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ASYMPTOTIC BEHAVIOR FOR A CLASS OF DELAY DIFFERENTIAL

EQUATIONS WITH A FORCING TERM*

YUJI LIU

Abstract. We study the asymptotic behavior of solutions of the following forced delay differen-

tial equation

x
′(t) = −p(t)f(x(t − τ)) + r(t), t ≥ 0. (∗)

It is show that if f is increasing and |f(x)| ≤ |x| for all x ∈ R, limt→+∞

r(t)
p(t)

= 0,
∫ +∞

0
p(s)ds =

+∞ and lim supt→+∞

∫

t

t−τ
p(s)ds < 3

2 for sufficiently large t, then every solution of the Eq.(∗)

tends to zero as t tends to infinity. Our result improves the recent results obtained by Graef and

Qian.

1. Introduction

In this paper, we study the asymptotic behavior of solutions of the forced delay
differential equation

x′(t) = −p(t)f(x(t − τ)) + r(t), t ≥ 0, (1)

where p ∈ C([0, +∞), (0, +∞)), r ∈ C([0, +∞), R), τ > 0, f : R → R is increasing. We
suppose

lim
x→0

f(x)

x
= b ∈ (0,∞), (2)

and
|f(x)| ≤ |x|, x ∈ R. (3)

Obviously, the equation

x′(t) = −p(t)x(t − τ) + r(t), t ≥ 0, (4)

studied in [1, 5] is a special case of Eq.(1). Although the more general case

x′(t) +
n

∑

i=1

qj(t)f(x(t − τj)) = r(t), (5)
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was studied in [1], the results and their proofs are different. The following theorem is

our main result.

Theorem 1. Suppose that (2), (3) hold, and

∫ +∞

0

p(s)ds = +∞, (6)

µ = lim sup
t→+∞

∫ t

t−τ

p(s)ds <
3

2
, (7)

and

lim
t→+∞

r(t)

p(t)
= 0. (8)

Then every solution of Eq(1) tends to zero as t → +∞.

Example 1. Consider the equation

x′(t) = −
1

4

(6

5
+ cos t

)

x(t − π) +
1

1 + t
.

Since p(t) = 1
4 (6

5 + cos t), we get

lim sup
t→+∞

∫ t

t−π

p(s)ds = lim sup
t→∞

1

4

(6

5
π + 2 sin t

)

=
2 + 6

5π

4
<

3

2
.

It is easy to see that (6) and (8) are valid. Then by Theorem 1, every solution of the

equation tends to zero as t tends to infinity.

Remark. In Theorem 1 [5], it was proved that if (6), (8) hold, and

lim sup
t→+∞

∫ t

t−τ

p(s)ds < 1,

∫ ∞

0

r(s)ds converges,

then every solution of Eq.(4) tends to zero. Theorem 1 improves the result in [5].

In Theorem 2 [5], it is proved that if (6), (8) hold, and

lim
t→+∞

∫ t

t−τ

p(s)ds = β <
π

2
,

then every solution of Eq. (4) tends to zero. The equation in Example 1 does not satisfy

the above conditions, owing to

∫ t

t−τ

p(s)ds =
1

4

(6

5
π + 2 sin t

)

being not asymptotically constant.
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2. Some Lemmas

Clearly, conditions (2) and (8) imply that there exist α > 0 such that

f(x)

x
>

b

2
for |x| < α,

and for any ǫ ∈ (0, α), there is T > 0 such that

∣

∣

∣

r(t)

p(t)

∣

∣

∣
<

bǫ

2
, t > T. (9)

In order to prove Theorem 1, we need the following lemmas.

Lemma 1. Suppose that (2), (8) hold, x(t) is an oscillatory solution of Eq.(1) and

A > 0, δ > 1 such that x(t) satisfies that

x′(t) ≤ Ap(t) + r(t), t ≥ T. (10)

x′(t) ≤ −p(t)x(t − τ) + r(t), if x(t − τ) ≤ 0, and t ≥ T + τ. (11)

∫ t

t−τ

p(s)ds ≤ δ, for all t ≥ T + τ. (12)

If c > T + 2τ , x′(c) ≥ 0, then we have

x(c) ≤
(

δ −
1

2

)

A + ǫ
(

bδ +
bδ2

2
+ 1

)

. (13)

Proof. By (2), (8), we know (9) holds. Since x′(c) ≥ 0, we claim that x(c − τ) ≤ ǫ.

In fact if x(c − τ) > ǫ, then by (1), noting that f(x) is increasing, we get

0 ≤ x′(c) = p(c)
(

− f(x(c − τ)) +
r(c)

p(c)

)

< ǫp(c)
(

−
f(ǫ)

ǫ
+

b

2

)

< ǫp(c)
(

−
b

2
+

b

2

)

= 0.

This is impossible. Now we consider two cases.

Case 1. If 0 < x(c − τ) ≤ ǫ. For t ∈ [c − τ, c], we have t − τ ≤ c − τ . Integrating

(10) from t − τ to c − τ , we get

−x(t − τ) ≤ −x(c − τ) + A

∫ c−τ

t−τ

p(s)ds +

∫ c−τ

t−τ

r(s)ds

≤ A

∫ c−τ

t−τ

p(s)ds +
bǫ

2

∫ c−τ

t−τ

p(s)ds

≤ A

∫ c−τ

t−τ

p(s)ds +
bǫ

2
δ.
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If x(t − τ) ≤ 0, then by (11) we get

x′(t) ≤ Ap(t)

∫ c−τ

t−τ

p(s)ds + p(t)δ
bǫ

2
+ r(t), t ∈ [c − τ, c]. (14)

If x(t − τ) > 0, then (1) implies x′(t) ≤ r(t), and hence (14) is also valid.

Subcase 1.1.
∫ c

c−τ
p(s)ds ≤ 1. Integrating (14) from c − τ to c, and applying (9),

(12) we get

x(c) ≤ x(c − τ) + A

∫ c

c−τ

p(t)

∫ c−τ

t−τ

p(s)dsdt +
bǫ

2
δ

∫ c

c−τ

p(s)ds +

∫ c

c−τ

r(t)dt

≤ ǫ
(bδ

2
+

bδ2

2
+ 1

)

+ A

∫ c

c−τ

p(t)
(

δ −

∫ t

c−τ

p(s)ds
)

dt

= ǫ
(bδ

2
+

bδ2

2
+ 1

)

+ Aδ

∫ c

c−τ

p(t)dt − A

∫ t

c−τ

p(t)

∫ t

c−τ

p(s)dsdt

= ǫ
(bδ

2
+

bδ2

2
+ 1

)

+ Aδ

∫ c

c−τ

p(t)dt −
1

2
A

(

∫ c

c−τ

p(s)ds
)2

.

Since δx − 1
2x2 is increasing for 0 ≤ x ≤ 1 < δ, then

x(c) ≤ ǫ
(bδ

2
+

bδ2

2
+ 1

)

+
(

δ −
1

2

)

A.

Subcase 1.2.
∫ c

c−τ
p(s)ds > 1. Choosing η ∈ (c − τ, c) such that

∫ c

η
p(s)ds = 1, we

get in applying (10), (14), (9), (12), that

x(c) = x(c − τ) +

∫ η

c−τ

x′(s)ds +

∫ c

η

x′(s)ds

≤ x(c − τ) +

∫ η

c−τ

(Ap(s) + r(s))ds +

∫ c

η

[

Ap(t)

∫ c−τ

t−τ

p(s)ds + δ
bǫ

2
p(t) + r(t)

]

dt

≤ ǫ
(

1 + bδ +
bδ2

2

)

+ A

∫ η

c−τ

p(t)dt + A

∫ c

η

p(t)

∫ c−τ

t−τ

p(s)dsdt

= ǫ
(

1 + bδ +
bδ2

2

)

+ A

∫ η

c−τ

p(t)dt + A

∫ c

η

p(t)

[
∫ t

t−τ

p(s)ds −

∫ t

c−τ

p(s)ds

]

dt

≤ ǫ
(

1 + bδ +
bδ2

2

)

+ A

∫ η

c−τ

p(t)dt + A

∫ c

η

p(t)

[

δ −

∫ t

c−τ

p(s)ds

]

dt

= ǫ
(

1 + bδ +
bδ2

2

)

+ A

∫ η

c−τ

p(t)dt + Aδ

∫ c

η

p(t)dt − A

∫ c

η

p(t)

∫ t

c−τ

p(s)dsdt

= ǫ
(

1+bδ+
bδ2

2

)

+A

∫ η

c−τ

p(t)dt+Aδ

∫ c

η

p(s)ds−
1

2
A

{

(

∫ c

c−τ

p(t)dt
)2

−
(

∫ η

c−τ

p(s)ds
)2
}

= ǫ
(

1 + bδ +
bδ2

2

)

+
(

δ −
1

2

)

A.
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Case 2. x(c − τ) ≤ 0. There exists ξ ∈ (c − τ, c] such that x(ξ) = 0. Then for

t ∈ [ξ, c], we have t − τ ≤ ξ. By use of (9), we get from (10)

−x(t − τ) ≤ A

∫ ξ

t−τ

p(s)ds +
bǫ

2
ǫ, (15)

If x(t − τ) ≤ 0, we get based on (11)

x′(t) ≤ Ap(t)

∫ ξ

t−τ

p(s)ds +
bδ

2
ǫp(t) + r(t), t ∈ [ξ, c]. (16)

If x(t − τ) > 0, then by (1), we have x′(t) ≤ r(t), and (16) is also valid. By the method

of that in the proof of subcase 1.1 and 1.2, we get

x(c) ≤ ǫ
(bδ

2
+

bδ2

2
+ 1

)

+
(

δ −
1

2

)

A. (17)

or

x(c) ≤ ǫ
(

1 + bδ +
bδ2

2
+ 1

)

+
(

δ −
1

2

)

A. (18)

This completes the proof.

Lemma 2. Suppose that (2), (8) hold. x(t) is a solution of Eq.(1), B < 0, such that

x′(t) ≥ Bp(t) + r(t), r ≥ T,

x′(t) ≥ −p(t)x(t − τ) + r(t), if x(t − τ) ≥ 0, and t ≥ T + r,

(11) holds, x(c) > 0 and x′(c) ≤ 0, then we have that

x(c) ≥
(

δ −
1

2

)

B − ǫ
(

1 + bδ +
bδ2

2

)

.

Proof. We omit the proof since it is similar to that of Lemma 1.

Lemma 3. Suppose that x(t) is an eventually non-negative solution of Eq.(1), and

(2), (6), (8) hold. Then x(t) tends to zero as t tends to infinity.

Proof. Let lim supt→+∞ x(t) = v. If v = 0, then the proof is complete. If v > 0, we

have two cases to consider.

Case 1. If x′(t) is eventually negative, then there is T1 > T + τ such that x(t) is

decreasing for t ≥ T1. The assumption lim supt→+∞ x(t) = v implies x(t − τ) ≥ v for all

t ≥ T1. By (1), we have

x′(t) ≤ −p(t)f(v) + r(t), t ≥ T1. (19)
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Integrating (19) from T1 to t, we get

x(t) − x(T1) ≤ −f(v)

∫ t

T1

p(s)ds +

∫ t

T1

r(s)ds.

Since v > 0, we get f(v) > 0. Choosing ǫ ∈ (0, f(v)), (8) implies there is T2 > T1 such
that |r(t)| ≤ ǫp(t) for t ≥ T2. Hence

x(t) − x(T1) ≤ (−f(v) + ǫ)

∫ t

T2

p(s)ds − f(v)

∫ T2

T1

p(s)ds +

∫ T2

T1

r(s)ds. (20)

Let t → +∞, by (20), we get v − x(T1) ≤ −∞, a contradiction. Therefore v = 0.

Case 2. Suppose x′(t) is not eventually negative. Choosing T1 > T such that
x(t − τ) ≥ 0 for t ≥ T1, we get

x′(t) ≤ r(t), t ≥ T1. (21)

Supoose that t∗ > T1 + τ is any left maximum point of x(t), then we have x′(t∗) ≥ 0.
From now on, we prove that x(t∗ − τ) ≤ ǫ. Otherwise, we have x(t∗ − τ) > ǫ, using
|r(t)| ≤ bǫ

2 p(t) and (9), we have

0 ≤ x′(t∗) = −p(t∗)f(x(t∗ − τ)) + r(t∗)

< p(t∗)
(

− f(x(t∗ − τ)) +
bǫ

2

)

= ǫp(t∗)
(

−
f(ǫ)

ǫ
+

b

2

)

< ǫp(t∗)
(

−
b

2
+

b

2

)

= 0,

a contradiction. Integrating (21) from t∗ − τ to t∗, by (9), (12), we get

x(t∗) ≤ x(t∗ − τ) +

∫ t∗

t∗−τ

r(t)dt ≤
bδ

2
ǫ + ǫ.

This shows that x(t) is bounded above and then v < +∞. Choosing {tn} such that
T2 + τ < t1 < t2 < · · ·, limn→+∞ tn = +∞, x′(tn) ≥ 0, limn→+∞ x(tn) = v, we get
x(tn − τ) ≤ ǫ. By a similar method in case 2, f(x(t − τ)) > 0 implies x′(t) ≤ r(t).
Integrating this inequality from tn − τ to tn, we get

x(tn) ≤ x(tn − τ) +

∫ tn

tn−τ

r(t)dt ≤ ǫ
(

1 +
bδ

2

)

.

Let n → +∞, ǫ → 0, we have v = 0. This completes the proof.

Lemma 4. Suppose that x(t) is any eventually non-positive solution of Eq.(1), and

(2), (6), (8) hold. Then x(t) tends to zero.
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The proof is similar to that of Lemma 3 and then omitted.

3. Proof of the Theorem

Proof of Theorem 1. By (2), (7), (8), we choose α > 0, such that f(x)
x

> b
2 for

|x| < α. For any ǫ ∈ (0, α), ǫ < 1, we choose T > 0, such that (9) holds and

∫ t

t−τ

p(s)ds ≤ µ + ǫ = a.

By Lemma 3, 4, we need to prove that every oscillatory solution x(t) of Eq.(1) tends to
zero. First we prove that x(t) is bounded, to the contrary, there is t∗ > T + τ such that
|x(t)| < |x(t∗)| for t < t∗. Without loss of generality, we suppose that x(t∗) > 1

ǫ
. Then

we get
x′(t) ≤ p(t)f(x(t∗)) + r(t) for t ≤ t∗. (22)

Then by Lemma 1 and (22), we get

x(t∗) ≤
(

a −
1

2

)

f(x(t∗)) + ǫ
(

ab +
ba2

2
+ 1

)

≤
(

a −
1

2

)

f(x(t∗)) + ǫM, (23)

where M = b(1 + µ) + b(1+µ)2

2 + 1, (since ǫ < 1, then a = δ = µ + ǫ < 1 + µ). By µ < 3
2 ,

without loss of generality, we suppose that ǫ <
3
2−µ

1+M
, thus (23) implies that

1 <
(

µ + ǫ −
1

2

)

+ ǫM = µ −
1

2
+ ǫM + ǫ.

This is impossible. Then x(t) is bounded. Now we suppose that lim supt→+∞ x(t) = v,
lim inft→+∞ x(t) = u, then −∞ < µ ≤ 0 ≤ v < +∞. Then there is T1 > T such that
u1 = u − ǫ < x(t − τ) < v + ǫ = v1 for t > T1. Thus by (1) we get

x′(t) ≤ −p(t)f(u1) + r(t), t ≥ T1. (24)

x′(t) ≥ −p(t)f(v1) + r(t), t ≥ T1. (25)

We choose {sn}, {tn} such that

T1 + τ < s1 < s2 < · · · , sn → +∞, x′(sn) ≥ 0, x(sn) → v as n → +∞.

T1 + τ < t1 < t2 < · · · , tn → +∞, x′(tn) ≤ 0, x(tn) → u as n → +∞.

If x(t − τ) ≤ 0, by |f(x)| ≤ |x| and (1) we get

x′(t) ≤ −p(t)x(t − τ) + r(t), (26)

By Lemma 1, we get

x(sn) ≤ ǫ
(

b(µ + ǫ) +
b(µ + ǫ)2

2
+ 1

)

−
(

µ −
1

2
+ ǫ

)

f(u1), n = 1, 2, . . . ,
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Let n → +∞, ǫ → 0, we get v ≤ −(u − 1
2 )f(u). Similarly, we get

x(tn) ≥ −
(

u −
1

2
+ ǫ

)

f(v1) − ǫ
(

b(µ + ǫ) +
b(µ + ǫ)2

2
+ 1

)

,

then u ≥ −(µ − 1
2 )f(v). Since µ < 3

2 , if v 6= 0, then v > 0. Hence v < −f(u) ≤ u ≤

(µ− 1
2 )f(v) < f(v) ≤ v, which is impossible. We have u = v = 0. The proof is complete.
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