Silvia [6], Oztiirk et al. [7],
and Nagpal and Ravichandran [8] and others have investigated various subclasses of Sy and
its properties.

Also, we denote by Ty the class of harmonic functions f € Sy and

0o 00
h(z)=z- Y laglz" and gz)=-Y Ibplz" (1bil < D). (1.3)

k=2 k=1
Two subclasses of S, namely, uniformly convex functions UCV and uniformly starlike
functions UST were introduced by Goodman [9], later Renning [10] and Ma-Minda [11] (see
also Renning [12]) have given more applicable characterization of these classes. Recently,
Kanas and Wisniowska [13] (see also [14]) studied class of k—uniformly convex analytic func-

tions.

We using the [15] introduce the following Ma-Minda type function.

Definition 1 (Ma-Minda type function). A function ¢(z) is said to be Ma-Minda type function
if it satisfying the following conditions: ¢(z) be an analytic function with positive real part in
U such that ¢(0) = 1, ¢'(0) > 0 and ¢(z) maps U onto a region starlike with respect to 1 and

symmetric with respect to the real axis.

Next, we using the Ma-Minda type function, we introduce the following new subclasses

of analytic functions.

Definition 2. Let functions p(z) is analytic in U and p(0) = 1, also let ¢(z) is Ma-Minda type
function. A function p(z) is said to be in the class U M, (¢) if it satisfies the following subordi-
nation condition

p2) —alp(2) -1l < ¢(2), (1.4)

where a = 0.

Let «f denote the class of the functions of the form

flR)=z+ Z akzk,
k=2

which are analytic in U.

By making use of the class UMy (¢), we introduce the following two harmonic functions.
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Definition 3. Let A, BER, -1 <B< A<1,a=0.Afunction f € Sy of the form (1.1) is said to
be in the class Sy (A, B; a) if and only if

7' f(2) “1+Bz"’ '

where z' = %zwithz— rel,0<r<1,0<6<2nand f'(z) = 66(f(re‘6))

Definition 4. Let AA BeRand-1<B<A<1,a=0.Afunction f € Sy of the form (1.1) is said
to be in the class Ky (A, B; ) if and only if

(zf'(2) . 1+ Az
(2 f(2)) “1+Bz

). (1.6)

Clearly, we have
feKy(AB;a) < zf € Sy(A, B; ).

When a = 0, from Definitions 1-3, we obtain the following subclasses:

p € P(AB) = p(2) <¢(2),
zf'(2) - 1+ Az
Z'f(z) 1+Bz’

f € SH(AB) = feSy (1.7)

and
(zf'(2)) 1+Az

(Z' f(2)) “1+Bz

f€ Ky(A B) = fESH (1.8)

Moreover, let us define

Su(A B;a) = Tu(\Su(A, B;a), Ku(A B;a) = Ty | Ku(A B;a)

and
Su(A,B) = Ty(\Su(A,B), Ku(A,B) = Ty |Ku(A, B).

We further consider the subclasses Sy (A, B; @) and Ky (A, B; @) for h and g given by (1.2).
We note that
(1) Sy(1-2B,-1) = SI*LI(,B), Kp(1-28,-1) =Ky(B) (0 < B < 1) (see Jahangiri [3, 4]);
2) Sg,-1) = S}‘{,KH(I, —1) = Ky (b; = 0) (see Silverman [5] and Silverman and Silvia [6]).
@) feUCV — 1+ @ ey, (122) (h, =0 (ke N); f € o) (see [9]-[11);

f'@
4) feUSV = ij ) € Uy (12) (b = 0 (k€ N); f € <) (see [10]);
®) erCV(ﬁ)c»szf,(j) € U (U222 (b =0 (ke N)j;fest,fel-1,1) and f €

USV(f) = Z,’:(/iz € U (FU=202) (hy =0 (ke N); fe o, @20, f € [-1,1)) (see [12]);
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(6) fea—UCV<:>1+Z]{C,’(’S) €Uqu(122) (b =0 (ke N);fe/,a=0)and fea—USV <

28 € Uy (2) (b =0 (ke N); f € of , a2 0) (see [13, 14]).

In this paper, we aim to introduce some new subclasses of harmonic functions defined by
subordination and obtain some results including sufficient coefficient conditions, distortion
bounds, extreme points, Hadamard product and partial sum for functions of these classes.

2. Coefficient characterization and distortion theorem

Lemma 1. Let functions p(z) is analytic in U and p(0) = 1, also let ¢(z) is Ma-Minda type
function. Then p(z) is said to be in the class UM, (@) if and only if

A-ae P)p@)+ae <@ (PeR). @2.1)
Proof. Suppose p(z) —1 = |p(z) —1|e?, ¢ € R, so we have |p(z) — 1| = (p(z) —1)e”?. Therefore,

p@)—alp(z) -1l <¢p(z) = (1- ae_i‘P)p(z) +ae P < ¢z) (PeR).

Remark 1. For ¢(z) = 144z (A B eR, |Bl <1, A# B), by Lemma 1, we obtain the following

1+Bz
result (see [16]):

- al —1|<1+AZ<=>(1—ae_i¢) (z)+ae‘i‘p<1+Az (el
p-alp 1+Bz P 1+ Bz '
Using Lemma 1 and (1.5), we get that f € Sy (A, B; @) if and only if
_in. 2f(2) . 1+ Az
- qe-i® ip  ~ 4% R). 2.2
(1-ae )z’f(z)+ae <1+Bz (PeR (2.2)
Also, we get that f € Ky (A, B; a) if and only if
: "(2)) o 1+ A
A—ae-iyE O | pemiv 1FAZ oy 2.3)

(' f(2)) 1+ Bz

Theorem 1. Let f = h+ g be such that h and g are given by (1.2). Also, suppose that A,B € R
and-1<B<0<A<l,a=0.1If

Y Aelakl+ Y pxlbrl < A-B, 2.4)
k=2 k=1
where
k(A—B)<Ar=(k-1)(1+a—-aB)+A—Bk (k=2) (2.5)
and
k(A-B)spur=((k+1)(1+a—-aB)+A+Bk (k=1). (2.6)

Then f(z) is sense-preserving harmonic univalentin U and f € Sy (A, B; a).
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Proof. If z; # z,,

fle) - fz)| 1_’8(21)_g(22)
h(z1)=hg, | h(z1) = hy,
L % Ibil(zF =25
(21— 20) + X320, lagl(zf — z5)
> klb
>1— Zk:;) | k|
I_Zkzzklakl
>1— il%'bﬂ
1—Zﬁ2%|akl
> 0,

which proves univalent. Note that f is sense-preserving harmonic in the disc U. This is be-
cause

H@I=1- 3 R
Z)I_I—ZklakHZl >1—Z |al
k=1 -1 A-B

BE bl > f klbellz*"! = g (2.
A-B k=2

o0

z )

k=1

We first show that if the inequality (2.4) holds for the coefficients of f = h + g, then the

required condition (2.2) is satisfied. Using (2.2), we obtain f € Sy (A, B; @) if and only if there
exists an analytic function w(z), @(0) =0, |w(z)| < 1(z € U) such that

. zf(z : 1+ Aw(z
1— ae_l(p)& +ae P = —()

( Z' f(2) 1+ Bw(z)

(peR,z€U),

or equivalently,

(1-ae ) (zf'(z) -2 f(2)
(A-—ae PB)z' f(z) - (1—ae ?)Bzf'(z)

<1 (peR,zeU),
it suffices to show that
I(1-ae ) (zf'(2) -2 f(2)| - |(A—ae ?B)Z f(2) - (1 —ae "")Bzf'(2)| < 0. 2.7

Putting
Yip=(A—kB)+ (k- 1)Bae ', yip=(A+kB)+(k+1)Bae ™. (2.8)

Therefore, from (2.7) we get

11— ae™ ) (zf'(2) -2 f(2)| - |(A—ae ’B)Z f(z2) - (1 — ae ") Bz f' ()

oo o0
Y (k-Dagz" =Y (k+1)byz*
k=2 k=1

= |(1-ae ) -

o0 oo
(A-B)z+ ) )fk,(/,akzk + ) Xkobrzk
k=2 k=1
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<Z(1+a)(k Dlagllzl +Z(1+a)(k+1)|bk||z|
k=2 k=1

~[(A-B)|z| - Zyknlaknm —Zmnlbknm

k=2 k=1
= Zﬂtklakl|z| +an|bk||z| —(A-B)lz|
k=2 k=1
s|z|{ Zakmknzﬂ“ 1+an|bk||z|’“ - B)}
k=2 k=1

< Z Axlag| + Z nklbgl - (A= B)
k=2 k=1
<0.

By hypothesis the last expression is non-positive. Thus the proof is completed.

Corollary 1. Let f = h+ g be such that h and g are given by (1.2). Also, suppose that A,B € R
and-1<B<0<A<l,a=0.1If

Z Arklag| + Z Urklbgl < A-B,
k=2 k=1

then f(z) is sense-preserving harmonic univalent in U and f € Ky (A, B;a), where Ay and i,
are defined by (2.5) and (2.6), respectively.

Theorem 2. Let f = h+g be such that h and g are given by (1.3). Then f € Sy (A, B; ) if and
only if the condition (2.4) holds true.

Proof. Since Sy (A, B;@) < Sy(A, B; @). According to Theorem 1, we only need to prove the
“only if” part of the theorem. Let f € Sy (A, B;a),—1 < B <0< A < 1. Then it satisfies (2.6) or

equivalently .
(- ae ) [T, (k= Dlaxlzk - T2, (k-+ Dlbx|2F |

<1, (2.9)

(A-B)z= £, vrglarlsk + T2, xeglbilzF |
where y 4 and x4 are defined by (2.8).

From (2.9), we have

1, (2.10)

" (1-ae )£, (k- Dlagleb = £, (k+ 1) bel (Z)2k-1]
<
(A=B) = [X2, [ykgplarlzkt + 372 17(k<p|bk|( Z)zk-1]

which is equivalent to

(1-ae )T, (k- DlaglF 1 =X (k+1)|bk|(Z)F1}>o

R{pa(A B P)}=R{1-
(A=B) = (X532, Ykolarl 251+ X2, Xk gl bil(£)2F1]
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or
(A-B)—-F(=2)

Ripg(AB,d)}=R{—— L5 2.11

Pald B0 {(A—B)—G(z)}> &
where B

Flz)=1|) Yk,(p|ak|zk_1 +) Xk,(p|bk|(f)%
k=2 k=1 Z
~(1-ae ') Z(k—l)laklz"‘l—Z(k+1)|bk|(f)Fl
k=2 k=1 4

and

o0 -1 o0 z -
G(2) = ) Yrglarlz" '+ ) xielbrl(=)zF 1.
k=2 k=1 Z

Since R{py(A, B,¢)} > 0 if and only if there exists a complex-valued function w(z), w(0) =
0, |[w(z)] <1 (z € U) such that

(A—B)—-F(2) B 1+w(z)
(A-B)-G(z) 1-w(2)’

Pal(A, B, @) = (2.12)

then (2.11) and (2.12) yield
1+w(2) 1- £
R A, B, =R =R
tpa(4 5,9} {1—w(z)} {1-%
_(A-B)- (23, Ivkpllallzl 1 + 252 Ixkgllbellzl* ]
(A=B) + X3, vk gllarllzl*=1 + 252 [x k.l bill 21
11— ae I [X2, (k= Dlagllzl*"! + (k+ 1)|billz|* ]
A-B+ (22, IveollarllzF=1 + X2 1xkgllbellzl*]

then the above inequality must hold for all z € U. Taking z=r (0 < r < 1) and ¢ = 7, then
(2.13) gives

>0. (2.13)

[e.] [e.°]
N Arlapr* 7+ Y uplbplr® ' < A-B. (2.14)
k=2 k=1

Letting r — 17 in (2.14), we will get (2.4).

Corollary 2. Let f = h+ g be such that h and g are given by (1.3). Also let A and ;. be defined
by (2.5) and (2.6), respectively. Then f € K (A, B; a) ifand only if

(o] [e.e]
Z)kalak|+ Z/Jkk|bk|SA—B. (2.15)
k=2 k=1
Theorem 3. Let f = h+g € Ty besuch that h and g are given by (1.3), A and . defined by (2.5)
and (2.6), respectively. Also, suppose that |b;| > % and T, = min{A,, o). If f € Sy(A, B;a),
then,
palb1l - (A-B) 2
T2 '

A—=1b1Dr SIf@I=sA+1biDr+

b1|-(A-B
T2
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Proof. Since f € Su(A, B; @), then by using Theorem 2, we have

If@=lz=Y larlzF = Y Ibrlzk|

k=2 k=1

o0 o0
< Q+|bir+ Z laplr® + Z |bi|r?

oo
T2
< +ibihr+ 2 kZZ(A —lagl + byl r*
A-B & ( Ag
< (A+I[biDr+ > ( lal ) |bk|)
Z\A-B
A—B K1 2
<1+ )r+ (A B|b1|—1)r

and

If@1=A=1bihr=Y laglr® =Y 1belr?
k=2 k=2

A-B
> (1- by r - == (-2
T2

A-B )
The bound (2.16) is sharp for the function given by

,U1|b1|—(A—B)22
T2 ’

f(@)=zx|b[z~

Using Theorem 3, we obtain the following covering result.

Corollary 3. Let|b;|> % and 1o = min{ly, uo}. If f € Sy(A, B;a), then,

A-B+ (u —T2)|b1|}
T2 ’

{w:lw|<1-

Corollary 4. Let f = h+g be such that h and g are given by (1.3), Ay and . defined by (2.5)
and (2.6), respectively. Also, suppose that |b;| > % and T, = min{ly, uo}. If f € EH(A,B; a),
then,

w1lb1l - (A-B) 12 < f@] <0 +IbiDr+ p1lb1l - (A-B) 2

1-|b1)r—
(1=1b1D) 215 2%,

3. Extreme points

Theorem 4. Let f = h+ g be such that h and g are given by (1.3), Ay and . defined by (2.5)
and (2.6), respectively. Then f € clcoSy (A, B;a) ifand only if

f(@) =) [Xihi+Yigil (zeU), (3.1)
k=1

where
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h =z,
- B

hp=2z- 2% (k=2),
Ak
- B

gk=2- ¢ k=1

and
oo o0
Xi=1-) Xp— > Vi (Xg=20,Y,=20k=12,..).
k=2 k=1

In particular, the extreme points of f € Sy (A, B; a) are hy. and gi.

Proof. Let -1 < B<0< A<1, we get

x X A-B X A-B
f@ = X+ ViDz— ) X2k =Y Y2k
=1 k=2 "'k k=1 Mk
Since, 0< X;. <1 (k=1,2,...), we obtain
O A A- B A B — & x
£ Z S P vk =Y X+ Y V=1
k=2 A—B Ak 1A=B g k=2 k=1
Consequently, using Theorem 2, we have f € Sy (A, B; @).
Conversely, if f € Sy (A, B; @), then
A—-B A—-B
|61k|5;t—k; |b,| < ——
Putting
Aila,| Bkl b, |
Xk: ’ k—
A—-B A—-B
and
o0 o0
X, =1-) Xeg— ) V=0,
k=2 k=1
we obtain
o ko k
f@)=2z-) larlz"~ ) |bklz
k=2 k=1
& & < A-B X A-B_ _
= () X+ ) Yi)z— Y Xpzb =Y Yiz
k=1 k=1 k=2 "k k=1 Mk

= Y [he(2) Xy + 8k (2) Y.
k=1

Thus f can be expressed in the form (3.1).

(3.2)

-X;=<1.

(3.3)

(3.4)

k
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Corollary 5. Let f = h+ g be such that h and g are given by (1.3), Ay and uy defined by (2.5)
and (2.6), respectively. Then f € clcoKy (A, B;a) if and only if

f(2) =Y [Xphie+ Yigi) (z€U),

k=1
where
h]:Z,

_B k
hy=2z— k=2),
k=2 e ( )

- B
gk=2z2— zZ* (k=1

1993

and

(o) o0
Xi=1-) Xp— ) Yp (Xp=0,Y;=0).
k=2 k=1

In particular, the extreme points of f € K 7(A, B; a) are hy and gj.

Theorem 5. The class Sy (A, B; @) is closed under convex combinations.

Proof. For j =1,2,..., let the functions f; given by
= ko k
fi@=z=73"lajlz" = Ibjilz", (3.5)
k=2 k=1

be in the class EH(A, B;a).

For0<n; <1, Z‘]’il n;j =1, the convex combinations can be expressed in the form

Zn]f,—z Z(ZTI]m]kDZ —Z (Z njlbjk|)2", (3.6)

k=2 j=1 k=1\j=1

then using (2.4), we get

(|a]k|)) + Z (Z n]ub,kn)

T
>
oo}

o0 A o0
Z(A_’“B|ajk|+ZA B|b]k|)}

~.
Il
—

I
18
3
—_—

IA
e
=

~.
Il
=

thatls,Zooln]fJESH(AB a). O

Corollary 6. The class K H(A, B; @) is closed under convex combinations.
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4. Hadamard product

Recently, El-Ashwah and Frasin [17] have studied the Hadamard product of harmonic
univalent meromorphic functions. In this section, we establish certain results concerning the
Hadamard product of functions belonging to the classes K (A, B; @) and S 1(A, B; ). In order

to obtain that, we now introduce a new class of analytic functions.

Definition 5. Let§ =0, =0; —1<B<0< A <1, the function f = h+ gbesuch that hand g
are given by (1.3), belong to the class f € Cy(A, B; a,6) if and only if

Z Ko Alag] + Z K pilbgl < A— B, 4.1)
k=2 k=1

where 1y and py are defined by (2.5) and (2.6), respectively.
Obviously, for any positive integer ¢, we have the following inclusion relation:

Cy(A,B;a,8) < Cy(A B;a,6-1)c---c Cy(A B;a,2) c Ky(A B;a) c Sy(A, B; ).

Let the harmonic functions f; (i =1,2,...,p) and F; (j = 1,2,..., q) of the form

fi=hi@+gi(a)=z- Zlakllz —Zlbkl|zk (bl <1) 4.2)

k=2 k=1
and
(o] k (e8]
Fj= Hj(z)+Gj(z)=z—kZ | Ay, jlz —kz B, j1z% (IBral < 1). 4.3)
=2 =1

We define the Hadamard product (or convolution) of f; and F; by

(fi*Fj)(2) =z~ ZlaleAkﬂz —Z|bkl||Bk]|zk— (Fj * fi)(2), (4.4)
k=2 k=

wherei=1,2,...,pand j =1,2,...,4.

Theorem 6. Let the functions f; defined by (4.2) bein the class Ky (A, B; @) foreveryi =1,2,...,p;
and let the functions F; defined by (4.3) be in the class Sy (A, B; @) foreveryj=1,2,...,q. Then
the Hadamard product fi * fp * -+ * fp * Fy x F % --- x F4(z) belongs to the classCr (A, B;a,2p +
q-1.

Proof. Putting
(@)= fixfax-xfpx Fyx Fax-- % Fy(2). (4.5)
From (4.5) we have

c , P q K c , P q
(@=2-Y ([Tlac [T14ki)25 = Y (T 15k TT 1B 1) 2" (4.6)
j=1

k=2 i=1 j=1 k=1 'i=1
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To prove the theorem, we need to show that
o) ) . P q 00 ) . P q
> P [Taea TT1Ak)+ 3 K797 i [Tk [11Bk 1) < A-B, @)
k=2 i=1 j=1 k=1 i=1 j=1
where 1y and pj are defined by (2.5) and (2.6), respectively.
Since f; € K (A, B; a), we obtain
[ee] oo
Y kAglagil+ Y kpklbgil < A-B, (4.8)
k=2 k=1
foreveryi=1,2,..., p. Therefore

-B

kAilar il < A—B or |ag ;| < 4.9
kla,il lag,il A 4.9)
and A_B
kuglby,il<=A—B or |by ;| < . (4.10)
kpik
Further, since Ay = k(A— B) and yy = k(A - B), we get
lag,i| < k™% and |by ;| < k™2, 4.11)
foreveryi=1,2,...,p. Also, since F; €§H(A,B;(x), we have
o0 oo
Y AklAgjl+ > pelBrjl< A-B, (4.12)
k=2 k=1
forevery j=1,2,...,q. Hence we obtain
|Ajl< k™" and |By;l<k™! (4.13)

forevery j=1,2,...,4.
Using (4.11) fori =1,2,...,p; (4.13) for j =1,2,...,g—1 and (4.12) for j = g, we obtain

® ., ) p q-1 ® , . p q-1
Y k272 ([T awil [T 1Ak )| Akgl+ Y K229 e [T 10kt [T 1Bk 1) Bgl
k=2 i=1 j=1 k=1 i=1 j=1

o) )
< Y PP ek PR D) A gl + Y KPP (k2P k) By 4
k=2 k=1
[ 00
=) Akl Ak, jl + > KklB,jl < A= B,
k=2 k=1

and therefore é(z) € EH(A,B;a,Zp + g —1). We note that the required estimate can also be
obtained by using (4.11) fori =1,2,...,p—-1; 4.13) for j =1,2,...,q and (4.8) for i = p.

Taking into account the Hadamard product of functions fj * f> *---* f;, only, in the proof
of Theorem 6, and using (4.11) for i = 1,2,..., p — 1; and relation (4.8) for i = p, we are led to
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Corollary 7. Let the functions f; defined by (4.2) be in the classKy (A, B;a) foreveryi=1,2,...,p.
Then the Hadamard product fi = f> % --- * f;, belongs to the class Cr(A B;a,2p—1).

Also, taking into account the Hadamard product of functions Fy * F; * - -- * Fg only, in the
proof of Theorem 6, and using (4.13) for j =1,2,...,q —1; and relation (4.12) for j = g, we are
led to

Corollary 8. Let the functions F; defined by (4.3) be in the class SH(A,B;a) for every j =
L,2,...,q. Then the Hadamard product Fy * Fy * - - - x F¢(z) belongs to the classEH(A, B;a,q-1).

5. Partial sums

Silverman [18] and Silvia [19] studied partial sum for starlike and convex functions. Re-
cently, Porwal [20], Porwal and Dixit [21] and Porwal [22] have studied analogues interesting
results on the partial sum of certain harmonic univalent functions. We consider in this sec-
tion partial sum of functions in the class Sy (A, B; @) and Ky (A, B; a), and obtain sharp lower
bounds for the ratios of real part of f(z) to f,,,(2) , f(2) to f,(2) and f(2) to fiu,n(2).

Definition 6. Let the function f € Sy of the form (1.1). Then the sequences of partial sum of
functions f(z) are defined by

m o0
fm=2+) apz + Y brzk=hp+§, (5.1
k=2 k=1
o0 n
fa=z+ Y az"+ Y bk=h+g, (5.2)
k=2 k=1
and
m n I
fn=2+Y arz"+ Y brzk = hpy+gn. (5.3)
k=2 k=1

Theorem 7. Let f = h+g besuch that h and g are given by (1.3) withb, =0, and f € Su(A,B;a).
If Ay is defined by (2.5) and

A-B, k=2,3,...,m,
A=
Ams1, k=m+1,m+2,...,m.

Then (@ h+g A-B

: 2 _ g1, A-

) m{fm(z)}_m{hm+g_}>1 — zeUmeN) (5.4)
and £ e o+ 1

.. m(Z)\ _ mTE m+1

(ii) §R{ e }_%{ N }>A_B+Am+1 (ze U, meN). (5.5)

The estimates in (5.4) and (5.5) are sharp for the function given by

fley=z+ #Em“ (zeU). (5.6)

m+1
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Proof. (i) Setting

(2) A-B
o= e [l
1(a) = fm(z) Am+1
_Amﬂ Mm+§G5_(L_A—B)
A-B hm(z)+ﬁ Am+1
Z aka

14+ - k=m+1

_ . (5.7)
z+ ) apz® + Y bizk
k=2 k=2

In order to get (5.4), it is sufficient to show that R(¥,(z)) > 0 (z € U), or equivalently

WYi(z) -
—= “l<1 (zeU).
¥, (2)+1
Since

A

m+1 Z |ak|
wum—l A=-B 50 5.8
Yi(z)+1 ® ’ ’
: 2- 2(Z|ak|+2|bk|) T S

k=m+1

this last expression is bounded above by 1, if and only if

[e.e]
Zﬂau+EZWH+ Amss Y lal<1. (5.9)
A-B k=m+1
It sufficient to show that L. H. S. of (5.9) is bounded above by

Z = la |+Z—|bk|,

which is equivalent to

nAr—-(A-B -(A-B X Ag—-A
ZumkquwkH 3 Zk_2mil gl = 0. (5.10)
k= A-B k=2 A-B k=m+1 A-B

In order to see that the function f(z) of the form (5.6) is extremal, we observe from z = rem
that

f@ _ | A-B , | A-
Jm(2) Am+1 m+1
(i) Similarly, if we take

_ Am+1 )}
A-B +Am+1

(r—17).

_A_B+Am+1 fm(z)_(
Yo(z) = 1_B {f(z)
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A- B+/lm+1( Z aiz +Z bkzk)
k=m+1

=1- i

z+ Z apz® + Z by z*
k=2 k=2

and make use of (5.5), we can deduce that

Wy(z)—1
——| =<1 (zeU).
Wy(z) +1
Since
A-B+A o o ___
Sy Jad+ Y bl
“I’z(Z)—l - A-B k=m+1 k=2 5.11)
Yo(z)+1| oS 8} P —A-B, & o ) .
2 2-2( Y laxl+ Y Ibel) = 25— Y lagl+ Y Ibx]
k=2 k=2 A-B k=m+1 k=2
this last expression is bounded above by 1, if and only if
m oo /’1/ m+l oo
Y lagl+ Y Ibel+ Y lagl=1. (5.12)
k=2 k=2 A-B i

It sufficient to show that L. H. S. of (5.12) is bounded above by

[e 0]

kZzA B

Ia|+

AB

which leads us immediately to the assertion (5.6) of Theorem 7. The bound in (5.5) is sharp
for each m € N with the extremal function f(z) given by (5.6). Thus we complete the proof of
Theorem 7.

Employing the techinques used in Theorem 7, we can prove the following theorems.

Theorem 8. Let f = h+g besuch that h and g are given by (1.3) with b, =0, and f € Su(A,B;a).
If uy is defined by (2.5) and

{A—B, k=2,3,...,n,

>
Hi Kn+1, k=n+1,n+2,...,

Then = ) h+ g A-B

. z +g -

_ 1— neN 1

() %{fn(z)} m{h+gn}> = (zeU,neN) (5.13)

and 102 b g
nlZ + 8n Hn+1
(ii) afe{ f()} m{ h+g}>A—B+,un+1 (zeU,neN). (5.14)

The estimates in (5.13) and (5.14) are sharp for the function given by

A-B
fla)=z+ u—z”“ (ze U). (5.15)
n+1
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Theorem9. Let f = h+g be such that h and g are given by (1.3) with by = 0, and f € Sy (A, B; ).
If Ay and uy are defined by (2.5) and (2.6), respectively, and

A-B, k=2,3,...,m,
Akz{

Am+1, k=m+1,m+2,...,

>{A—B, k=2,3,....m
Hi =

A+, k=m+1,m+2,....

Then

) §R{ /@) }:sre{ h+g }>1—A_B (zeU,meN) (5.16)

fm,n(z) hm+gn m+1 ' '

and

.. fm,n(z) hm+gn Am+1

(ii) §R{ B }:%{ e }>A S (zeU,meN). (5.17)

- m+1

The estimates in (5.16) and (5.17) are sharp for the function given by (5.6).

Proof. (i) Setting

Ame1 [ f(2) A-B
¥sl@) = {fmn(z) (1 Am+1)}

:)Lmﬂ h(z)+g(z) —(I—A_B)
A-B m(z)+gn(z)

Am“( Z akz + Z bkz)

Am+1

k=n+1
=1+ &

z+ Z akzk+ Z by zk
k=2 k=2

In order to obtain (5.16), it is sufficient to show that ®(W3(z)) > 0 (z € U), or equivalently

WYs3(z) -1
———| <1 (zel).
WY3(z) +1
Since 1
m+1 x x
la| + | D]
‘\Pg(Z)—l - A—B(k rzn+1 k k:%ﬂ k)
W3(z)+1 x '
SRRLE - AR L) BE (D i EAES w- L)
k=m+1
this last expression is bounded above by 1, if and only if
m+1 = =
Zlak|+Z|bk|+ ( Y lal+ Y Ibkl)sl. (5.18)
k=m+1 k=n+1

It sufficient to show that L. H. S. of (5.18) is bounded above by

[e.e]

Z Iak|+

k:2 k2A B
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which is equivalent to

m _ _ o0 _ _ o0
s A A 5 M Ay S R e,
= A-B k=2 A-B k=ms1 A-B k=m+1 A-B

(5.19)
which readily yields the assertion (5.18) of Theorem ?2. Similarly, we easily get the assertion
(5.19) of Theorem ?2. The estimates in (5.16) and (5.17) are sharp for the function given by
(5.6).

Theorem 10. Let f = h+ g be such that h and g are given by (1.3) with by =0, and f €
SH(A, B; ). If Ay and iy are defined by (2.5) and (2.6), respectively, and

A-B, k=2,3,...,n,
/1]62{

Un+l k=n+1,n+2,...,

{A—B, k=23,...,n,

>
P Un+l k=n+1,n+2,...,
then bt A_B
+ —
@) m{ C) }:%{ § }>1— (zeU,neN) (5.20)
fm,n(z) hm+gn Hn+1
and

fm,n(z)}:%{ hm+gn}> Hntl  cUnen), (5.21)

f(2) h+g A—B+Up+1

The estimates in (5.20) and (5.21) are sharp for the function given by (5.6) and (5.15), respec-

(ii) m{

tively.

Remark 2. By specializing the parameters A, B and a, we obtain the corresponding results for

various subclasses mentioned in the introduction.
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