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CHARACTERIZATION OF A CLASS OF GRAPHS WITH UNIQUE

MINIMUM GRAPHOIDAL COVER

S. ARUMUGAM, INDRA RAJASINGH AND P. ROUSHINI LEELY PUSHPAM

Abstract. A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths

in G such that every vertex of G is an internal vertex of at most one path in ψ and every

edge of G is in exactly one path in ψ. The minimum cardinality of a graphoidal cover of G is

called the graphoidal covering number of G and is denoted by η. Two graphoidal covers ψ1 and

ψ2 of a graph G are said to be isomorphic if there exists an automorphism f of G such that

ψ2 = {f(P )/P ∈ ψ1}. A graph G is said to have a unique minimum graphoidal cover if any

two minimum graphoidal covers of G are isomorphic. In this paper we characterize the class of

all graphs G with a unique minimum graphoidal cover when δ = 2 and no end block of G is a

cycle.

1. Introduction

By a graph G = (V,E) we mean a finite undirected, connected graph without loops.

The order and size of G are denoted by p and q respectively. For graph theoretic termi-

nology we refer to Harary [6].

If P = (v0, v1, . . . , vn) is a path or a cycle in G, v1, v2, . . . , vn−1, are called internal

vertices of P . If P = (v0, v1, . . . , vn) and Q = (vn = w0, w1, . . . , wm) are two paths in

G then the walk obtained by concatenating P and Q at vn is denoted by P ◦Q and the

path (vn, vn−1, . . . , v1, v0) is denoted by P−1. For any subset V1 of V the subgraph of G

induced by V1 is denoted by 〈V1〉.
The concept of graphoidal cover was introduced by Acharya and Sampathkumar [1].

Definition 1.1. A graphoidal cover of a graph G is a collection ψ of (not necessarily

open) paths in G satisfying the following conditions.

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering

number of G and is denoted by η.
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Arumugam and Pakkiam introduced the concept of isomorphism between graphoidal
covers of a graph. [5]

Definition 1.2. Two graphoidal covers ψ1 and ψ2 of a graph G are said to be
isomorphic if there exists an automorphism f of G such that ψ2 = {f(P )/P ∈ ψ1}.
A graph G is said to have a unique minimum graphoidal cover if any two minimum
graphoidal covers of G are isomorphic.

An elaborate review of results in graphoidal covers with several interesting applica-
tions and a large collection of unsolved problems is given in [2].

Definition 1.3. Let ψ be a collection of internally disjoint paths in G. A vertex of
G is said to be an interior vertex of ψ if it is an internal vertex of some path in ψ. Any
vertex which is not an interior vertex of ψ is said to be an exterior vertex of ψ.

Theorem 1.4.([8]) For any graphoidal cover ψ of G, let tψ denote the number of

exterior vertices of ψ. Let t = min tψ, where the minimum is taken over all graphoidal

covers of G. Then η = q − p+ t.

Corollary 1.5.([8]) For any graph G, η ≥ q − p. Moreover the following are equiva-

lent.

(i) η = q − p
(ii) There exists a graphoidal cover without exterior vertices

(iii) There exists a set of internally disjoint and edge disjoint paths without exterior

vertices.

Corollary 1.6.([8]) Let G be a graph with η = q − p. Then the minimum vertex

degree δ in G is at least two.

Corollary 1.7.([8]) Let G be a graph with η = q − p. Then the maximum vertex

degree △ in G is at least three.

Theorem 1.8.([7]) For any graph G with δ ≥ 3, η = q − p.

Let F denote the class of all connected graphs with η = q − p.

Theorem 1.9.([3]) Let G be a 2-edge connected graph. Then G 6∈ F if and only if

every block of G is a cycle or a cycle with exactly one chord or a theta graph and at most

one block of G is not a cycle.

Theorem 1.10.([4]) Let G be a connected graph with δ = 2 and κ′ = 1. Then G 6∈ F
if and only if there exists a cut edge e of G such that at least one component of G− e is

a graph, all of whose blocks are cycles.

In [5], it has been proved that if a graph G has a unique minimum graphoidal cover,
then δ ≤ 3 and when δ = 3, G has a unique minimum graphoidal cover if and only if
G = K4. Trees and unicyclic graphs having a unique minimum graphoidal cover have
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also been characterized [5]. In this paper we characterize the class of graphs with a

unique minimum graphoidal cover when δ = 2, and no end block of G is a cycle.

2. Main Results

Theorem 2.1. Let G be a graph in which δ = 2 and no end block of G is a cycle.

Let G′ be the graph (allowing multiple edges) obtained from G by contracting all vertices

of degree 2. If G has a unique minimum graphoidal cover then G′ also has a unique

minimum graphoidal cover.

Proof. Suppose G has a unique minimum graphoidal cover. If η > q − p, since

no end block of G is a cycle, it follows from Theorem 1.9 and Theorem 1.10 that G is

either a cycle with exactly one chord or a θ-graph. In either of the cases there exist

two nonisomorphic minimum graphoidal covers of G, which is a contradiction. Hence

η = q − p. Now let ψ be a minimum graphoidal cover of G so that each vertex of G is

interior to ψ. As we contract the vertices of degree 2 in G we perform the same sequence

of opertaions on the paths in ψ. Let ψ′ be the resulting collection. Then clearly ψ′

is a minimum graphoidal cover of G′. Now let ψ1 and ψ2 be two minimum graphoidal

covers of G′. Then there exist two minimum graphoidal covers ψ3 and ψ4 of G such that

ψ′
3 = ψ1 and ψ′

4 = ψ2. Since G has a unique minimum graphoidal cover, there exists an

automorphism α of G such that ψ4 = {α(P )/P ∈ ψ3}. Let α|V (G′) = α′. Clearly, α′ is

an automorphism of G′ and ψ2 = {α′(P )/P ∈ ψ1}, so that G′ has a unique minimum

graphoidal cover.

We observe that G′ is a multigraph with δ ≥ 3. We first characterize multigraphs

with δ ≥ 3 having a unique minimum graphoidal cover.

Theorem 2.2. Let G be a multigraph with δ ≥ 3. Then G has a unique minimum

graphoidal cover if and only if G is isomorphic to one of the following graphs, Gi, 1 ≤

i ≤ 12 given in Figure 1.

Proof. It can be easily verified that each of the graphs Gi, 1 ≤ i ≤ 12, has a unique

minimum graphoidal cover. Conversely suppose G is a multigraph with δ ≥ 3 having

a unique minimum graphoidal cover. Let P1 = (u1, u2, . . . , un) be a longest path in G

so that vertices adjacent to u1 or un are already in P1. In the sequel all the graphoidal

covers that are exhibited are minimal by Corollay 1.5.

Case (i). u1 and un are non-adjacent.

Since δ ≥ 3 we can find vertices ui, uj in P1 such that 2 ≤ i ≤ j ≤ n− 1, and ui, uj
are adjacent to u1. Similarly we can find vertices ur, us in P1 such that 2 ≤ r ≤ s ≤ n−1

and ur, us are adjacent to un. Now let P2 = (ui, u1.uj) and P3 = (ur, un, us). We claim

that j ≤ r. Suppose j > r.

If i 6= j, let

Q1 = (u1, u2, . . . , uj),
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Q2 = (ui, u1, uj, uj+1, . . . , un, ur),

and Q3 = (us, un).

If i = j, let

Q1 = (ui, u1, . . . , uj),

Q2 = (u1, uj , uj+1, . . . , un), and

Q3 = P3

Figure 1.

Let P be a collection of paths in G such that ψ1 = {P1, P2, P3} ∪ P and ψ2 =

{Q1, Q2, Q3} ∪ P are minimum graphoidal covers of G. Clearly ψ1 and ψ2 give rise to

different partitions of E(G) so that ψ1 and ψ2 are non-isomorphic, which is a contradic-

tion. Hence j ≤ r.

Now let V (G) = {u1, u2, . . . , un}, H = P1∪P2∪P3 and H ′ = 〈V (P1)〉. We prove that

H ′ = H . If not, there exists an edge e = ulum ∈ E(H ′) \ E(H) where 1 ≤ l < m ≤ n.

Since u1 and un are non-adjacent {l,m} 6= {1, n}. Suppose m < n.

If m 6= 2, Let

Q1 = (u1, u2, . . . , um)
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and Q2 = (ul, um, um+1, . . . , un).

If m = 2, let

Q1 = (u1, u2, u1)

Q2 = (u2, u3, . . . , um)

Then ψ1 = {P1, P2, P3, e} and ψ2 = {P2, P3, Q1, Q2} are two nonisomorphic minimum

graphoidal covers of G, which is a contradiction. Similarly if l > 1 we get a contradiction.

Hence H ′ = H . Clearly 3 ≤ p ≤ 6. When p = 3, G is isomorphic to G7 with exactly two

blocks. When p = 4, G is isomorphic to G6 or G10; when p = 5, G is isomorphic to G5

or G9 and when p = 6, G is isomorphic to G8.

If V (G) 6={u1, u2, . . . , un}, let w be a vertex not in P1. Let P4 =(w1, w2, . . . , w, . . . , wd)

be a longest path in G containing w and internally disjoint with the paths P1, P2, P3

and with one of its ends say wd, in P1. Then wd = uk for some k, 1 < k < n. Let R1

and R2 be the (u1, uk) and (uk, un)-sections of P1 [Refer Figure 2]. Let l1, l2 and l3 be

the lengths of the paths R1, R2 and P4 respectively.

Figure 2.

If w1 ∈ V (P1), then there exists a collection of paths P in G such that ψ1 =

{P1, P2, P3, P4} ∪ P and ψ2 = {P2, P3, R1, P4 ◦ R2} ∪ P are minimum graphoidal covers

of G and ψ1 and ψ2 are nonisomorphic, which is a contradiction. Hence w1 6∈ V (P1).

Since δ ≥ 3, we can find vertices wa, wb in P4 such that 1 ≤ a ≤ b ≤ d and wa, wb are

adjacent to w1. Let P5 = (wa, w1, wb). Now we prove that l1 = l2 = l3. There exists a

collection P of paths in G such that

ψ = {P1, P2, P3, P4, P5} ∪ P

ψ1 = {P2, P3, P5, R1 ◦ P
−1
4 , R2} ∪ P

and ψ2 = {P2, P3, P5, P4 ◦R2, R1} ∪ P

are minimum graphoidal covers of G. The paths P1, P4 of ψ are of lengths l1 + l2, l3
respectively, the paths R1 ◦ P

−1
4 , R2 of ψ1 are of lengths l1 + l3, l2 respectively and the

paths P4 ◦ R2, R1 of ψ2 are of lengths l3 + l2, l1 respectively. Since G has a unique

minimum graphoidal cover we see that l1 = l2 = l3. As before we can prove that

〈V (P1 ∪ P4)〉 = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5. If V (G) = V (P1 ∪ P4) then 2 ≤ n ≤ 7. Since

l1 = l2, n is an odd number. If n = 7 then G is isomorphic to G11. Let n = 5. If i = j,

r = s, a = b then G is isomorphic to G12. Otherwise either i 6= j or r 6= s or a 6= b. Let

a 6= b, then wb = wd (Refer Figure 3).
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Let Q1 = (wd, wd−1, . . . , w1, wd) and Q2 = (w1, w2). Then ψ1 = (P1, P2, P3, Q1, Q2}∪

P and ψ2 = {P1, P2, P3, P4, P5}∪P are nonisomorphic minimum graphoidal covers of G,

which is a contradiction. In a similar way we get contradictions when r 6= s and i 6= j.

Figure 3.

Now if n = 3 then G is isomorphic to G7. If V (G) 6= V (P1 ∪ P4), then repeating the

above process we see that G is isomorphic to G7, G11 or G12.

Case (ii) u1 and un are adjacent

Let t be the number of edges joining u1 and un. We prove that V (G)={u1, u2, . . . , un}.

Suppose not, then there exists a vertex w 6∈ V (P1) such that w is adjacent to some ui
and hence G contains a path of length greater than n − 1, which is a contradiction.

Hence V (G) = {u1, u2, . . . , un}. Since δ ≥ 3 we can find vertices ui, uj in P1 such that

2 ≤ i ≤ n − 1 and 2 ≤ j ≤ n − 1, ui is adjacent to u1 and uj is adjacent to un. Let

P2 = (ui, u1, un, uj), H = P1 ∪ P2 and t = 1 (Refer Figure 4).

Figure 4.

We claim that G = H . If not, there exists an edge e = ulum ∈ E(G) \ E(H) where
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1 ≤ l < m ≤ n. Since t = 1, {l,m} 6= {1, n}. Supoose m < n.

If m 6= 2, let

Q1 = (u1, u2, . . . , um)

and Q2 = (ul, um, um+1, . . . , un).

If m = 2, let

Q1 = (u1, u2, u1)

and Q2 = (u2, u3, . . . , un).

Let S denote the set of edges not covered by the paths P1 and P2. Then ψ1 =

{P1, P2} ∪ S and ψ2 = {P2, Q1, Q2} ∪ (S \ {e}) are nonisomorphic minimum graphoidal

covers of G, which is a contradiction. Similarly if l > 1 we get a contradiction. Hence

G = H . Therefore when i < j, G is isomorphic to G1, when i = j, G is isomorphic to

G2 and when i < j, G is isomorphic to G3.

Suppose t = 2, P2 = (un, u1, un) and H = P1 ∪ P2. When G = H , G is isomorphic

to G4 with δ(G4) = 3. When G 6= H , there exists an edge e ∈ E(G) \ E(H). Let

H1 = H ∪ {e}. Proceeding as before we can prove that G = H1 and G is isomorphic to

G1 or G2. Let t > 2. We claim that the length of P1 is one. Suppose not, then there

exists an edge e1 = ulum ∈ E(G) \ E(H) where 1 ≤ l ≤ m ≤ n, {l,m} 6= {1, n}. Since

t > 2, there exists an edge e2 = u1un which does not lie on P2 (Refer Figure 5). Let

S be the set of edges not covered by the paths P1, P2, and the edges e1 and e2. Let

ψ1 = {(u1u2 · · ·unu1), P2, e1} ∪ S

and ψ2 =

{

{(P1, (u1unu1), (umu1un)} ∪ S if 1 = l < m < n

{(P2, (u1umum+1 · · ·unu1), (u1u2 · · ·um)} ∪ S if 1 < l < m < n

Then ψ1 and ψ2 are minimum graphoidal covers which are nonisomorphic, which is a

contradiction. Hence G is isomorphic to G4 with δ(G4) > 3.

Figure 5.

Now we define a series of graphs corresponding to the graphs Gi given in Figure 1 as

follows:

For any edge uv, let (uv)m denote the (u, v)-path obtained by subdividing m times

the edge uv.



324 S. ARUMUGAM, INDRA RAJASINGH AND P. ROUSHINI LEELY PUSHPAM

Definition 2.3. Let H1 be the graph obtained from G1 by replacing the multiple
edges u1u2 by (u1u2)

m, the multiple edges u3u4 by (u3u4)
n, the edge u3u1 by (u3u1)

a,
and the edge u2u4 by (u2u4)

b where m, n ≥ 1 and a, b ≥ 0. Let H2 be the graph obtained
from G2 by replacing the multiple edges u1u2 by (u1u2)

m, the multiple edges u1u3 by
(u1u3)

n and the edge u2u3 by (u2u3)
a where m, n ≥ 1 and a ≥ 0.

Let H3, H4 be the graphs obtained from G3 and G4, respectively by replacing each
edge uv by (uv)m, m ≥ 1.

Let H5 be the graph obtained from G5 by replacing the multiple edges u1u2 by
(u1u2)

m, the multiple edges u3u4 by (u3u4)
n, the edges uu1, uu2 by (uu1)

a, (uu2)
a

respectively and the edges uu3, uu4 by (uu3)
b, (uu4)

b respectively, where m, n ≥ 1 and
a, b ≥ 0.

Let H6 be the graph obtained from G6 by replacing the multiple edges u1u2 by
(u1u2)

m, the multiple edges uu3 by (uu3)
n and the edges uu1, uu2 by (uu1)

a, (uu2)
a

respectively, where m, n ≥ 1 and a ≥ 0.
When ∆(G7) > 6, let H7 be the graph obtained from G7 by replacing the multiple

edges uu1 by (uu1)
m and uu2 by (uu2)

n, m, n ≥ 1. When ∆(G7) = 6 let H7 be the
graph obtained from G7 by replacing each edge uv by (uv)m, m ≥ 1.

Let H8 be the graph obtained from G8 by replacing the multiple edges u1u2 by
(u1u2)

n, the multiple edges u3u4 by (u3u4)
m, the edges u1u, u2u by (u1u)

a, (u2u)
a

respectively and the edges vu3, vu4 by (vu3)
b, (vu4)

b respectively and the edges uv by
(uv)c where m, n ≥ 1 and a, b, c ≥ 0.

Let H9 be the graph obtained from G9 by replacing the multiple edges u1u2 by
(u1u2)

n, the multiple edges vu3 by (vu3)
m, the edges u1u, u2u by (u1u)

a, (u2u)
a respec-

tively and the edges uv by (uv)b, where m, n ≥ 1 and a, b ≥ 0.
Let H10 be the graph obtained from G10 by replacing the multiple edges u1u by

(u1u)
m, the multiple edges u2u by (u2u)

n, and the edge uv by (uv)a where m, n ≥ 1
and a ≥ 0.

Let H11 be the graph obtained from G11 by replacing the multiple edges uiwi, 1 ≤
i ≤ k, by (uiwi)

m, the edges uvi, 1 ≤ i ≤ k, by (uvi)
a, the edges uivi, wivi, 1 ≤ i ≤ k,

by (uivi)
b, (wi, vi)

b respectively, where m ≤ 1 and a, b ≤ 0.
Let H12 be the graph obtained from G12 by replacing the multiple edges uivi, 1 ≤

i ≤ k, by (uivi)
m the edges uvi, 1 ≤ i ≤ k, by (uvi)

a where m ≥ 1 and a ≥ 0.
The following theorem gives a characterization of simple graphs G with unique min-

imum graphoidal cover and with δ = 2 in which no end block of G is a cycle.

Theorem 2.4. Let G be a simple graph with δ = 2 in which no end block is a cycle.

Then G has a unique minimum graphoidal cover if and only if G is not a θ-graph and G
is isomorphic to one of the graphs Hi, 1 ≤ i ≤ 12 given in Definition 2.3.

Proof. Suppose G has a unique minimum graphoidal cover. Clearly G is not a
θ-graph. Let G′ be the graph obtained by contracting all vertices of degree 2 in G.
By Theorem 2.1 G′ has a unique minimum graphoidal cover. By Theorem 2.2 G′ is
isomorphic to one of the graphs Gi, 1 ≤ i ≤ 12 given in Figure 1. We claim that if G′ is
isomorphic to Gi, then G is isomorphic to Hi.
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Let G′ be isomorphic to G1. Since any automorphism of G1 maps u1, u3 to u2, u4

or u1, u2 to u3, u4 it follows that the multiple edges u1u2 must be subdivided the same
number of times and the multiple edges u3u4 must be subdivided the same number of
times to obtain G. Hence G is isomorphic to H1. The proof is similar if G′ is isomorphic
to Gi, 2 ≤ i ≤ 12.

Conversely suppose G is not a θ-graph and G is isomorphic to Hi, 1 ≤ i ≤ 12. Let ψi
be a minimum graphoidal cover of Gi. Hi is obtained from Gi by subdivding the edges
of Gi as given in Definition 2.3. Perform the same sequence of subdivisions on the edges
of the paths in ψi. Let ψ′

i be the resulting collection of paths. Then ψ′
i is a minimum

graphoidal cover of Hi and any minimum graphoidal cover of Hi is isomorphic to ψ′
i,

1 ≤ i ≤ 12. Hence Hi, 1 ≤ i ≤ 12, has a unique minimum graphoidal cover.
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